Горизонтальное масштабирование PHP-приложений. Масштабируемость системы

Масштабируемость - такое свойство вычислительной системы, которое обеспечивает предсказуемый рост системных характеристик, например, числа поддерживаемых пользователей, быстроты реакции, общей производительности и пр., при добавлении к ней вычислительных ресурсов. В случае сервера СУБД можно рассматривать два способа масштабирования - вертикальный и горизонтальный (рис. 2).

При горизонтальном масштабировании увеличивается число серверов СУБД, возможно, взаимодействующих друг с другом в прозрачном режиме, разделяя таким образом общую загрузку системы. Такое решение, видимо, будет все более популярным с ростом поддержки слабосвязанных архитектур и распределенных баз данных, однако обычно оно характеризуется сложным администрированием.

Вертикальное масштабирование подразумевает увеличение мощности отдельного сервера СУБД и достигается заменой аппаратного обеспечения (процессора, дисков) на более быстродействующее или добавлением дополнительных узлов. Хорошим примером может служить увеличение числа процессоров в симметричных многопроцессорных (SMP) платформах. При этом программное обеспечение сервера не должно изменяться (в частности, нельзя требовать закупки дополнительных модулей), так как это увеличило бы сложность администрирования и ухудшило предсказуемость поведения системы. Независимо от того, какой способ масштабирования использован, выигрыш определяется тем, насколько полно программы сервера используют доступные вычислительные ресурсы. В дальнейших оценках мы будем рассматривать вертикальное масштабирование, испытывающее, по мнению аналитиков, наибольший рост на современном компьютерном рынке.

Свойство масштабируемости актуально по двум основным причинам. Прежде всего, условия современного бизнеса меняются столь быстро, что делают невозможным долгосрочное планирование, требующее всестороннего и продолжительного анализа уже устаревших данных, даже для тех организаций, которые способны это себе позволить. Взамен приходит стратегия постепенного, шаг за шагом, наращивания мощности информационных систем. С другой стороны, изменения в технологии приводят к появлению все новых решений и снижению цен на аппаратное обеспечение, что потенциально делает архитектуру информационных систем более гибкой. Одновременно расширяется межоперабельность, открытость программных и аппаратных продуктов разных производителей, хотя пока их усилия, направленные на соответствие стандартам, согласованы лишь в узких секторах рынка. Без учета этих факторов потребитель не сможет воспользоваться преимуществами новых технологий, не замораживая средств, вложенных в недостаточно открытые или оказавшиеся бесперспективными технологии. В области хранения и обработки данных это требует, чтобы и СУБД, и сервер были масштабируемы. Сегодня ключевыми параметрами масштабируемости являются:

  • поддержка многопроцессорной обработки;
  • гибкость архитектуры.

Многопроцессорные системы

Для вертикального масштабирования все чаще используются симметричные многопроцессорные системы (SMP), поскольку в этом случае не требуется смены платформы, т.е. операционной системы, аппаратного обеспечения, а также навыков администрирования. С этой целью возможно также применение систем с массовым параллелизмом (MPP), но пока их использование ограничивается специальными задачами, например, расчетными. При оценке сервера СУБД с параллельной архитектурой целесообразно обратить внимание на две основные характеристики расширяемости архитектуры: адекватности и прозрачности.

Свойство адекватности требует, чтобы архитектура сервера равно поддерживала один или десять процессоров без переустановки или существенных изменений в конфигурации, а также дополнительных программных модулей. Такая архитектура будет одинаково полезна и эффективна и в однопроцессорной системе, и, по мере роста сложности решаемых задач, на нескольких или даже на множестве (MPP) процессоров. В общем случае потребитель не должен дополнительно покупать и осваивать новые опции программного обеспечения.

Обеспечение прозрачности архитектуры сервера, в свою очередь, позволяет скрыть изменения конфигурации аппаратного обеспечения от приложений, т.е. гарантирует переносимость прикладных программных систем. В частности, в сильно связанных многопроцессорных архитектурах приложение может взаимодействовать с сервером через сегмент разделяемой памяти, тогда как при использовании слабосвязанных многосерверных систем (кластеров) для этой цели может быть применен механизм сообщений. Приложение не должно учитывать возможности реализации аппаратной архитектуры - способы манипулирования данными и программный интерфейс доступа к базе данных обязаны оставаться одинаковыми и в равной степени эффективными.

Качественная поддержка многопроцессорной обработки требует от сервера баз данных способности самостоятельно планировать выполнение множества обслуживаемых запросов, что обеспечило бы наиболее полное разделение доступных вычислительных ресурсов между задачами сервера. Запросы могут обрабатываться последовательно несколькими задачами или разделяться на подзадачи, которые, в свою очередь, могут быть выполнены параллельно (рис. 3). Последнее более оптимально, поскольку правильная реализация этого механизма обеспечивает выгоды, независимые от типов запросов и приложений. На эффективность обработки огромное воздействие оказывает уровень гранулярности рассматриваемых задачей-планировщиком операций. При грубой гранулярности, например, на уровне отдельных SQL-запросов, разделение ресурсов вычислительной системы (процессоров, памяти, дисков) не будет оптимальным - задача будет простаивать, ожидая окончания необходимых для завершения SQL-запроса операций ввода/вывода, хотя бы в очереди к ней стояли другие запросы, требующие значительной вычислительной работы. При более тонкой гранулярности разделение ресурсов происходит даже внутри одного SQL-запроса, что еще нагляднее проявляется при параллельной обработке нескольких запросов. Применение планировщика обеспечивает привлечение больших ресурсов системы к решению собственно задач обслуживания базы данных и минимизирует простои.

