Биполярный транзистор в схеме с общим эмиттером. Биполярные транзисторы: схемы включения

При любом включении транзистора в схему, через один из его выводов, будет течь входной и выходной ток, этот вывод называют общим.

Существуют три схемы включения биполярного транзистора:

  • с общим эмиттером;
  • с общим коллектором;
  • с общей базой;
Начнём со схемы, с общим эмиттером. Схема с общим эмиттером обладает следующими свойствами:
  • большим коэффициентом усиления по току;




Во всех осциллограммах в статье первый канал - входной сигнал, второй канал - выходной сигнал. Входной сигнал берется после разделительного конденсатора, иначе конденсатор вносит сдвиг фазы.
На осциллограмме видно, что амплитуда выходного сигнала в несколько раз превышает амплитуду входного, при этом сигнал на выходе инвертирован относительно входного сигнала, это значит, что когда сигнал входе возрастает на выходе он убывает и наоборот. На схеме пунктирной линией изображен конденсатор, его можно подключить если надо увеличить коэффициент усиления. Давайте подключим его.


Видим, что выходной сигнал увеличился примерно на порядок, то есть в 10 раз. Такая схема включения транзистора применяется, в усилителях мощности.
При включении конденсатора входное сопротивление схемы уменьшилось, что привело к искажениям сигнала генератора, а следовательно и выходного сигнала.

Схема с общим коллектором.

  • входной сигнал подаётся на базу;
  • выходной сигнал снимается с эмиттера;
Схема с общим коллектором обладает следующими свойствами:
  • большим коэффициент усиления по току;
  • напряжения входного и выходного сигнала отличаются примерно на 0,6 V;


Давайте соберём нарисованную выше схему и посмотрим как будет изменяться выходной сигнал в зависимости от входного.


На осциллограмме видно, что амплитуды сигналов равны потому, что осциллограф отображает только переменную составляющую, если включить осциллограф на отображение постоянной составляющей, то разница между сигналом на входе и выходе составит 0,6 V. Схема сигнал не инвертирует и применяется в качестве буфера или для согласования каскадов.
Под буфером в электронике понимается схема, которая увеличивает нагрузочную способность сигнала, то есть сигнал остается такой же формы, но способен выдать больший ток.

Схема с общей базой.

  • входной сигнал подаётся на эмиттер;
  • выходной сигнал снимается с коллектора;
Схема с общей базой обладает следующими свойствами:
  • большим коэффициентом усиления по напряжению;
  • близким к нулю усилением по току, ток эмиттера больше тока коллектора на ток базы;


Давайте соберём нарисованную выше схему и посмотрим как будет изменяться выходной сигнал в зависимости от входного.


На осциллограмме видно, что амплитуда выходного сигнала примерно в десять раз превышает амплитуду входного сигнала, также сигнал на выходе не инвертирован относительно входного сигнала. Применяется такая схема включения транзистора в радиочастотных усилителях. Каскад с общей базой обладает низким входным сопротивлением, поэтому сигнал генератора искажается, следовательно и выходной сигнал тоже.
Возникает вопрос, почему не использовать для усиления радиочастот схему с общим эмиттером ведь она увеличивает амплитуду сигнала? Все дело в ёмкости перехода база-коллектор, её ещё называют ёмкостью Миллера. Для радиочастот эта ёмкость обладает малым сопротивлением, таким образом, сигнал вместо того, чтобы течь через переход база-эмиттер проходит через эту ёмкость и через открытый транзистор стекает на землю. Как это происходит показано на рисунке ниже.


Пожалуй, это всё, что хотелось рассказать про схемы включения транзистора.

Название полупроводникового прибора транзистор образовано из двух слов: transfer – передача + resist – сопротивление. Потому что его действительно можно представить в виде некоторого сопротивления, которое будет регулироваться напряжением одного электрода. Транзистор иногда еще называют полупроводниковым триодом.

