Импульсные электронные устройства. Скачать книгу импульсные и цифровые устройства

МОСКВА «СОВЕТСКОЕ РАДИО»

Книга может служить учебником по курсу «Импульсные и цифровые устройства». В книге излагаются линейные и нелинейные устройства преобразования и формирования импульсных сигналов, электронные ключи, разнообразные импульсные устройства регенеративного типа, устройства формирования пилообразного напряжения и тока, логические схемы, основные элементы цифровых устройств и многокаскадные устройства функционального назначения. При изложении уделяется внимание обеспечению надежного и стабильного режима работы устройств при действии неизбежных в условиях эксплуатации дестабилизирующих факторов и помеховых импульсов.

Ицхоки Я. С, Овчинников Н. И. Импульсные и цифровые устройства. Москва, Издательство «Советское радио». 1972, 592 с

Предисловие

РАЗДЕЛ ПЕРВЫЙ. ОБЩИЕ СВЕДЕНИЯ ОБ ИМПУЛЬСНЫХ ПРОЦЕССАХ
Глава 1. Вводные сведения
§1.1. Импульсный режим работы и его особенности
§ 1.2. Роль импульсной техники в радиоэлектронике
§ 1.3. Предмет курса
§ 1.4. Из истории развития импульсной техники

Глава 2. Характеристика формы импульсов
§2.1. Форма и параметры импульсов
§ 2.2. Параметры типовых импульсов
§ 2.3. Аналитическое выражение импульсов
§ 2.4. Приближенная оценка длительности фронта
§ 2.5. Активная ширина спектра импульсов

РАЗДЕЛ ВТОРОЙ. ЛИНЕЙНЫЕ УСТРОЙСТВА ФОРМИРОВАНИЯ И ПРЕОБРАЗОВАНИЯ ИМПУЛЬСОВ
Глава 3. Интегрирующие цепи
§ 3.1. Назначение и принцип работы интегрирующей цепи
§ 3.2. Требования к параметрам интегрирующей цепи
§ 3.3. Варианты схем интегрирующей цепи

Глава 4. Дифференцирующие и укорачивающие цепи
§ 4.1. Дифференцирующие цепи
§ 4.2 Укорачивающие цепи

Глава 5. Импульсные трансформаторы
§ 5.1 Назначение импульсных трансформаторов
§ 5.2. Намагничивание сердечника трансформатора
§ 5.3. Эквивалентная схема трансформаторной цепи
§ 5.4. Искажение формы трансформированного импульса
§ 5.5. Требования к конструкции трансформатора

Глава 6. Линии временной задержки сигналов
§ 6.1 Назначение линии временной задержки
§ 6.2. Свойства немскажающих электрических систем временной задержки
§ 6.3. Электромагнитные линии временной задержки
§ 6.4. Искусственные линии задержки (ИЛЗ)
§ 6.5. Ультразвуковые линии задержки (УЛЗ)

Глава 7. Линейные формирующие цепи
§ 7.1. Общие положения
§ 7.2. Формирующие электромагнитные линии
§ 7.3. Искусственные формирующие линии
§ 7.4. Формирующие реактивные двухполюсники
§ 7.5. Схемы включения формирующих цепей

РАЗДЕЛ ТРЕТИЙ. ЭЛЕКТРОННЫЕ КЛЮЧИ И НЕЛИНЕЙНЫЕ УСТРОЙСТВА ПРЕОБРАЗОВАНИЯ ФОРМЫ СИГНАЛОВ
Глава 8. Электронные ключи
§ 8.1. Общие положения
§ 8.2. Транзисторный ключ (ТК)
§ 8.3. Переходные процессы в транзисторном ключе
§ 8.4. Варианты транзисторных ключевых схем
§ 8.5. Диодный ключ

Глава 9. Нелинейные устройства преобразования сигналов и формирования импульсов
§ 9.1. Амплитудные ограничители
§ 9.2. Формирование импульсов путем ограничения и дифференцирования синусоидального напряжения
§ 9.3. Пик-трансформатор
§ 9.4. Фиксаторы уровня

РАЗДЕЛ ЧЕТВЕРТЫЙ. РЕГЕНЕРАТИВНЫЕ ИМПУЛЬСНЫЕ УСТРОЙСТВА
Глава 10. Общие свойства регенеративных импульсных устройств
§ 10.1. Принципы построения регенеративных устройств
§ 10.2. Режимы работы регенеративных устройств