Гибкость архитектуры

Независимо от степени мобильности, поддержки стандартов, параллелизма и других полезных качеств, производительность СУБД, имеющей ощутимые встроенные архитектурные ограничения, не может наращиваться свободно. Наличие документированных или практических ограничений на число и размеры объектов базы данных и буферов памяти, количество одновременных подключений, на глубину рекурсии вызова процедур и подчиненных запросов (subqueries) или срабатывания триггеров базы данных является таким же ограничением применимости СУБД как, например, невозможность переноса на несколько вычислительных платформ. Параметры, ограничивающие сложность запросов к базе данных, в особенности размеры динамических буферов и стека для рекурсивных вызовов, должны настраиваться в динамике и не требовать остановки системы для реконфигурации. Нет смысла покупать новый мощный сервер, если ожидания не могут быть удовлетворены из-за внутренних ограничений СУБД.

Обычно узким местом является невозможность динамической подстройки характеристик программ сервера баз данных. Способность на ходу определять такие параметры, как объем потребляемой памяти, число занятых процессоров, количество параллельных потоков выполнения заданий (будь то настоящие потоки (threads), процессы операционной системы или виртуальные процессоры) и количество фрагментов таблиц и индексов баз данных, а также их распределение по физическим дискам БЕЗ останова и перезапуска системы является требованием, вытекающим из сути современных приложений. В идеальном варианте каждый из этих параметров можно было бы изменить динамически в заданных для конкретного пользователя пределах.

) Здравствуйте! Я Александр Макаров, и вы можете меня знать по фреймворку «Yii» — я один из его разработчиков. У меня также есть full-time работа — и это уже не стартап — Stay.com, который занимается путешествиями.

Сегодня я буду рассказывать про горизонтальное масштабирование, но в очень-очень общих словах.

Что такое масштабирование, вообще? Это возможность увеличить производительность проекта за минимальное время путем добавления ресурсов.

Обычно масштабирование подразумевает не переписывание кода, а либо добавление серверов, либо наращивание ресурсов существующего. По этому типу выделяют вертикальное и горизонтальное масштабирование.

Вертикальное — это когда добавляют больше оперативки, дисков и т.д. на уже существующий сервер, а горизонтальное — это когда ставят больше серверов в дата-центры, и сервера там уже как-то взаимодействуют.

Самый классный вопрос, который задают, — а зачем оно надо, если у меня все и на одном сервере прекрасно работает? На самом-то деле, надо проверить, что будет. Т.е., сейчас оно работает, но что будет потом? Есть две замечательные утилиты — ab и siege, которые как бы нагоняют тучу пользователей конкурента, которые начинают долбить сервер, пытаются запросить странички, послать какие-то запросы. Вы должны указать, что им делать, а утилиты формируют такие вот отчеты:

Главные два параметра: n — количество запросов, которые надо сделать, с — количество одновременных запросов. Таким образом они проверяют конкурентность.

На выходе получаем RPS, т.е. количество запросов в секунду, которое способен обработать сервер, из чего станет понятно, сколько пользователей он может выдержать. Все, конечно, зависит от проекта, бывает по-разному, но обычно это требует внимания.

Есть еще один параметр — Response time — время ответа, за которое в среднем сервер отдал страничку. Оно бывает разное, но известно, что около 300 мс — это норма, а что выше — уже не очень хорошо, потому что эти 300 мс отрабатывает сервер, к этому прибавляются еще 300-600 мс, которые отрабатывает клиент, т.е. пока все загрузится — стили, картинки и остальное — тоже проходит время.

Бывает, что на самом деле пока и не надо заботиться о масштабировании — идем на сервер, обновляем PHP, получаем 40% прироста производительности и все круто. Далее настраиваем Opcache, тюним его. Opcache, кстати, тюнится так же, как и APC, скриптом, который можно найти в репозитории у Расмуса Лердорфа и который показывает хиты и мисы, где хиты — это сколько раз PHP пошел в кэш, а мисы — сколько раз он пошел в файловую систему доставать файлики. Если прогнать весь сайт, либо запустить туда какой-то краулер по ссылкам, либо вручную потыкать, то у нас будет статистика по этим хитам и мисам. Если хитов 100%, а мисов — 0%, значит, все нормально, а если есть мисы, то надо выделить больше памяти, чтобы весь наш код влез в Opcache. Это частая ошибка, которую допускают — вроде Opcache есть, но что-то не работает…

Еще часто начинают масштабировать, но не смотрят, вообще, из-за чего все работает медленно. Чаще всего лезем в базу, смотрим — индексов нет, ставим индексы — все сразу залетало, еще на 2 года хватит, красота!

