Что такое хэш код. Хэш-функции: понятие и основы

И т. п.). Выбор той или иной хеш-функции определяется спецификой решаемой задачи. Простейшими примерами хеш-функций могут служить контрольная сумма или CRC .

В общем случае однозначного соответствия между исходными данными и хеш-кодом нет. Поэтому существует множество массивов данных, дающих одинаковые хеш-коды - так называемые коллизии . Вероятность возникновения коллизий играет немаловажную роль в оценке «качества» хеш-функций.

Контрольные суммы

Несложные, крайне быстрые и легко реализуемые аппаратно алгоритмы, используемые для защиты от непреднамеренных искажений, в том числе ошибок аппаратуры.

По скорости вычисления в десятки и сотни раз быстрее, чем криптографические хеш-функции, и значительно проще в аппаратной реализации.

Платой за столь высокую скорость является отсутствие криптостойкости - легкая возможность подогнать сообщение под заранее известную сумму. Также обычно разрядность контрольных сумм (типичное число: 32 бита) ниже, чем криптографических хешей (типичные числа: 128, 160 и 256 бит), что означает возможность возникновения непреднамеренных коллизий.

Простейшим случаем такого алгоритма является деление сообщения на 32- или 16- битные слова и их суммирование, что применяется, например, в TCP/IP .

Как правило, к такому алгоритму предъявляются требования отслеживания типичных аппаратных ошибок, таких, как несколько подряд идущих ошибочных бит до заданной длины. Семейство алгоритмов т. н. «циклический избыточных кодов » удовлетворяет этим требованиям. К ним относится, например, CRC32 , применяемый в аппаратуре ZIP.

Криптографические хеш-функции

Среди множества существующих хеш-функций принято выделять криптографически стойкие , применяемые в криптографии . Криптостойкая хеш-функция прежде всего должна обладать стойкостью к коллизиям двух типов:

Применение хеширования

Хеш-функции также используются в некоторых структурах данных - хеш-таблицаx и декартовых деревьях . Требования к хеш-функции в этом случае другие:

  • хорошая перемешиваемость данных
  • быстрый алгоритм вычисления

Сверка данных

В общем случае это применение можно описать, как проверка некоторой информации на идентичность оригиналу, без использования оригинала. Для сверки используется хеш-значение проверяемой информации. Различают два основных направления этого применения:

Проверка на наличие ошибок

Например, контрольная сумма может быть передана по каналу связи вместе с основным текстом. На приёмном конце, контрольная сумма может быть рассчитана заново и её можно сравнить с переданным значением. Если будет обнаружено расхождение, то это значит, что при передаче возникли искажения и можно запросить повтор.

Бытовым аналогом хеширования в данном случае может служить приём, когда при переездах в памяти держат количество мест багажа. Тогда для проверки не нужно вспоминать про каждый чемодан, а достаточно их посчитать. Совпадение будет означать, что ни один чемодан не потерян. То есть, количество мест багажа является его хеш-кодом.

Проверка парольной фразы

В большинстве случаев парольные фразы не хранятся на целевых объектах, хранятся лишь их хеш-значения. Хранить парольные фразы нецелесообразно, так как в случае несанкционированного доступа к файлу с фразами злоумышленник узнает все парольные фразы и сразу сможет ими воспользоваться, а при хранении хеш-значений он узнает лишь хеш-значения, которые не обратимы в исходные данные, в данном случае в парольную фразу. В ходе процедуры аутентификации вычисляется хеш-значение введённой парольной фразы, и сравнивается с сохранённым.

Примером в данном случае могут служить ОС GNU/Linux и Microsoft Windows XP . В них хранятся лишь хеш-значения парольных фраз из учётных записей пользователей.

Ускорение поиска данных

Например, при записи текстовых полей в базе данных может рассчитываться их хеш код и данные могут помещаться в раздел, соответствующий этому хеш-коду. Тогда при поиске данных надо будет сначала вычислить хеш-код текста и сразу станет известно, в каком разделе их надо искать, то есть, искать надо будет не по всей базе, а только по одному её разделу (это сильно ускоряет поиск).