Создан первый биполярный транзистор был в 1947 году, а в 1956 году за его изобретение трое ученых были удостоены нобелевской премии по физике.

Биполярный транзистор – это полупроводниковый прибор, который состоит из трех полупроводников с чередующимся типом примесной проводимости. К каждому слою подключен и выведен электрод. В биполярном транзисторе используются одновременно заряды, носители которых электроны (n - “ negative ”) и дырки (p – “ positive ”), то есть носители двух типов, отсюда и образование приставки названия «би» - два.

Транзисторы различаются по типу чередования слоев:

P n p -транзистор (прямая проводимость);

Npn- транзистор (обратная проводимость).

База (Б) – это электрод, который подключен к центральному слою биполярного транзистора. Электроды от внешних слоев именуются эмиттер (Э) и коллектор (К).

Рисунок 1 – Устройство биполярного транзистора

На схемах обозначаются « VT », в старой русскоязычной документации можно встретить обозначения «Т», «ПП» и «ПТ». Изображаются биполярные транзисторы на электрических схемах, в зависимости от чередования проводимости полупроводников, следующим образом:


Рисунок 2 – Обозначение биполярных транзисторов

На рисунке 1, изображенном выше, отличие между коллектором и эмиттером не видны. Если посмотреть на упрощенное представление транзистора в разрезе, то видно, что площадь p - n перехода коллектора больше чем у эмиттера.


Рисунок 3 – Транзистор в разрезе

База изготовляется из полупроводника со слабой проводимостью, то есть сопротивление материала велико. Обязательное условие – тонкий слой базы для возможности возникновения транзисторного эффекта. Так как площадь контакта p - n перехода у коллектора и эмиттера разные, то менять полярность подключения нельзя. Эта характерность относит транзистор к несимметричным устройствам.

Биполярный транзистор имеет две ВАХ (вольт амперные характеристики): входную и выходную.

Входная ВАХ – это зависимость тока базы (I Б ) от напряжения база-эмиттер (U БЭ ).



Рисунок 4 – Входная вольтамперная характеристика биполярного транзистора

Выходная ВАХ – это зависимость тока коллектора (I К ) от напряжения коллектор-эмиттер (U КЭ ).



Рисунок 5 – Выходная ВАХ транзистора

Принцип работы биполярного транзистора рассмотрим на npn типе, для pnp аналогично, только рассматриваются не электроны, а дырки. Транзистор имеет два p-n перехода . В активном режиме работы один из них подключен с прямым смещением, а другой – обратным. Когда переход ЭБ открыт, то электроны с эмиттера легко перемещаются в базу (происходит рекомбинация). Но, как говорилось ранее, слой базы тонкий и проводимость ее мала, по этому часть электронов успевает переместиться к переходу база-коллектор. Электрическое поле помогает преодолеть (усиливает) барьер перехода слоев, так как электроны здесь неосновные носители. При увеличении тока базы, переход эмиттер-база откроется больше и с эмиттера в коллектор сможет проскочить больше электронов. Ток коллектора пропорционален току базы и при малом изменении последнего (управляющий), коллекторный ток значительно меняется. Именно так происходит усиления сигнала в биполярном транзисторе.



Рисунок 6 – Активный режим работы транзистора

Смотря на рисунок можно объяснить принцип действия транзистора чуть проще. Представьте себе, что КЭ – это водопроводная труба, а Б – кран, с помощью которого Вы можете управлять потоком воды. То есть, чем больше ток вы подадите на базу, тем больше получите на выходе.

Значение коллекторного тока почти равно току эмиттера, исключая потери при рекомбинации в базе, которая и образовывает ток базы, таким образом справедлива формула:

І Э =І Б +І К.

Основные параметры транзистора:

Коэффициент усиления по току – отношение действующего значения коллекторного тока к току базы.

Входное сопротивление – следуя закону Ома оно будет равно отношению напряжения эмиттер-база U ЭБ к управляющему току I Б .

