Диод максимальное постоянное обратное напряжение. Разница между «прямым» диодом и «обратным» диодом

Устройство полупроводникового диода.

Прямое и обратное включение диода, охарактеризовать прямое и обратное напряжение, прямые и обратные токи диода.

График прямого включения нарисован в первом квадранте. Отсюда видно, что чем больше напряжение, тем больше ток. Причём до какого-то момента напряжение растёт быстрее, чем ток. Но затем наступает перелом, и напряжение почти не меняется, а ток начинает расти. Для большинства диодов этот перелом наступает в диапазоне 0,5…1 В. Именно это напряжение, как говорят, «падает» на диоде. То есть если вы подключите лампочку по первой схеме на рис. 3, а напряжение батареи питания у вас будет 9 В, то на лампочку попадёт уже не 9 В, а 8,5 или даже 8 (зависит от типа диода). Эти 0,5…1 В и есть падение напряжения на диоде. Медленный рост тока до напряжения 0,5…1В означает, что на этом участке ток через диод практически не идёт даже в прямом направлении.

График обратного включения нарисован в третьем квадранте. Отсюда видно, что на значительном участке ток почти не изменяется, а затем увеличивается лавинообразно. Что это значит? Если вы включите лампочку по второй схеме на рис. 3, то светиться она не будет, потому что диод в обратном направлении ток не пропускает (точнее, пропускает, как видно на графике, но этот ток настолько мал, что лампа светиться не будет). Но диод не может сдерживать напряжение бесконечно. Если увеличить, напряжение, например, до нескольких сотен вольт, то это высокое напряжение «пробьёт» диод (см. перегиб на обратной ветви графика) и ток через диод будет течь. Вот только «пробой» - это процесс необратимый (для диодов). То есть такой «пробой» приведет к выгоранию диода и он либо вообще перестанет пропускать ток в любом направлении, либо наоборот – будет пропускать ток во всех направлениях.

Рис.3. Прямое включение p-n-перехода

Пусть электроны 1, 2, 3 совершают диффузию в p-слой, который на мгновение теряет электрическую нейтральность, приобретая избыточный отрицательный заряд. Между p-слоем и его выводом возникает электрическое поле, которое выбрасывает во внешнюю цепь электроны 4, 5, 6 из ближайших орбит парно-электронных связей полупроводника p-типа. Далее электроны 1, 2, 3 начинают диффузионное перемещение по дыркам вправо к правому контакту.

Во время диффузии электронов 1, 2, 3 n-слой также теряет электрическую нейтральность, приобретая избыточный положительный заряд. Между n-слоем и его выводом возникает электрическое поле, которое втягивает из внешней цепи электроны 7, 8, 9. В результате у левого и правого контакта, а также через структуру протекает прямой ток. Величина прямого тока определяется площадью p-n-перехода и зависит от приложенного прямого напряжения и ограничивающего сопротивления.

Рис.4. Обратное включение p-n-перехода

Схема обратного включения p-n-перехода приведена на рис.4. Под действием обратного напряжения происходит отток основных носителей 1 и 2 от границ перехода, поэтому p-n-переход расширяется. Для основных носителей создается сильное тормозящее поле, поэтому диффузия носителей невозможна. Поле, действующее на переходе, является ускоряющим для неосновных носителей, поэтому происходит дрейф носителей. Ток дрейфа имеет три составляющие: ток термогенерации, тепловой ток, ток утечки.

Ток термогенерации создается неосновными носителями 5 и 6, которые генерированы в области перехода, и зависит от температуры Iтг(Т) = Iтг(Т0)еТ, где Т0 - начальное значение температуры (250С); Т - текущее значение температуры; Т - изменение температуры; - температурный коэффициент. Ток термогенерации преобладает у кремниевых диодов, которые имеют бoльшую ширину p-n-перехода по сравнению с германиевыми диодами.

Тепловой ток создается неосновными носителями 3 и 4, которые генерированы в слоях полупроводника, прилегающих к переходу. Тепловой ток преобладает у германиевых p-n-переходов. Он зависит от температуры Iт(Т) = Iт(Т0)еТ. Существует эмпирическое правило для оценки токов, зависящих от температуры: при возрастании температуры на 100С обратный ток возрастает в 2 раза.

Ток утечки создается неосновными носителями, которые генерируются на поверхности слоев. Этот ток не зависит от температуры, т.к. определяется состоянием поверхности кристалла полупроводника. Основной особенностью тока утечки является нестабильность во времени, которая называется ползучестью.