Бытовым аналогом хеширования в данном случае может служить помещение слов в словаре по алфавиту. Первая буква слова является его хеш-кодом, и при поиске мы просматриваем не весь словарь, а только нужную букву.

Список алгоритмов

  • SHA-2 (SHA-224, SHA-256, SHA-384, SHA-512)
  • RIPEMD-160
  • RIPEMD-320
  • Snefru
  • Tiger (Whirlpool
  • IP Internet Checksum (RFC 1071)

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Хеш-функция" в других словарях:

    хеш-функция - Функция, которая при различных размерах входного значения имеет выход фиксированного размера. хэш функция — Тематики информационные технологии в… … Справочник технического переводчика Википедия

    Хеш таблица это структура данных, реализующая интерфейс ассоциативного массива, а именно, она позволяет хранить пары (ключ, значение) и выполнять три операции: операцию добавления новой пары, операцию поиска и операцию удаления пары по… … Википедия

    Коллизией хеш функции называется два различных входных блока данных и таких, что Коллизии существуют для большинства хеш функций, но для «хороших» хеш функций частота их возникновения близка к теоретическому минимуму. В некоторых частных случаях … Википедия

    Хеширование (иногда хэширование, англ. hashing) преобразование входного массива данных произвольной длины в выходную битовую строку фиксированной длины. Такие преобразования также называются хеш функциями или функциями свёртки, а их результаты… … Википедия

    Tiger хеш функция, разработанная Росом Андерсоном и Эли Бихамом в 1995 году. Tiger был предназначен для особенно быстрого выполнения на 64 разрядных компьютерах. Tiger не имеет патентных ограничений, может использоваться свободно как с… … Википедия

И т. п.). Выбор той или иной хеш-функции определяется спецификой решаемой задачи. Простейшими примерами хеш-функций могут служить контрольная сумма или CRC .

В общем случае однозначного соответствия между исходными данными и хеш-кодом нет. Поэтому существует множество массивов данных, дающих одинаковые хеш-коды - так называемые коллизии . Вероятность возникновения коллизий играет немаловажную роль в оценке «качества» хеш-функций.

Контрольные суммы

Несложные, крайне быстрые и легко реализуемые аппаратно алгоритмы, используемые для защиты от непреднамеренных искажений, в том числе ошибок аппаратуры.

По скорости вычисления в десятки и сотни раз быстрее, чем криптографические хеш-функции, и значительно проще в аппаратной реализации.

Платой за столь высокую скорость является отсутствие криптостойкости - легкая возможность подогнать сообщение под заранее известную сумму. Также обычно разрядность контрольных сумм (типичное число: 32 бита) ниже, чем криптографических хешей (типичные числа: 128, 160 и 256 бит), что означает возможность возникновения непреднамеренных коллизий.

Простейшим случаем такого алгоритма является деление сообщения на 32- или 16- битные слова и их суммирование, что применяется, например, в TCP/IP .

Как правило, к такому алгоритму предъявляются требования отслеживания типичных аппаратных ошибок, таких, как несколько подряд идущих ошибочных бит до заданной длины. Семейство алгоритмов т. н. «циклический избыточных кодов » удовлетворяет этим требованиям. К ним относится, например, CRC32 , применяемый в аппаратуре ZIP.

Криптографические хеш-функции

Среди множества существующих хеш-функций принято выделять криптографически стойкие , применяемые в криптографии . Криптостойкая хеш-функция прежде всего должна обладать стойкостью к коллизиям двух типов:

Применение хеширования

Хеш-функции также используются в некоторых структурах данных - хеш-таблицаx и декартовых деревьях . Требования к хеш-функции в этом случае другие:

  • хорошая перемешиваемость данных
  • быстрый алгоритм вычисления

Сверка данных

В общем случае это применение можно описать, как проверка некоторой информации на идентичность оригиналу, без использования оригинала. Для сверки используется хеш-значение проверяемой информации. Различают два основных направления этого применения:

Проверка на наличие ошибок

Например, контрольная сумма может быть передана по каналу связи вместе с основным текстом. На приёмном конце, контрольная сумма может быть рассчитана заново и её можно сравнить с переданным значением. Если будет обнаружено расхождение, то это значит, что при передаче возникли искажения и можно запросить повтор.