Ну, еще надо включить кэш, заменить apache на nginx и php-fpm, чтобы сэкономить память. Будет все классно.

Все перечисленное достаточно просто и дает вам время. Время на то, что когда-то этого станет мало, и к этому уже сейчас надо готовиться.

Как, вообще, понять, в чем проблема? Либо у вас уже настал highload, а это не обязательно какое-то бешеное число запросов и т.д., это, когда у вас проект не справляется с нагрузкой, и тривиальными способами это уже не решается. Надо расти либо вширь, либо вверх. Надо что-то делать и, скорее всего, на это мало времени, что-то надо придумывать.

Первое правило — никогда ничего нельзя делать вслепую, т.е. нам нужен отличный мониторинг. Сначала мы выигрываем время на какой-то очевидной оптимизации типа включения кэша или кэширования Главной и т.п. Потом настраиваем мониторинг, он нам показывает, чего не хватает. И все это повторяется многократно – останавливать мониторинг и доработку никогда нельзя.

Что может показать мониторинг? Мы можем упереться в диск, т.е. в файловую систему, в память, в процессор, в сеть… И может быть такое, что, вроде бы, все более-менее, но какие-то ошибки валятся. Все это разрешается по-разному. Можно проблему, допустим, с диском решить добавлением нового диска в тот же сервер, а можно поставить второй сервер, который будет заниматься только файлами.

На что нужно обращать внимание прямо сейчас при мониторинге? Это:

  1. доступность, т.е. жив сервер, вообще, или нет;
  2. нехватка ресурсов диска, процессора и т.д.;
  3. ошибки.
Как это все мониторить?

Вот список замечательных инструментов, которые позволяют мониторить ресурсы и показывать результаты в очень удобном виде:

Этот доклад - расшифровка одного из лучших выступлений на обучающей конференции разработчиков высоконагруженных систем за 2015 год.

Старьё! - скажите вы.
- Вечные ценности! - ответим мы.

  • highload junior
  • Добавить метки

    Возможность масштабирования информационной системы – как горизонтальное, так и вертикальное – является одним из самых важных факторов, на которые стоит обращать при выборе средства автоматизации деятельности любой организации. Если выбранное решение невозможно будет масштабировать, или каждая стадия роста бизнеса будет приводить к сложностям с сопровождением и развитием такого программного продукта, то не следует даже начинать его использовать. Мы разрабатывали СЭД ЛЕТОГРАФ с учетом высоких требований к масштабированию.

    Необходимость в горизонтальном или вертикальном масштабировании возникает в связи с созданием корпоративных высоконагруженных ИТ-систем, в которых работают тысячи или даже десятки тысяч пользователей. Однако поддерживать одновременную работу большого числа пользователей могут далеко не все СЭД. Только если в СЭД на уровне архитектуры заложены возможности по наращиванию количества пользователей без потери производительности – только в этом случае масштабирование будет успешным. Созданная нами система ЛЕТОГРАФ была разработана таким образом, чтобы идеально масштабироваться как горизонтально, так и вертикально. Это достигается как за счет архитектуры самой системы и того прикладного кода, который мы разработали, так и за счет функционала СУБД InterSystems Caché, на которой наша СЭД построена.

    СУБД Caché – это современная система управления базами данных и среда для быстрой разработки приложений. В основе этой СУБД лежит технология, которая обеспечивает быстродействие и высокую производительность, масштабируемость и надежность. При этом аппаратные требования системы остаются довольно скромными.

    СУБД Caché сохраняет высокую производительность даже при работе с огромными массивами данных и большим числом серверов в распределенных системах. При этом доступ к данным осуществляется через объекты, высокопроизводительные SQL-запросы и путем прямой обработки многомерных структур данных.

    Вертикальное масштабирование

    Вертикальное масштабирование предполагает наращивание мощности сервера и его возможностей, связанных с дисковой подсистемой. ЛЕТОГРАФ поддерживает современную процессорную архитектуру, что позволяет обрабатывать большие объемы данных в несколько потоков. При этом сами данные в СЭД организованы таким образом, чтобы их можно было легко разносить по СХД на разные диски. Такой подход позволяет равномерно распределить нагрузку на хранилища данных и минимизировать ее при чтении данных непосредственно из базы, а значит и падения производительности системы удастся избежать даже при одновременной работе большого количества пользователей.

    Еще на этапе разработки платформы мы понимали, что вертикальное масштабирование – одна из ключевых возможностей системы, потребность в которой со временем будет только увеличиваться. Мы разработали систему таким образом, чтобы процессы работы каждого пользователя были выделены в отдельные системные процессы, которые между собой не пересекаются благодаря тому, что базы данных эффективно делят доступ к информации. При этом количество блокировок данных в СЭД ЛЕТОГРАФ минимизировано и нет «узкого горла» ни при чтении данных, ни при их записи.