Коэффициент усиления напряжения – параметр находится отношением выходного напряжения U ЭК к входному U БЭ .

Частотная характеристика описывает способность работы транзистора до определенной, граничной частоты входного сигнала. После превышения предельной частоты физические процессы в транзисторе не будут успевать происходить и его усилительные способности сведутся на нет.

Схемы включения биполярных транзисторов

Для подключения транзистора нам доступны только его три вывода (электрода). По этому для его нормальной работы требуются два источника питания. Один электрод транзистора будет подключаться к двум источникам одновременно. Следовательно, существуют 3 схемы подключения биполярного транзистора: ОЭ – с общим эмиттером, ОБ – общей базой, ОК – общим коллектором. Каждая обладает как преимуществами, так и недостатками, в зависимости от области применения и требуемых характеристик делают выбор подключения.

Схема включения с общим эмиттером (ОЭ) характеризуется наибольшим усилением тока и напряжения, соответственно и мощности. При данном подключении происходит смещение выходного переменного напряжения на 180 электрических градусов относительно входного. Основной недостаток – это низкая частотная характеристика, то есть малое значение граничной частоты, что не дает возможность использовать при высокочастотном входном сигнале.

(ОБ) обеспечивает отличную частотную характеристику. Но не дает такого большого усиления сигнала по напряжению как с ОЭ. А усиление по току не происходит совсем, поэтому данную схему часто называют токовый повторитель, потому что она имеет свойство стабилизации тока.

Схема с общим коллектором (ОК) имеет практически такое же усиление по току как и с ОЭ, а вот усиление по напряжению почти равно 1 (чуть меньше). Смещение напряжения не характерно для данной схемы подключения. Ее еще называю эмиттерный повторитель, так как напряжение на выходе (U ЭБ ) соответствуют входному напряжению.

Применение транзисторов:

Усилительные схемы;

Генераторы сигналов;

Электронные ключи.

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ


Биполярным транзистором называют полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и предназначеный для усиления сигнала.

Биполярные транзисторы являются полупроводниковыми приборами универсального назначения и широко применяются в различных усилителях, генераторах, в импульсных и ключевых устройствах.

Биполярные транзисторы можно классифицировать по материалу: германиевые и кремниевые; по виду проводимости: типа р- n -р и n - p - n ; по мощности: малая (Р мах < 0,3Вт), средняя (Р мах = 1,5Вт) и большая (Р мах > 1,5Вт); по частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В таких транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок. Отсюда пошло их название: биполярные.

Биполярный транзистор представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n -р- n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р- n -р имеют среднюю область с электронной, а крайние - с дырочной проводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, вторая – коллектором. Таким образом в транзисторе имеются два р- n - перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором.

Эмиттером - это область транзистора для инжекции носителей заряда в базу. Коллектором - область, назначением которой является извлечение носителей заряда из базы. Базой называется область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера гораздо выше проводимости базы, а проводимость коллектора меньше проводимости эмиттера.

В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Принцип действия транзистора на примере транзистора р- n -р –типа, включенного по схеме с общей базой (ОБ).

Внешние напряжения двух источников питания ЕЭ и Е к подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении, а коллекторного перехода П2 – в обратном направлении.

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток I ко . Он возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Е к , база-коллектор, −Е к .

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Е к . Дырки, рекомбинировавшие с электронами в базе, создают ток базы I Б.

Под воздействием обратного напряжения Е к, потенциальный барьер коллекторного перехода повышается, а толщина перехода П2 увеличивается. Вошедшие в область коллекторного перехода дырки попадают в ускоряющее поле, созданное на переходе коллекторным напряжением, и втягиваются коллектором, создавая коллекторный ток I к . Коллекторный ток протекает по цепи: +Е к , база-коллектор, -Е к .

Таким образом, в б иполярном транзисторе протекает три вида тока: эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Ток базы равен разности токов эмиттера и коллектора: I Б = I Э − I К.