Глава 11. Мультивибраторы
§ 11.1. Мультивибраторы с анодно-сеточными связями
§ 11.2. Мультивибратор с коллекторно-базовыми связями
§.11.3. Ждущий мультивибратор с эмиттерной связью
§ 11.4. Типовые схемы ждущих мультивибраторов
§ 11.5. Ждущий мультивибратор с транзисторами разного типа проводимости
§ 11.6. Мультивибратор с мостовыми цепями
§ 11.7. Многофазные мультивибраторы

Глава 12. Блокинг-генераторы
§ 12.1. Общая характеристика блокинг-генератора
§ 12.2. Ламповый блокинг-генератор
§ 12.3. Варианты схем ламповых блокинг-генераторов
§ 12.4. Транзисторный блокинг-генератор

Глава 13. Импульсные делители частоты
§ 13.1 Принцип действия делителя частоты
§ 13.2. Стабильность режима деления частоты
§ 13.3. Ступенчатый делитель частоты

Глава 14. Триггеры
§ 14.1. Общие свойства триггеров и требования к ним
§ 14.2. Симметричный транзисторный триггер
§ 14.3. Схемы запуска триггера
§ 14.4. Обеспечение состояний покоя триггера
§ 14.5. Варианты схем триггеров

Глава 15. Импульсные устройства на полупроводниковых приборах с отрицательным сопротивлением
§ 15.1 Устройства на туннельных диодах (УТД)
§ 15.2. Устройства на лавинных транзисторах (УЛТ)

РАЗДЕЛ ПЯТЫЙ. ГЕНЕРАТОРЫ ЛИНЕЙНО ИЗМЕНЯЮЩЕГОСЯ НАПРЯЖЕНИЯ И ТОКА
Глава 16. Простейшие генераторы линейно изменяющегося напряжения. Методы линеаризации
§ 16.1. Параметры линейно изменяющегося напряжения
§ 16.2. Принцип построения генераторов ЛИН
§ 16.3. Простейшие генераторы ЛИН
§ 16.4. ГЛИН с токостабнлизующим элементом
§ 16.5. ГЛИН с компенсирующей э. д. с, вводимой посредством неинвертирующего усилителя
§ 16.6. ГЛИН с компенсирующей э. д. с, вводимой посредством инвертирующего усилителя

Глава 17. Генераторы ЛИН фантастронного типа
§ 17.1. Общие сведения
§ 17.2. Фантастрон со связью по экранирующей сетке
§ 17.3. Фантастрон с катодной связью
§ 17.4. Транзисторный фантастрон

Глава 18. Генераторы пилообразного тока
§ 18.1. Параметры пилообразного тока
§ 18.2. Принцип формирования пилообразного тока
§ 18.3. Схемы генераторов пилообразного тока

РАЗДЕЛ ШЕСТОЙ. ЭЛЕМЕНТЫ ЛОГИЧЕСКИХ СХЕМ
Глава 19. Общая характеристика логических схем
§ 19.1. Основные логические операции
§ 19.2. Классификация и характеристики логических схем

Глава 20. Основные логические схемы
§ 20.1. Схема логического отрицания (НЕ)
§ 20.2. Диодные схемы логического умножения (И)
§ 20.3. Диодные схемы логического сложения (ИЛИ)
§ 20.4. Логические схемы на туннельных диодах

Глава 21. Сложные и комбинированные логические схемы
§ 21.1. Диодно-транзнсторные логические схемы (ДТЛС)
§ 21.2. Транзисторные логические схемы (ТЛС)
§ 21.3. Логическая схема запрещения (ЗАПРЕТ)
§ 21.4. Логические схемы равнозначности и неравнозначности
§ 21.5. Многоступенчатые диодные логические схемы

РАЗДЕЛ СЕДЬМОЙ. МНОГОКАСКАДНЫЕ ИМПУЛЬСНЫЕ УСТРОЙСТВА
Глава 22. Устройства кодирования сигналов
§ 22.1. Формирование импульсных кодов с фиксированными интервалами между импульсами
§ 22.2 Формирование импульсных кодов с регулируемыми интервалами между импульсами
§ 22.3. Регистрация двоичного цифрового кода
§ 22.4. Диодные дешифраторы
§ 22.5. Цифровые счетчики импульсов
§ 22.6. Кодирование непрерывно изменяющихся величин

Глава 23. Селекция импульсных сигналов
§ 23.1. Общие сведения
§ 23.2. Амплитудная селекция импульсов
§ 23.3 Селекция импульсов по частоте повторения
§ 23.4 Селекция импульсов по длительности
§ 23.5. Селекция кодированной серии импульсов

ПРЕДИСЛОВИЕ

Книга может служить учебником по курсу «Импульсные и цифровые устройства» для ряда радиотехнических вузов. В соответствии с программой курса в книге излагаются линейные и нелинейные устройства преобразования и формирования импульсных сигналов, электронные ключи, релаксаторы, импульсные делители частоты, триггеры, устройства формирования пилообразного напряжения и тока, устройства для выполнения логических операций и некоторые многокаскадные устройства функционального назначения.