    Архитектура СЭД ЛЕТОГРАФ позволяет распределять данные на несколько физических или виртуальных серверов. Благодаря такому распределению каждый из пользователей работает в изолированном процессе, а требуемые данные эффективно кэшируются с использованием технологий СУБД Caché. Время блокировки данных минимизировано: все транзакции выстроены таким образом, чтобы переводить данные в эксклюзивный режим доступа лишь на очень короткое время. При этом даже такие высоконагруженные с точки зрения количества обращений к диску данные, как журналы, индексы, данные объектов, потоки, логи действий пользователей, распределены таким образом, что средняя нагрузка на подсистему остается равномерной и не приводит к задержкам. Такой подход позволяет эффективно вертикально масштабировать систему, распределяя нагрузку между серверами или виртуальными дисками.

    Горизонтальное масштабирование

    Горизонтальное масштабирование – это распределение сессий пользователей по разным серверам (равномерная загрузка серверов приложений и возможность подключать дополнительные сервера приложений), а также распределение данных по разным серверам БД, что обеспечивает высокую производительность системы, при этом не приводя к снижению отказоустойчивости. Для горизонтального масштабирования в системе ЛЕТОГРАФ предусмотрен целый ряд возможностей.

    Прежде всего, это масштабирование нагрузки благодаря Enterprise Cache Protocol (ECP, протокол распределенного кэша), протоколу, используемому в СУБД InterSystems Caché. Преимущество ECP заключается в инновационном подходе к кэшированию данных. В рамках данного протокола пользовательские процессы, которые работают на серверах приложений (или ECP-клиентах) СУБД и обслуживают запросы, получают доступ к локальному кэшу недавно использованных данных. И только если этих данных недостаточно, ECP-клиент обращается к базе данных. С помощью протокола ECP выполняется автоматическое управление кэшем: наиболее часто используемые данные сохраняются в кэше, часто обновляемые данные периодически реплицируются, обеспечивая постоянное целостность и корректность данных на всех ECP-клиентах. При этом внутренний алгоритм InterSystems Caché предполагает, что базы данных синхронизируются между ECP-клиентом и ECP-сервером.

    Фактически использование технологий СУБД Caché позволяет легко и быстро масштабировать нагрузку по серверам приложений, обеспечив таким образом подключение большого числа пользователей к одному серверу базы данных благодаря использованию ECP-протокола.

    Так как информация, которую затребовал тот или иной пользователь, может быть задействована на нескольких ECP-клиентах, необходимо блокировать данные на короткий период времени, быстро выполнять транзакции, не выполняя внутренних вычислений. И мы успешно это реализовали. Данная технология позволяет нам эффективно масштабировать систему в ситуации, когда используются один сервер базы данных и несколько серверов, на которых работают пользовательские процессы. Технологическая особенность СУБД Caché заключается в том, что она поддерживает корректность транзакций в рамках одного ECP-сервера вне зависимости от количества ECP-клиентов, которые к ней подключены. В случае, когда у нас один ECP-сервер и множество ECP-клиентов, эта задача великолепно решается, потому что все транзакции идут на одном сервере базы данных.

    Опыт показывает, что даже в высоконагруженных системах всегда удается четко разделить данные между серверами БД на основании определенных признаков. Например, если несколько организаций объединены в холдинг, то пользователями из одной структурной единицы вряд ли когда-нибудь будут востребованы данные, которые касаются другого подразделения. Это позволяет на уровне алгоритмов разделять и хранить такие данные на разных серверах БД, повышая таким образом возможности горизонтального масштабирования.

    В СЭД ЛЕТОГРАФ реализован механизм шардинга, благодаря которому мы на уровне настроек системы (без применения программирования), даем возможность описать правила и принципы разнесения самих данных по разным серверам БД. Несмотря на то, что с точки зрения структуры баз данных информация, хранящаяся на каждом сервере одинакова, сама информация отличается принципиально в зависимости от организации или каких-либо других признаков, которые являются значимыми для конкретной задачи. Используя технологию шардинга можно добиться, что в 95-99 % случаев пользователи будут работать только со своей «порцией данных», и не потребуется в рамках сессии обращаться к разным серверам БД.

    На возможности масштабирования СЭД ЛЕТОГРАФ влияет и то, данные могут по разному обрабатываться. Например, в документы (даже созданные несколько лет назад) могут вноситься изменения, а в журнал действий пользователей записи только добавляются (ни одна запись не может быть ни удалена, ни изменена). Механизмы, которые используются в СЭД ЛЕТОГРАФ, позволяют дополнительно повысить производительность системы и улучшить масштабирование за счет ведения таких журналов на отдельных серверах БД – причем, как в случае односерверной, так и многосерверной конфигурации. Такой подход ориентирован на снижение нагрузки на основные сервера БД.

    Аналогичная ситуация возникает и контентом (“информационным содержанием” СЭД). Так как система ЛЕТОГРАФ работает с большим объемом контента – это терабайты данных, миллионы файлов и документов – разумно предположить, что контент, который попадает в систему, ни при каких условиях не должен пострадать. Поэтому мы также выносим хранение файлов на отдельные сервера баз данных и обеспечиваем таким образом дополнительно горизонтальное масштабирование.