Физические процессы в транзисторе типа n -р- n протекают аналогично процессам в транзисторе типа р- n -р.

Полный ток эмиттера I Э определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток I к . Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы I Б. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. I Э = I Б + I к .

Выходной ток транзистора зависит от входного тока. Поэтому транзистор- прибор, управляемый током.

Изменения тока эмиттера, вызванные изменением напряжения эмиттерного перехода, полностью передаются в коллекторную цепь, вызывая изменение тока коллектора. А т.к. напряжение источника коллекторного питания Е к значительно больше, чем эмиттерного Е э , то и мощность, потребляемая в цепи коллектора Р к , будет значительно больше мощности в цепи эмиттера Р э . Таким образом, обеспечивается возможность управления большой мощностью в коллекторной цепи транзистора малой мощностью, затрачиваемой в эмиттерной цепи, т.е. имеет место усиление мощности.

Схемы включения биполярных транзисторов

Транзистор, в схему включают так, что один из его выводов является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК . Для транзистора n -р- n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора, полярность включения источников питания должна быть выбрана такой, чтоб эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

Характеристики транзистора, включенного по схеме ОБ

I Э = f (U ЭБ) при U КБ = const (а).

I К = f (U КБ) при I Э = const (б).

Статические характеристики биполярного транзистора, включенного по схеме ОБ. Выходные ВАХ имеют три характерные области: 1 – сильная зависимость I к от U КБ; 2 – слабая зависимость I к от U КБ; 3 – пробой коллекторного перехода. Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения U КБ.

Характеристики транзистора, включенного по схеме ОЭ:

Входной характеристикой является зависимость:

I Б = f (U БЭ) при U КЭ = const (б).

Выходной характеристикой является зависимость:

I К = f (U КЭ) при I Б = const (а).


Режим работы биполярного транзистора

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р- n - перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р- n - перехода открыты), то транзистор работает в режиме насыщения. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы - усиление, генерирация.

усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером. Основными элементами схемы являются источник питания Е к , управляемый элемент – транзистор VT и резистор R к . Эти элементы образуют выходную цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы. Другие элементы схемы выполняют вспомогательную роль. Конденсатор С р является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Е к .

Резистор R Б, включенный в цепь базы, обеспечивает работу транзистора при отсутствии входного сигнала. Режим покоя обеспечивается током базы покоя I Б = Е к / R Б. С помощью резистора R к создается выходное напряжение. R к выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Е к = U кэ + I к R к ,

сумма падения напряжения на резисторе R к и напряжения коллектор-эмиттер U кэ транзистора всегда равна постоянной величине – ЭДС источника питания Е к .

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Е к в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

Введение

Современную жизнь трудно представить без хорошо развитой электроники.

Но современная аппаратура обеспечивается совокупностью электротехнических и электронных устройств различной сложности, состоящих из элементов, к которым приложены электрические напряжения или протекают электрические токи. Сколь угодно сложные электронные устройства, в конечном счете, состоят из разнообразных электронных приборов, обладающих вполне определенными свойствами. Таким образом, чтобы разрабатывать, изготавливать или эксплуатировать различную аппаратуру, следует, прежде всего, знать процессы, происходящие в электронных приборах при различных условиях, а также законы, которым подчиняются эти процессы, т.е. освоить основы электроники.

Транзистор представляет собой управляемый прибор, его коллекторный ток зависит от тока эмиттера, который в свою очередь можно изменять напряжением эмиттер – база, U ЭБ. Поскольку напряжение в цепи коллектора, включенного в обратном направлении, значительно больше, чем в цепи эмиттера, включенного в прямом направлении, а токи в этих цепях практически равны, мощность, создаваемая переменной составляющей коллекторного тока в нагрузке, включенной в цепи коллектора, может быть значительно больше мощности, затрачиваемой на управление тока в цепи эмиттера, т. е. транзистор обладает усилительным эффектом.