Бытовым аналогом хеширования в данном случае может служить приём, когда при переездах в памяти держат количество мест багажа. Тогда для проверки не нужно вспоминать про каждый чемодан, а достаточно их посчитать. Совпадение будет означать, что ни один чемодан не потерян. То есть, количество мест багажа является его хеш-кодом.

Проверка парольной фразы

В большинстве случаев парольные фразы не хранятся на целевых объектах, хранятся лишь их хеш-значения. Хранить парольные фразы нецелесообразно, так как в случае несанкционированного доступа к файлу с фразами злоумышленник узнает все парольные фразы и сразу сможет ими воспользоваться, а при хранении хеш-значений он узнает лишь хеш-значения, которые не обратимы в исходные данные, в данном случае в парольную фразу. В ходе процедуры аутентификации вычисляется хеш-значение введённой парольной фразы, и сравнивается с сохранённым.

Примером в данном случае могут служить ОС GNU/Linux и Microsoft Windows XP . В них хранятся лишь хеш-значения парольных фраз из учётных записей пользователей.

Ускорение поиска данных

Например, при записи текстовых полей в базе данных может рассчитываться их хеш код и данные могут помещаться в раздел, соответствующий этому хеш-коду. Тогда при поиске данных надо будет сначала вычислить хеш-код текста и сразу станет известно, в каком разделе их надо искать, то есть, искать надо будет не по всей базе, а только по одному её разделу (это сильно ускоряет поиск).

Бытовым аналогом хеширования в данном случае может служить помещение слов в словаре по алфавиту. Первая буква слова является его хеш-кодом, и при поиске мы просматриваем не весь словарь, а только нужную букву.

Список алгоритмов

  • SHA-2 (SHA-224, SHA-256, SHA-384, SHA-512)
  • RIPEMD-160
  • RIPEMD-320
  • Snefru
  • Tiger (Whirlpool
  • IP Internet Checksum (RFC 1071)

Ссылки

Wikimedia Foundation . 2010 .

  • Хэшан Мохэянь
  • Хэш код

Смотреть что такое "Хэш-функция" в других словарях:

    Хэш-функция - функция, осуществляющая хэширование массива данных посредством отображения значений из (очень) большого множества значений в (существенно) меньшее множество значений. По английски: Hash function См. также: Криптографические алгоритмы Финансовый… … Финансовый словарь

    криптографическая хэш-функция - Функция, преобразующая текст произвольной длины в текст фиксированной (в большинстве случаев меньшей) длины. Основное применение хэш функции нашли в схеме цифровой подписи. Так как хэш функция вычисляется быстрее цифровой подписи, то вместо… …

    Односторонняя хэш-функция - хэш функция, являющаяся вычислительно необратимой функцией. По английски: One way hash function См. также: Криптографические алгоритмы Финансовый словарь Финам … Финансовый словарь

    TIGER - хэш-функция - TIGER хэш функция, разработанная Росом Андерсоном и Эли Бихамом в 1996 году. Хэш функция TIGER является новой быстрой хэш функцией, которая призвана быть очень быстрой на современных компьютерах, в частности, на 64 разрядных компьютерах. TIGER… … Википедия

    односторонняя хэш-функция - Для односторонней функции вычислительно невозможно найти два разных аргумента, для которых ее значения совпадают. [] Тематики защита информации EN one way hash function … Справочник технического переводчика