    Программное обеспечение фронт-энда

    В качестве фронт-энда в СЭД ЛЕТОГРАФ используются Apache и HAProxy. HAProxy отвечает за балансировку нагрузки между веб-серверами Apache. HAProxy, как показал опыт работы системы, зарекомендовал себя как наиболее эффективное решение, способное обеспечить поддержку работы большого числа пользователей и необходимый контроль за отказоустойчивостью.

    Когда пользователь открывает браузер и подключается к системе, HAProxy «распределяет» его на один из серверов приложений. Дальше все запросы, которые поступают от этого пользователя, будут отправляться на тот же сервер приложений в тот же процесс.

    Мы пробовали разные системы, и тестирование показало, что HAProxy – наиболее эффективный балансировщик нагрузки, обеспечивающий равномерное распределение пользователей по свободным слотам серверов приложений. В HAProxy есть все необходимые механизмы, чтобы отслеживать состояние каждого сервера приложений и не распределять новый трафик на вышедший из строя по каким-либо причинам сервер приложений. Кроме того, HAProxy дополнительно предоставляет целый ряд возможностей с точки зрения кэширования статических (неизменяемых в процессе работы пользователя) данных – например, стилей, иконок и так далее – того, что позволяет организовать интерфейс.

    Пример реализации проекта

    Архитектура ЛЕТОГРАФ позволяет добиться существенных результатов в сокращении времени отклика и повышении производительности системы. В рамках одного из наших проектов в СЭД хранится 23,5 Тбайт данных. Из них 14,7 Тбайт (63%) приходится на потоки (“прикрепленные к карточкам файлы”), 3,5 Тбайт (15%) – на отчетные формы, такие как таблицы отчетов, которые формируются в асинхронном режиме, могут запускаться как по расписанию, так и по требованию пользователя и представляют собой сводную таблицу, любые данные в которой можно детализировать до объекта. Еще 1,6 Тбайт (7%) – это протокол пользовательских операций, а все остальное (16%) – данные карточек и индексы.

    В данной системе работает более 11 тыс. пользователей, 2 тыс. из них работают одновременно, а в дни пиковой нагрузки число одновременно работающих в СЭД сотрудников превышает 3 тыс. Количество записей в журнале уже превысило 5,5 млрд, а учетных карточек – почти достигло полумиллиарда.

    В качестве сервера базы данных в данном проекте установлен отказоустойчивый кластер из двух физических серверов с тремя инсталляциями СУБД, а также резервный сервер. Десять серверов приложений (и один резервный) обрабатывают пользовательские сессии и обеспечивают формирование асинхронных отчетов. 2 сервера HAProxy выполняют функции балансировщиков. В случае проблем с одним из серверов, выполняется автоматическая передача его IP-адреса на другой сервер. Также предусмотрены сервер индексации файлов и сервер распознавания (обеспечивающий распознавание текста отсканированных бумажных документов при размещении электронных образов в систему).

    Резюме

    В СЭД ЛЕТОГРАФ предусмотрено большое количество разнообразных механизмов масштабирования. Мы предлагаем своеобразный пирог, в основе которого лежит сервер (физический или виртуальный), на который устанавливается операционная система. Поверх нее стоит СУБД InterSystems Caché, внутри которой располагается код платформы. А уже над ним – настройки системы ЛЕТОГРАФ, благодаря которым СЭД полностью конфигурируется. И такой пирог размещен на каждом сервере. Сервера между собой связаны определенным образом за счет выбранных конфигураций. И последний слой – это HAProxy, распределяющий между серверами запросы пользователей. Такая архитектура позволяет нам поддерживать масштабирование и обеспечивать все необходимые механизмы мониторинга. В результате конечные пользователи получают быстро работающую СЭД, а ИТ-специалисты – простую в управлении и обслуживании, унифицированную систему, без огромного числа составляющих, которые в случае высоконагруженных приложений приходится постоянно контролировать и администрировать. Кроме того, в зависимости от изменения потребностей организации СЭД ЛЕТОГРАФ легко переконфигурировать, добавив новые серверы или дисковые возможности.


    Данный материал является частной записью члена сообщества Club.CNews.
    Редакция CNews не несет ответственности за его содержание.

    |

    Постоянно растущее количество посетителей сайта – всегда большое достижение для разработчиков и администраторов. Конечно, за исключением тех ситуаций, когда трафик увеличивается настолько, что выводит из строя веб-сервер или другое ПО. Постоянные перебои работы сайта всегда очень дорого обходятся компании.

    Однако это поправимо. И если сейчас вы подумали о масштабировании – вы на правильном пути.

    В двух словах, масштабируемость – это способность системы обрабатывать большой объем трафика и приспособляться к его росту, сохраняя при этом необходимый UX. Существует два метода масштабирования:

    • Вертикальное (также называется scaling up): увеличение системных ресурсов, например, добавление памяти и вычислительной мощности. Этот метод позволяет быстро устранить проблемы с обработкой трафика, но его ресурсы могут быстро себя исчерпать.
    • Горизонтальное (или scaling out): добавление серверов в кластер. Рассмотрим этот метод подробнее.

    Что такое горизонтальное масштабирование?

    Проще говоря, кластер – это группа серверов. Балансировщик нагрузки – это сервер, распределяющий рабочую нагрузку между серверами в кластере. В любой момент в существующий кластер можно добавить веб-сервер для обработки большего объёма трафика. В этом и есть суть горизонтального масштабирования.