Суммарное значение тока неосновных носителей при температуре до 400С много меньше тока диффузии: Iпр/Iобр = 104 - 105. Из этого соотношения следует, что несимметричный ступенчатый p-n-переход обладает вентильными свойствами.

Диоды часто именуются «прямыми» и «обратными». С чем это связано? Чем отличается «прямой» диод от «обратного» диода?

Что представляет собой «прямой» диод?

Диод - это полупроводник, имеющий 2 вывода, а именно - анод и катод. Используется он для обработки различными способами электрических сигналов. Например, в целях их выпрямления, стабилизации, преобразования.

Особенность диода в том, что он пропускает ток только в одну сторону. В обратном направлении - нет. Это возможно благодаря тому, что в структуре диода присутствует 2 типа полупроводниковых областей, различающихся по проводимости. Первая условно соответствует аноду, имеющему положительный заряд, носителями которого являются так называемые дырки. Вторая - это катод, имеющий отрицательный заряд, его носители - электроны.

Диод может функционировать в двух режимах:

  • открытом;
  • закрытом.

В первом случае через диод хорошо проходит ток. Во втором режиме - с трудом.

Открыть диод можно посредством прямого включения. Для этого нужно подключить к аноду положительный провод от источника тока, а к катоду - отрицательный.

Прямым также может именоваться напряжение диода. Неофициально - и сам полупроводниковый прибор. Таким образом, «прямым» является не он, а подключение к нему или же напряжение. Но для простоты понимания в электрике «прямым» часто именуется и сам диод.

Что представляет собой «обратный» диод?

Закрывается полупроводник посредством, в свою очередь, обратной подачи напряжения. Для этого нужно поменять полярность проводов от источника тока. Как и в случае с прямым диодом, формируется обратное напряжение. «Обратным» же - по аналогии с предыдущим сценарием - именуется и сам диод.

Сравнение

Главное отличие «прямого» диода от «обратного» диода - в способе подачи тока на полупроводник. Если он подается в целях открытия диода, то полупроводник становится «прямым». Если полярность проводов от источника тока меняется - то полупроводник закрывается и становится «обратным».

Рассмотрев, в чем разница между «прямым» диодом и «обратным» диодом, отразим основные выводы в таблице.

Что такое прямое и обратное напряжение? Пытаюсь понять принцип действия полевого транзистора. и получил лучший ответ

Ответ от Вовик[активный]
Прямое - к плюсу прикладывается плюс, к минусу - минус. Обратное - к плюсу - минус, к минусу - плюс.
Применительно к полевому транзистору - между истоком и затвором.
База и эмиттер есть у биполярного транзистора, не у полевого.
Биполярный транзистор представляет собой два встречно включенных р-п перехода с одним общим выходом - эмиттер - база (типа общий) - коллектор, как два диода, только общая "прослойка" тонкая и проводит ток, если подать прямое напряжение, которое называется открывающим, между эмиттером и базой.
Чем больше прямое напряжение между базой и эмиттером, тем больше открыт транзистор и меньше его сопротивление эмиттер-коллектор, т. е. между напряжением эмиттер-база и сопротивлением биполярного транзистора обратная зависимость.
Если между базой и эмиттером подать обратное напряжение, транзистор закроется совсем и не будет проводить ток.
Если подать напряжение только на базу и эмиттер или базу и коллектор, получится обычный диод.
Полевой транзистор устроен несколько по-иному. Там тоже три вывода, но называются сток, исток и затвор. Там только один р-п переход, затвор -> сток-исток или затвор <- сток-исток в зависимости от полярности транзистора. Затвор находится между истоком и стоком и к нему (измеряется относительно истока) всегда прикладывается только обратное напряжение, которое создаёт поле в промежутке между истоком и стоком, в зависимости от напряжённости больше или меньше препятствующее движению электронов (следовательно, изменяя сопротивление транзистора) , и, таким образом, создающую обратную зависимость между напряжением исток-затвор и сопротивлением полевого транзистора.

Ответ от ALEX R [гуру]
На 1 вопр прям и обр напр бывает у полупроводника (диода) т. е. диод в ппрямом нпр ток пропускает, а ежели ток течёт обратно, всё закрыт. Для ясности нипель велосипедной шины туда дуй, обратно нет. Полевой тр-р, вот чисто для понимания нет злектронной связи между затвором и сток исток, а ток пропускает за счёт зл поля созд на затворе. Вот как то так.