    Tiger (хэш-функция) - Tiger хеш функция, разработанная Росом Андерсоном и Эли Бихамом в 1995 году. Tiger был предназначен для особенно быстрого выполнения на 64 разрядных компьютерах. Tiger не имеет патентных ограничений, может использоваться свободно как с… … Википедия

    функция хэширования - хэшфункция 1. Функция, которая управляет процессом занесения данных в хэш таблицу, определяя (адреса свободных ячеек. 2. Функция, представляющая собой отображение фрагмента открытого сообщения в шифрованную строку фиксированной длины. В… … Справочник технического переводчика

    Хэш-таблица - В программировании хеш таблица это структура данных, реализующая интерфейс ассоциативного массива, а именно, она позволяет хранить пары (ключ, значение) и выполнять три операции: операцию добавления новой пары, операцию поиска и операцию удаления … Википедия

    Хэш код - Хеширование (иногда хэширование, англ. hashing) преобразование входного массива данных произвольной длины в выходную битовую строку фиксированной длины. Такие преобразования также называются хеш функциями или функциями свёртки, а их результаты… … Википедия

    Коллизия хэш-функции - Коллизией хеш функции H называется два различных входных блока данных x и y таких, что H(x) = H(y). Коллизии существуют для большинства хеш функций, но для «хороших» хеш функций частота их возникновения близка к теоретическому минимуму. В… … Википедия

Например, мы можем подать на вход 128-битной хеш-функции роман Льва Толстого в шестнадцатеричном виде или число 1. В результате на выходе мы в обоих случаях получим разные наборы псевдослучайных шестнадцатеричных цифр вида: «c4ca4238a0b923820dcc509a6f75849b».

При изменении исходного текста даже на один знак результат хеш-функции полностью меняется.

Это свойство хеш-функций позволяет применять их в следующих случаях:

  • при построении ассоциативных массивов ;
  • при поиске дубликатов в сериях наборов данных;
  • при построении уникальных идентификаторов для наборов данных;
  • при вычислении контрольных сумм от данных (сигнала) для последующего обнаружения в них ошибок (возникших случайно или внесённых намеренно), возникающих при хранении и/или передаче данных;
  • при сохранении паролей в системах защиты в виде хеш-кода (для восстановления пароля по хеш-коду требуется функция, являющаяся обратной по отношению к использованной хеш-функции);
  • при выработке электронной подписи (на практике часто подписывается не само сообщение, а его «хеш-образ»);
  • и др.

Виды «хеш-функций»

«Хорошая» хеш-функция должна удовлетворять двум свойствам :

  • быстрое вычисление;
  • минимальное количество «коллизий ».

Введём обозначения:

∀ k ∈ (0 ; K) : h (k) < M {\displaystyle \forall k\in (0;\,K):h(k).

В качестве примера «плохой» хеш-функции можно привести функцию с M = 1000 {\displaystyle M=1000} , которая десятизначному натуральному числу K {\displaystyle K} сопоставляет три цифры, выбранные из середины двадцатизначного квадрата числа K {\displaystyle K} . Казалось бы, значения «хеш-кодов» должны равномерно распределяться между «000 » и «999 », но для «реальных » данных это справедливо лишь в том случае, если «ключи » не имеют «большого» количества нулей слева или справа .

Рассмотрим несколько простых и надёжных реализаций «хеш-функций».

«Хеш-функции», основанные на делении

1. «Хеш-код» как остаток от деления на число всех возможных «хешей»

Хеш-функция может вычислять «хеш» как остаток от деления входных данных на M {\displaystyle M} :

h (k) = k mod M {\displaystyle h(k)=k\mod M} ,

где M {\displaystyle M} - количество всех возможных «хешей» (выходных данных).

При этом очевидно, что при чётном M {\displaystyle M} значение функции будет чётным при чётном k {\displaystyle k} и нечётным - при нечётном k {\displaystyle k} . Также не следует использовать в качестве M {\displaystyle M} степень основания системы счисления компьютера , так как «хеш-код» будет зависеть только от нескольких цифр числа k {\displaystyle k} , расположенных справа, что приведёт к большому количеству коллизий . На практике обычно выбирают простое M {\displaystyle M} ; в большинстве случаев этот выбор вполне удовлетворителен.