    Балансировщик нагрузки отвечает только за то, какой сервер из кластера будет обрабатывать полученный запрос. в основном, он работает как обратный прокси-сервер.

    Горизонтальное масштабирование – несомненно, более надёжный метод увеличения производительности приложения, однако оно сложнее в настройке, чем вертикальное масштабирование. Главная и самая сложная задача в этом случае – постоянно поддерживать все ноды приложения обновленными и синхронизированными. Предположим, пользователь А отправляет запрос сайту mydomain.com, после чего балансировщик передаёт запрос на сервер 1. Тогда запрос пользователя Б будет обрабатываться сервером 2.

    Что произойдёт, если пользователь А внесёт изменения в приложение (например, выгрузит какой-нибудь файл или обновит содержимое БД)? Как передать это изменение остальным серверам кластера?

    Ответ на эти и другие вопросы можно найти в этой статье.

    Разделение серверов

    Подготовка системы к масштабированию требует разделения серверов; при этом очень важно, чтобы серверы с меньшим объёмом ресурсов имели меньше обязанностей, чем более объёмные серверы. Кроме того, разделение приложения на такие «части» позволит быстро определить его критические элементы.

    Предположим, у вас есть PHP-приложение, позволяющее проходить аутентификацию и выкладывать фотографии. Приложение основано на стеке LAMP. Фотографии сохраняются на диске, а ссылки на них – в базе данных. Задача здесь заключается в поддержке синхронизации между несколькими серверами приложений, которые совместно используют эти данные (загруженные файлы и сессии пользователя).

    Для масштабирования этого приложения нужно разделить веб-сервер и сервер БД. Таким образом в кластере появятся ноды, которые совместно используют сервер БД. Это увеличит производительность приложения, снизив нагрузку на веб-сервер.

    В дальнейшем можно настроить балансировку нагрузки; об этом можно прочесть в руководстве « »

    Сессионная согласованность

    Разделив веб-сервер и базу данных, нужно сосредоточиться на обработке пользовательских сессий.

    Реляционные базы данных и сетевые файловые системы

    Данные сессий часто хранят в реляционных базах данных (таких как MySQL), потому что это такие базы легко настроить.

    Однако это решение не самое надёжное, потому что в таком случае увеличивается нагрузка. Сервер должен вносить в БД каждую операцию чтения и записи для каждого отдельного запроса, и в случае резкого увеличения трафика база данных, как правило, отказывает раньше других компонентов.

    Сетевые файловые системы – ещё один простой способ хранения данных; при этом не требуется вносить изменения в базу исходных текстов, однако сетевые системы очень медленно обрабатывают I/O операции, а это может оказать негативное влияние на производительность приложения.

    Липкие сессии

    Липкие сессии реализуются на балансировщике нагрузки и не требуют никаких изменений в нодах приложения. Это наиболее удобный метод обработки пользовательских сессий. Балансировщик нагрузки будет постоянно направлять пользователя на один и тот же сервер, что устраняет необходимость распространять данные о сессии между остальными нодами кластера.

    Однако это решение тоже имеет один серьёзный недостаток. Теперь балансировщик не только распределяет нагрузку, у него появляется дополнительная задача. Это может повлиять на его производительность и привести к сбою.

    Серверы Memcached и Redis

    Также можно настроить один или несколько дополнительных серверов для обработки сессий. Это самый надёжный способ решения проблем, связанных с обработкой сессий.

    Заключительные действия

    Горизонтальное масштабирование приложения сначала кажется очень сложным и запутанным решением, однако оно помогает устранить серьёзные проблемы с трафиком. Главное – научиться работать с балансировщиком нагрузки, чтобы понимать, какие из компонентов требуют дополнительной настройки.

    Масштабирование и производительность приложения очень тесно связаны между собой. Конечно, масштабирование нужно далеко не всем приложениям и сайтам. Однако лучше подумать об этом заранее, желательно ещё на стадии разработки приложения.

    Tags: ,

    Модель доверенная подсистема (или доверенный сервер)

    В некоторых ситуациях может потребоваться более одного доверенного удостоверения, например, при наличии двух групп пользователей, одна из которых должна быть авторизована на осуществление операций чтения/записи, а другая – только операций чтения. Использование множества доверенных удостоверений сервиса обеспечивает возможность более детального контроля доступа к ресурсам и аудита без особого влияния на масштабируемость. На рис. 14 показана модель с применением множества доверенных удостоверений сервиса.

    Модель с применением множества доверенных удостоверений сервиса

    Вертикальное и горизонтальное масштабирование

    Подход к реализации масштабирования является критически важным аспектом проектирования. Независимо от того, планируется ли выполнять горизонтальное

    масштабирование решения с помощью кластера с балансировкой нагрузки или секционированной базы данных, дизайн должен обеспечивать поддержку выбранной опции. Существует два основных типа масштабирования: вертикальное (большой блок) и

    горизонтальное (больше блоков).