Ответ от Александр Егоров [гуру]
прямое - минус к области с n-проводимостью, плюс к области к с р-проводимостью
обратное наоборот
подавая только на эмитер и коллектор ток проходить не будет, т. к. ионизированные атомы базы будут отталкивать от pn перехода свободные заряды эмитера (которым итак непросто перескочить pn переход, тк это диэлектрик) . А если подать напряжение на базу, то оно "высосет" из базы свободные заряды и они уже не будут отталкивать заряды эмитера, мешая им пересекать pn переход. Транзистор откроется.
Кстати эмитер, коллектор и базу имеет не полевой, а биполярный транзистор.
Если подать напряжение только на базу и эмитер или базу и коллектор, то это будет простой диод (каждый pn переход это диод).


Ответ от User user [гуру]
полевой транзистор имеет канал р или n типа управляемый полем. выводы транзистора затвор сток исток

Published Date: 23.12.2017

А Вы знаете, что такое обратное напряжение?

Обратное напряжение


Обратное напряжение — это тип сигнала энергии, создаваемого при изменении полярности электрического тока. Такое напряжение часто возникает, когда обратная полярность подается на диод, заставляя диод реагировать, работая в обратном направлении. Эта обратная функция может также создавать напряжение пробоя внутри диода, так как это часто приводит к поломке схемы, к которой применяется напряжение.

Обратное напряжение возникает, когда источник подключения энергетического сигнала к цепи применяется инвертированным образом. Это означает, что положительный источник свинца подключен к заземленному или отрицательному проводнику цепи и наоборот. Эта передача напряжения часто не предназначена, так как большинство электрических схем не способны обрабатывать напряжения.

Когда минимальное напряжение подается на схему или на диод, это может привести к тому, что схема или диод будут работать в обратном порядке. Это может вызвать реакцию, такую ​​как двигатель вентилятора коробки, вращаясь неправильно. Элемент будет продолжать функционировать в таких случаях.

Когда величина напряжения, приложенного к цепи, слишком велика, сигнал для принимаемой схемы, однако, это называется пробивным напряжением. Если входной сигнал, который был обратный, превышает допустимое напряжение для цепи для поддержания, схема может быть повреждена за пределами остальной используемой. Точка, в которой цепь повреждена, относится к значению напряжения пробоя. Это напряжение пробоя имеет пару других имен, пиковое обратное напряжение или обратное пробивное напряжение.

Обратное напряжение может вызвать напряжение пробоя, которое также влияет на работу других компонентов схемы. За пределами повреждающих диодов и функций цепи обратного напряжения он также может стать пиковым обратным напряжением. В таких случаях схема не может содержать количество входной мощности от сигнала, который был обращен вспять, и может создавать напряжение пробоя между изоляторами.

Это напряжение пробоя, которое может возникать через компоненты схемы, может вызвать пробой компонентов или проволочных изоляторов. Это может превратить их в сигнальные проводники и повредить цепь, проводя напряжение на разные части схемы, которые не должны принимать его, что приводит к нестабильности по всей цепи. Это может вызвать дуги напряжения от компонента к компоненту, что также может быть достаточно мощным, чтобы зажечь различные компоненты схемы и привести к пожару.

Навигация по записям

Полезно

Ремонт интерьер строительство

В течение жизненного цикла здания ремонтные работы в определенный период необходимы, чтобы обновить интерьер. Модернизация также необходима, когда дизайн интерьера или функциональность отстают от современности.

Многоэтажное строительство

В России насчитывается более 100 миллионов единиц жилья, а большинство из них — «односемейные дома» или коттеджи. В городах, в пригородах и в сельской местности, собственные дома являются очень распространенным видом жилья.
Практика проектирования, строительства и эксплуатации зданий чаще всего является коллективной работой различных групп профессионалов и профессий. В зависимости от размера, сложности и цели конкретного проекта здания команда проекта может включать:
1. Разработчик недвижимости, который обеспечивает финансирование проекта;
Один или несколько финансовых учреждений или других инвесторов, которые предоставляют финансирование;
2. Органы местного планирования и управления;
3. Служба, который выполняет ALTA / ACSM и строительные обследования в рамках всего проекта;
4. Руководители зданий, которые координируют усилия различных групп участников проекта;
5. Лицензированные архитекторы и инженеры, которые проектируют здания и готовят строительные документы;