2. «Хеш-код» как набор коэффициентов получаемого полинома

Хеш-функция может выполнять деление входных данных на полином по модулю два. В данном методе M {\displaystyle M} должна являться степенью двойки, а бинарные ключи ( K = k n − 1 k n − 2 . . . k 0 {\displaystyle K=k_{n-1}k_{n-2}...k_{0}} ) представляются в виде полиномов , в качестве «хеш-кода» «берутся» значения коэффициентов полинома , полученного как остаток от деления входных данных K {\displaystyle K} на заранее выбранный полином P {\displaystyle P} степени m {\displaystyle m} :

K (x) mod P (x) = h m − 1 x m − 1 + ⋯ + h 1 x + h 0 {\displaystyle K(x)\mod P(x)=h_{m-1}x^{m-1}+\dots +h_{1}x+h_{0}} h (x) = h m − 1 . . . h 1 h 0 {\displaystyle h(x)=h_{m-1}...h_{1}h_{0}}

При правильном выборе P (x) {\displaystyle P(x)} гарантируется отсутствие коллизий между почти одинаковыми ключами .

«Хеш-функции», основанные на умножении

Обозначим символом w {\displaystyle w} количество чисел, представимых машинным словом . Например, для 32-разрядных компьютеров, совместимых с IBM PC , w = 2 32 {\displaystyle w=2^{32}} .

Выберем некую константу A {\displaystyle A} так, чтобы A {\displaystyle A} была взаимно простой с w {\displaystyle w} . Тогда хеш-функция, использующая умножение, может иметь следующий вид:

h (K) = [ M ⌊ A w ∗ K ⌋ ] {\displaystyle h(K)=\left}

В этом случае на компьютере с двоичной системой счисления M {\displaystyle M} является степенью двойки, и h (K) {\displaystyle h(K)} будет состоять из старших битов правой половины произведения A ∗ K {\displaystyle A*K} .

Среди преимуществ хеш-функций, основанных на делении и умножении, стоит отметить выгодное использование неслучайности реальных ключей. Например, если ключи представляют собой арифметическую прогрессию (например, последовательность имён «Имя 1», «Имя 2», «Имя 3»), хеш-функция, использующая умножение, отобразит арифметическую прогрессию в приближенно арифметическую прогрессию различных хеш-значений, что уменьшит количество коллизий по сравнению со случайной ситуацией .

Одной из хеш-функций, использующих умножение, является хеш-функция, использующая хеширование Фибоначчи . Хеширование Фибоначчи основано на свойствах золотого сечения . В качестве константы A {\displaystyle A} здесь выбирается целое число, ближайшее к φ − 1 ∗ w {\displaystyle \varphi ^{-1}*w} и взаимно простое с w {\displaystyle w} , где φ {\displaystyle \varphi } - это золотое сечение .

Хеширование строк переменной длины

Вышеизложенные методы применимы и в том случае, если необходимо рассматривать ключи, состоящие из нескольких слов, или ключи переменной длины.

Например, можно скомбинировать слова в одно при помощи сложения по модулю w {\displaystyle w} или операции «исключающее или ». Одним из алгоритмов, работающих по такому принципу, является хеш-функция Пирсона.

Универсальное хеширование

Методы борьбы с коллизиями

Коллизией (иногда конфликтом или столкновением) называется случай, при котором одна хеш-функция для разных входных блоков возвращает одинаковые хеш-коды.

Методы борьбы с коллизиями в хеш-таблицах

Большинство первых работ, описывающих хеширование, посвящено методам борьбы с коллизиями в хеш-таблицах. Тогда хеш-функции применялись при поиске текста в файлах большого размера. Существует два основных метода борьбы с коллизиями в хеш-таблицах:

  1. метод цепочек (метод прямого связывания);
  2. метод открытой адресации.