Для усиления электрических сигналов применяются схемы с общим коллектором (ОК) и общим эмиттером (ОЭ). Работу биполярного транзистора по схеме с ОЭ определяют статические входные и выходные характеристики.

При схеме включения биполярного транзистора с общим эмиттером (ОЭ) входной сигнал подаётся на базу, а снимается с коллектора. При этом фаза выходного сигнала отличается от входного на 180°. Усиливает и ток, и напряжение. Данное включение транзистора позволяет получить наибольшее усиление по мощности, поэтому наиболее распространено. Однако при такой схеме нелинейные искажения сигнала значительно больше. Кроме того, при данной схеме включения на характеристики усилителя значительное влияние оказывают внешние факторы, такие как напряжение питания, или температура окружающей среды. Обычно для компенсации этих факторов применяют отрицательную обратную связь, но она снижает коэффициент усиления.



Биполярные транзисторы управляются током. В схеме с ОЭ - током базы. Напряжение на переходе база-эмиттер при этом остаётся почти постоянным и зависит от материала полупроводника, для германия около 0,2 В, для кремния около 0,7 В, но на сам каскад подаётся управляющее напряжение. Ток базы, коллектора и эмиттера и другие токи и напряжения в каскаде можно вычислить по закону Ома и правилам Кирхгофа для разветвлённой многоконтурной цепи.


Режимы работы биполярного транзистора

Транзистором называют электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, пригодный для усиления мощности электрических сигналов и имеющий три или более выводов. По принципу действия транзисторы бывают биполярные и полевые.

Биполярный транзистор содержит три полупроводниковые области с чередующимися типами проводимости n-p-n или p-n-p, которые называют соответственно эмиттером, базой и коллектором.

Нормальный активный режим

Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база - в обратном (закрыт) U ЭБ >0;U КБ <0;

Инверсный активный режим

Эмиттерный переход имеет обратное включение, а коллекторный переход - прямое.

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты).

Режим отсечки

В данном режиме оба p-n перехода прибора смещены в обратном направлении (оба закрыты).

Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор.

В таком включении транзистор представляет из себя диод, включенный последовательно с резистором.

Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, неразборчивостью к параметрам транзисторов.

Эмиттерный повторитель - частный случай повторителей напряжения на основе биполярного транзистора. Характеризуется высоким усилением по току и коэффициентом передачи по напряжению, близким к единице. При этом входное сопротивление относительно велико (однако оно меньше, чем входное сопротивление истокового повторителя), а выходное - мало.

В эмиттерном повторителе используется схема включения транзистора с общим коллектором (ОК). То есть напряжение питания подаётся на коллектор, входной сигнал подаётся на базу, а выходной сигнал снимается с эмиттера. В результате чего образуется 100 % отрицательная обратная связь по напряжению, что позволяет значительно уменьшить нелинейные искажения, возникающие при работе. Следует также отметить, что фазы входного и выходного сигнала совпадают. Такая схема включения используется для построения входных усилителей, в случае если выходное сопротивление источника велико, и как буферный усилитель, а также в качестве выходных каскадов усилителей мощности.

Схемы включения

Схема включения с общим эмиттером

U вых = U кэ

· Коэффициент усиления по току:


I вых /I вх =I к /I б =I к /(I э -I к) = α/(1-α) = β [β>>1]

· Входное сопротивление:

R вх =U вх /I вх =U бэ /I б

Достоинства:

· Большой коэффициент усиления по току

· Большой коэффициент усиления по напряжению

· Наибольшее усиление мощности

· Можно обойтись одним источником питания

· Выходное переменное напряжение инвертируется относительно входного.