    При вертикальном масштабировании поддержка повышенной нагрузки обеспечивается через введение в существующие серверы дополнительного оборудования, такого как процессоры, оперативная память и сетевые интерфейсные платы (network interface cards, NIC). Такой простой вариант не добавляет затрат на обслуживание и поддержку, но может быть экономически выгодным лишь до определенного момента. Однако всегда сохраняется вероятность сбоя, что является риском. Кроме того, введение дополнительного оборудования в существующие серверы обеспечивает желаемые результаты не бесконечно, и получение последних 10% расчетной производительности путем наращивания мощностей одного компьютера может быть очень дорогим удовольствием.

    Эффективного вертикального масштабирования приложения можно добиться лишь при условии соответствующего вертикального масштабирования базовой инфраструктуры, среды выполнения и архитектуры компьютера. Продумайте, какие ресурсы ограничивают производительность приложения. Например, если это связано с нехваткой памяти или низкой пропускной способностью сети, добавление процессоров ничего не даст.

    При горизонтальном масштабировании добавляется больше серверов и используются решения с балансировкой нагрузки и кластеризацией. Кроме возможности обработки большей нагрузки, горизонтальное масштабирование смягчает последствия сбоев оборудования. Если один из серверов выходит из строя, другие серверы кластера берут на себя его нагрузку. Например, уровень представления и бизнес-уровень приложения могут размещаться на нескольких Веб-серверах с балансировкой нагрузки, образующих Веб-ферму. Или можно физически отделить бизнес-логику приложения и использовать для нее отдельный средний уровень с балансировкой нагрузки, но при этом размещать уровень представления на внешнем уровне с балансировкой нагрузки. Если приложение имеет ограничения по вводу/выводу и должно поддерживать очень большую базу данных, ее можно распределить по нескольким серверам баз данных. Как правило, способность приложения масштабироваться горизонтально больше зависит от его архитектуры, чем от базовой инфраструктуры.

    Вопросы вертикального масштабирования

    Вертикальное масштабирование через повышение мощности процессора и увеличение объема памяти может быть экономически эффективным решением. Также при таком подходе не возникает необходимости в дополнительных затратах на управление, как с горизонтальным масштабированием в связи с применением Веб-ферм и кластеризации. Прежде всего, следует рассмотреть варианты вертикального масштабирования и провести тестирование производительности, чтобы убедиться в том, что вертикальное масштабирование решения соответствует заданному критерию масштабирования и обеспечивает приемлемый уровень производительности для требуемого числа одновременно работающих пользователей. Необходимо выработать план масштабирования для системы, который будет отражать перспективы ее роста.

    Проектирование с поддержкой горизонтального масштабирования

    Если вертикальное масштабирование решения не обеспечивает требуемой масштабирумости из-за достижения предельных показателей для процессора, подсистемы ввода/вывода или памяти, необходимо выполнять горизонтальное масштабирование и вводить дополнительные серверы. Для обеспечения эффективного горизонтального масштабирования приложения при проектировании пользуйтесь следующими практиками:

    Узкие места идентификации и горизонтального масштабирования. Часто узким местом являются совместно используемые плохо масштабируемые в вертикальном направлении ресурсы. Например, имеется единственный экземпляр SQL Server, с которым работают множество серверов приложений. В этом случае разделение данных таким образом, чтобы они могли обслуживаться несколькими экземплярами SQL Server, обеспечит возможность горизонтального масштабирования решения. Если существует вероятность того, что узким местом станет сервер базы данных, предусмотрите секционирование данных при проектировании, это избавит от многих проблем в будущем.

    Слабо связанный и многослойный дизайн. Слабо связанный многослойный дизайн с четкими интерфейсами, которые могут использоваться удаленно, проще масштабировать горизонтально, чем дизайн, использующий тесно связанные слои с детализированными интерфейсами. Многослойный дизайн будет иметь естественные точки разделения, что делает его идеальным для горизонтального масштабирования в границах уровней. Главное, правильно определить границы. Например, бизнес-логику проще перенести в ферму серверов приложений среднего уровня с балансировкой нагрузки.

    Компромиссы и последствия их принятия

    Следует учесть аспекты масштабируемости, которые могут быть разными для разных слоев, уровней или типов данных. Выявление необходимых компромиссов позволит увидеть, в каких аспектах имеется гибкость, а в каких нет. В некоторых случаях вертикальное масштабирование с последующим горизонтальным масштабированием с применением Веб-серверов или серверов приложений не является наилучшим подходом. Например, можно установить 8- процессорный сервер, но из соображений экономии, скорее всего, вместо одного большого сервера будут использоваться несколько меньших серверов.

    С другой стороны, в определенных ситуациях, в зависимости от роли данных и их использования, вертикальное масштабирование с последующим горизонтальным масштабированием может быть оптимальным подходом для серверов баз данных. Однако возможности балансировки нагрузки и обработки отказов не бесконечны, и количество серверов, которые могут быть охвачены этими процессами, ограничено. Также влияние оказывают и другие аспекты, такие как секционирование базы данных. Кроме технических вопросов и вопросов производительности, нельзя забывать об эксплуатации и управлении и об общей стоимости всей системы.