При использовании метода цепочек в хеш-таблице хранятся пары «связный список ключей» - «хеш-код». Для каждого ключа хеш-функцией вычисляется хеш-код; если хеш-код был получен ранее (для другого ключа), ключ добавляется в существующий список ключей, парный хеш-коду; иначе создаётся новая пара «список ключей» - «хеш-код», и ключ добавляется в созданный список. В общем случае, если имеется N {\displaystyle N} ключей и M {\displaystyle M} списков, средний размер хеш-таблицы составит N M {\displaystyle {\frac {N}{M}}} . В этом случае при поиске по таблице по сравнению со случаем, в котором поиск выполняется последовательно, средний объём работ уменьшится примерно в M {\displaystyle M} раз.

При использовании метода открытой адресации в хеш-таблице хранятся пары «ключ» - «хеш-код». Для каждого ключа хеш-функцией вычисляется хеш-код; пара «ключ» - «хеш-код» сохраняется в таблице. В этом случае при поиске по таблице по сравнению со случаем, в котором используются связные списки, ссылки не используются, выполняется последовательный перебор пар «ключ» - «хеш-код», перебор прекращается после обнаружения нужного ключа. Последовательность, в которой просматриваются ячейки таблицы, называется последовательностью проб .

Криптографическая соль

Применение хеш-функций

Хеш-функции широко используются в криптографии.

Хеш используется как ключ во многих структурах данных - хеш-таблицаx , фильтрах Блума и декартовых деревьях .

Криптографические хеш-функции

Среди множества существующих хеш-функций принято выделять криптографически стойкие , применяемые в криптографии , так как на них накладываются дополнительные требования. Для того, чтобы хеш-функция H {\displaystyle H} считалась криптографически стойкой, она должна удовлетворять трём основным требованиям, на которых основано большинство применений хеш-функций в криптографии:

Данные требования не являются независимыми.

Нередко при скачивании торрентов или непосредственно самих файлов в описании стоит что-то наподобие «ad33e486d0578a892b8vbd8b19e28754» (например, в ex.ua), нередко с припиской «md5». Это хеш-код - результат, который выдает хэш-функция после обработки входящих данных. В переводе с английского хэш обозначает путаницу, марихуану, травку или блюдо из мелко нарезанного мяса и овощей. очень и очень сложно, можно сказать, что практически невозможно. Тогда возникает вопрос: «Зачем вообще нужны все эти они выдают непонятную абракадабру, которая еще и не поддается расшифровке?». Об этом и пойдет речь в данной статье.

Что такое хэш-функция и как она действует?

Данная функция предназначена для преобразования входящих данных сколь угодно большого размера в результат фиксированной длины. Сам процесс такого преобразования называется хешированием, а результат - хэшем или хэш-кодом. Порой еще используют слова «отпечаток» или «дайджест сообщения», но на практике они встречаются намного реже. Существует масса различных алгоритмов того, как можно превратить любой массив данных в некую последовательность символов определенной длины. Наибольшее распространение получил алгоритм под названием md5, который был разработан еще в 1991 году. Несмотря на то, что на сегодняшний день md5 является несколько устаревшим и к использованию не рекомендуется, он до сих пор все еще в ходу и часто вместо слова «хеш-код», на сайтах просто пишут md5 и указывают сам код.

Зачем нужна хеш-функция?

Зная результат, практически невозможно определить исходные данные, но одни и те же входящие данные дают одинаковый итог. Поэтому хэш-функция (ее еще называют функция свертки) часто используется для хранения очень важной информации, такой как пароль, логин, номер удостоверения и другая персональная информация. Вместо сравнивания сведений, вводимых пользователем, с теми, которые хранятся в базе данных, происходит сопоставление их хешей. Это дает гарантию, что при случайной утечке информации никто не сможет воспользоваться важными данными для своих целей. Путем сравнения хеш-кода также удобно проверять правильность загрузки файлов с интернета, особенно если во время скачивания происходили перебои связи.