Недостатки:

· Худшие температурные и частотные свойства по сравнению со схемой с общей базой

Рассмотрим схему включения транзистора с общим эмиттером.
- сам термин названия данного включение уже говорит о специфике данной схемы. Общий эмиттер а в крации это ОЭ, подразумевает тот факт, что у входа данной схемы и выхода общий эмиттер.
Рассмотрим схему:


в этой схеме видим два источника питания, первый 1.5 вольт, использован как входной сигнал для транзистора и всей схемы. Второй источник питания 4.5 вольт, его роль питание транзистора, и всей схемы. Элемент схемы Rн – это нагрузка транзистора или проще говоря потребитель.
Теперь проследим саму работу данной схемы: источник питания 1.5 вольт служит входным сигналом для транзистора, поступая на базу транзистора он открывает его. Если рассматривать полный цикл прохода тока базы, то это будет так: ток проходит от плюса к минусу, то есть исходя от источника питания 1.5 вольт, а именно с клеммы + ток проходит по общему эмиттеру проходя по базе и замыкает свою цепь на клемме – батареи 1.5 вольт. В момент прохождения тока по базе транзистор открыт, тем самым транзистор позволяет второму источнику питания 4.5 вольт запитать Rн. посмотрим прохождение тока от второго источника питания 4.5 вольт. При открывании транзистора входным током базы, с источника питания 4.5 вольт выходит ток по эмиттеру транзистора и выходит из коллектора прям на нагрузку Rн.
Коэффициент усиления равен отношению тока коллектора к току базы и обычно может достигать от десятков до нескольких сотен. Транзистор, включённый по схеме с общим эмиттером, теоретически может дать максимальное усиление сигнала по мощности, относительно других вариантов включения транзистора.
Теперь рассмотрим схему включения транзистора с общим коллектором:


На данной схеме видим, что тут общий по входу и выходу транзистора коллектор. По этому эта схема называется с общим коллектором ОК.
Рассмотрим её работу: как и в предыдущей схеме поступает входной сигнал на базу, (в нашем случае это ток базы) открывает транзистор. При открывании транзистора ток с батареи 4.5 в проходит от клеммы батареи + через нагрузку Rн поступает на эмиттер транзистора проходит по коллектору и заканчивает свой круг. Вход каскада при таком включении ОК обладает высоким сопротивлением, обычно от десятых долей мегаома до нескольких мегаом из-за того, что коллекторный переход транзистора заперт. А выходное сопротивление каскада – напротив, мало, что позволяет использовать такие каскады для согласования предшествующего каскада с нагрузкой. Каскад с транзистором, включённым по схеме с общим коллектором, не усиливает напряжение, но усиливает ток (обычно в 10 … 100 раз). К данным подробностям еще вернемся в следующих статьях, так как не возможно охватить все и всех за один раз.
Рассмотрим схему включения транзистора с общей базой.


Название ОБ это уже нам теперь говорит о многом – значит по включению транзистора общая база относительно входа и выхода транзистора.
В данной схеме входной сигнал подают между базой и эмиттером – чем нам служит батарея с номиналом 1.5 в, ток проходя свой цикл от плюса через эмиттер транзистора по его базе, тем самым открывает транзистор для прохода напряжения с коллектора на нагрузку Rн. Входное сопротивление каскада невелико и обычно лежит в пределах от единиц до сотни ом, что относят к недостатку описываемого включения транзистора. Кроме того, для функционирования каскада с транзистором, включённым по схеме с общей базой, необходимо два отдельных источника питания, а коэффициент усиления каскада по току меньше единицы. Коэффициент усиления каскада по напряжению часто достигает от десятков до нескольких сотен раз.
Вот рассмотрели три схемы включения транзистора, для расширения познаний могу добавить следующее:
Чем выше частота сигнала, поступающего на вход транзисторного каскада, тем меньше коэффициент усиления по току.
Коллекторный переход транзистора обладает высоким сопротивлением. Повышение частоты приводит к снижению реактивной ёмкости коллекторного перехода, что приводит к его существенному шунтированию и ухудшению усилительных свойств каскада.