    Как правило, выполняется оптимизация цены и производительности в рамках, налагаемых всеми остальными ограничениями. Например, использование четырех 2-процессорных Веб-

    серверов/серверов приложений может быть более оптимальным вариантом с точки зрения цены и производительности по сравнению с использованием двух 4-процессорных серверов. Однако должны быть учтены и другие ограничения, такие как какое максимальное число серверов, которые можно разместить в конкретной инфраструктуре балансировки нагрузки, а также энергопотребление или предоставляемая площадь в дата-центре.

    Для реализации ферм серверов и для размещения сервисов могут использоваться виртуализированные серверы. Такой подход поможет найти оптимальное соотношение производительности и стоимости, обеспечивая при этом максимальное использование ресурсов и рентабельность инвестиций.

    Компоненты без сохранения состояния

    Применение компонентов без сохранения состояния (не сохраняющие промежуточного состояния компоненты, которые могут быть реализованы в клиентской части Веб-приложения) означает возможность создания дизайна с лучшими возможностями, как для горизонтального, так и для вертикального масштабирования. Для сознания дизайна без сохранения состояния придется пойти на многие компромиссы, но обеспечиваемые им преимущества с точки зрения масштабируемости, как правило, перевешивают все возможные недостатки.

    Секционирование данных и базы данных

    Если приложение работает с очень большой базой данных и есть опасения, что операции ввода/вывода станут узким местом системы, заранее предусмотрите секционирование базы данных. Секционирование базы данных на более поздних этапах проектирования обычно требует полной переработки дизайна базы данных и, соответственно, масштабных изменений всего кода приложения. Секционирование обеспечивает несколько преимуществ, включая возможность направления всех запросов к одной секции (таким образом, использование ресурсов ограничивается только одной частью данных) и возможность задействовать множество секций (таким образом, достигаются лучшие возможности одновременной работы и исключительная производительности за счет извлечения данных с множества дисков).

    Однако в некоторых ситуациях наличие множества секций может иметь негативные последствия. Например, некоторые операции эффективнее выполнять с данными, сконцентрированными на одном накопителе.

    Принимаемые в сценариях развертывания решения о секционировании хранилища данных во многом определяются типом данных. Рассмотрим значимые факторы:

    Статические справочные данные только для чтения. Для этого типа данных в целях улучшения производительности и масштабируемости можно без особого труда поддерживать множество копий на разных накопителях, размещаемых в соответствующих местоположениях. Это имеет минимальное влияние на дизайн и обычно определяется соображениями оптимизации. Сведение нескольких логически отдельных и независимых баз данных на один сервер базы данных, даже если это позволяет объем дискового пространства, может быть неудачным решением, и размещение копий ближе к потребителям данных может оказаться в равной степени приемлемым подходом. Однако нельзя забывать, что любое

    тиражирование требует применения механизмов обеспечения синхронизации системы.

    Динамические (часто изменяющиеся) легко секционируемые данные. Это данные, относящиеся к конкретному пользователю или сеансу, такие как корзина в системе электронной коммерции, где данные пользователя А никак не связаны с данными пользователя В. Управлять такими данными немного сложнее, чем статическими данными только для чтения, но их довольно легко оптимизировать и распределять, поскольку они могут быть секционированы. Нет никаких зависимостей между группами вплоть до отдельных пользователей. Важная особенность эти данных в том, что здесь не выполняется запрос по всем секциям: запрашивается содержимое корзины пользователя А, но не все корзины, включающие определенный товар. Обратите внимание, если последующие запросы могут поступать на другой Веб-сервер или сервер приложений, все эти серверы должны иметь возможность доступа к соответствующей секции.

    Основные данные . Это основной случай применения вертикального масштабирования с последующим горизонтальным масштабированием. Как правило, тиражировать данные этого типа нежелательно из-за сложности их синхронизации. Классическое решение для таких данных – вертикальное масштабирование до предельных возможностей (в идеале, сохранение единственного логического экземпляра с соответствующей кластеризацией) и применение секционирования и распределения, только если горизонтальное масштабирование является единственным допустимым вариантом. Прогресс и достижения в технологиях баз данных, такие как распределенные секционированные представления, намного упростили секционирование, тем не менее, оно должно применяться лишь в случае крайней необходимости. Слишком большой размер базы данных редко является определяющим фактором при принятии решения, намного чаще основную роль играют другие соображения, такие как кому принадлежат данные, географическое распределение пользователей, близость к потребителю и доступность.

    Данные с отложенной синхронизацией. Некоторые используемые в приложениях данные не требуют немедленной синхронизации или синхронизации вообще. Отличный пример – такие данные онлайн-магазинов, как «С товаром Х часто покупают Y и Z». Эти данные извлекаются из основных данных, но не требуют обновления в режиме реального времени. Проектирование стратегий, обеспечивающих перевод данных из основных в секционируемые (динамические) и затем в статические, является ключевым фактором в построении высокомасштабируемых приложений.

    Более подробно схемы перемещения и тиражирования данных рассматриваются в статье «Data Movement Patterns » (Шаблоны передачи данных) по адресу http://msdn.microsoft.com/en-us/library/ms998449.aspx .