Хэш-функции: какими они бываю т

В зависимости от своего предназначения хэш-функция может быть одного из трех типов:

1. Функция для проверки целостности информации

Когда происходит по сети, происходит расчет хэша пакета, и этот результат также передается вместе с файлом. При приеме снова вычисляется хэш-код и сравнивается с полученным по сети значением. Если код не совпадает, то это говорит об ошибках, и испорченный пакет снова будет передан. У такой функции быстрая скорость расчета, но малое количество хэш значений и плохая стабильность. Пример такого типа: CRC32, у которой всего лишь 232 отличающихся между собой значения.

2. Криптографическая функция

Используется для защиты от (НД). Они позволяют проверить, не произошло ли искажение данных в результате НД во время передачи файлов по сети. Истинный хэш в этом случае общедоступен, а хэш полученного файла можно вычислить с помощью множества разных программ. У таких функций долгий и стабильный срок работы, а поиск коллизий (возможных совпадений результата от разных исходных данных) очень осложнен. Именно такие функции используют для хранения в БД паролей (SH1, SH2, MD5) и прочей ценной информации.

3. Функция, предназначенная для создания эффективной структуры данных

Ее целью является компактная и довольно упорядоченная организация сведений в специальной структуре, которая носит название хэш-таблицы. Такая таблица позволяет добавлять новую информацию, удалять сведения и выполнять поиск нужных данных с очень высокой скоростью.

Приложений.

Энциклопедичный YouTube

  • 1 / 5

    Для того, чтобы хеш-функция H считалась криптографически стойкой, она должна удовлетворять трём основным требованиям, на которых основано большинство применений хеш-функций в криптографии:

    Данные требования не являются независимыми:

    • Обратимая функция нестойка к коллизиям первого и второго рода.
    • Функция, нестойкая к коллизиям первого рода, нестойка к коллизиям второго рода; обратное неверно.

    Принципы построения

    Итеративная последовательная схема

    При проектировании хеш-функций на основе итеративной схемы возникает проблема с размером входного потока данных. Размер входного потока данных должен быть кратен (k − n ) . Как правило, перед началом алгоритма данные расширяются неким, заранее известным, способом.

    Помимо однопроходных алгоритмов, существуют многопроходные алгоритмы, в которых ещё больше усиливается лавинный эффект. В этом случае данные сначала повторяются, а потом расширяются до необходимых размеров.

    Сжимающая функция на основе симметричного блочного алгоритма

    В качестве сжимающей функции можно использовать симметричный блочный алгоритм шифрования. Для обеспечения большей безопасности можно использовать в качестве ключа блок данных, предназначенный к хешированию на данной итерации, а результат предыдущей сжимающей функции - в качестве входа. Тогда результатом последней итерации будет выход алгоритма. В таком случае безопасность хеш-функции базируется на безопасности используемого алгоритма.

    Обычно при построении хеш-функции используют более сложную систему. Обобщённая схема симметричного блочного алгоритма шифрования изображена на рис. 2.

    Таким образом, мы получаем 64 варианта построения сжимающей функции. Большинство из них являются либо тривиальными, либо небезопасными. Ниже изображены четыре наиболее безопасные схемы при всех видах атак.

    Применения

    Электронная подпись

    Пусть некий клиент, с именем name , производит аутентификацию по парольной фразе, pass , на некоем сервере. На сервере хранится значение хеш-функции H (pass , R 2) , где R 2 - псевдослучайное, заранее выбранное число. Клиент посылает запрос (name , R 1 ), где R 1 - псевдослучайное, каждый раз новое число. В ответ сервер посылает значение R 2 . Клиент вычисляет значение хеш-функции H (R 1 , H (pass , R 2)) и посылает его на сервер. Сервер также вычисляет значение H (R 1 , H (pass , R 2)) и сверяет его с полученным. Если значения совпадают - аутентификация верна.