Рассматриваются импульсные устройства, построенные на электронных лампах и, в особенности, на полупроводниковых приборах: транзисторах (в основном), диодах, туннельных диодах и лавинных транзисторах. Наряду с изложением принципа работы устройств, и анализом протекающих в них процессов выводятся основные закономерности процессов и расчетные соотношения. При этом особое внимание уделяется выявлению условий устойчивой и надежной работы устройств и выбору надлежащих режимов их работы с учетом действия неизбежных при эксплуатации устройств дестабилизирующих факторов и помеховых импульсов.

Каждая глава книги имеет свою порядковую нумерацию формул, рисунков и таблиц. При ссылке на формулу, рисунок и таблицу другой главы первая цифра указывает номер главы. В целях использования учебника при программированном обучении каждый параграф подразделяется на пункты, пронумерованные по порядку.

Главы 1-15 написаны Ицхоки Я. С., главы 16-24 написаны Овчинниковым Н. И.; общее редактирование книги выполнено Ицхоки Я. С.

Рукопись книги была внимательно просмотрена и обсуждена коллективами специалистов некоторых вузов; при этом был дан ряд полезных советов и рекомендаций. Авторы выражают признательность всем, принявшим участие в просмотре рукописи и ее обсуждении и, в особенности, официальным рецензентам-С. Я. Шацу и Г. Д. Федотову, а также А. А. Куликовскому, Б. X. Кривицкому, В. В. Григорину-Рябову, В. К. Любченко, В. Г. Позднякову, В. П. Дья-Еонову, Я. Е; Беленькому и Б. С. Мушу.

Скачать книгу Ицхоки Я. С., Овчинников Н. И. Импульсные и цифровые устройства . Москва, Издательство «Советское радио»». 1972

Импульсными называют информационные и энергетические электронные устройства, основанные на работе переключающих элементов и управлении моментами включения и выключения этих элементов. В зависимости от закона управления различают системы с амплитудной, частотной, широтной и фазовой модуляцией. Первые электронно-ионные регуляторы, основанные на фазоимпульсном методе регулирования, были разработаны в СССР в 1937-1941 гг. Л.С. Гольдфарбом и Г.Р. Герценбергом. Они содержали все узлы, характерные и для современных систем импульсного регулирования: измеритель регулируемой величины, компаратор, усилитель рассогласования, импульсный модулятор и усилитель мощности для энергетического воздействия на объект управления.

Импульсные энергетические преобразовательные устройства, основанные на работе управляемых силовых вентилей и полупроводниковых ключевых элементов в замкнутых системах импульсного регулирования, являются основой быстро развивающегося направления силовой (энергетической) электроники.

Информационные импульсные устройства основаны на преобразовании информации с использованием одного из видов импульсной модуляции, дискретизации данных и изменении числа координат. Наиболее распространенные виды преобразования информации импульсными устройствами: развертка (сканирование), частотно- и широтно-импульсная модуляция, измерение временных характеристик сигнала (моментов перепада, периода, частоты).

Впервые идея сканирования как последовательного просмотра точек плоского объекта была запатентована в Германии в 1884 г. Паулем Нипковым. Диск П. Нипкова был основой первого телевизора с механической разверткой. Благодаря развертке плоский двумерный образ преобразовывался в одномерный сигнал яркости.

На принципе развертывания основано осциллографирование процессов, изменяющихся во времени. Привычная всем картина изменения сигнала в функции времени на экране электронно-лучевой трубки может быть получена при условии равномерного движения изображающего элемента (электронного луча, светящейся точки) по одной координате и отклонения этого элемента по другой координате на значение, пропорциональное сигналу. Идея развертки для наблюдения процессов была выдвинута Л.И. Мандель-штаммом в России в 1907 г., применение электронно-лучевой трубки с этой целью предложено в России Б.Л. Розингом в том же году. Эта фундаментальная идея дала множество выдающихся технических решений.

Применение развертывающего преобразования можно пояснить несколькими примерами из арсенала средств промышленной электроники.

Определение местонахождения поврежденного участка основано на использовании отраженного эхосигнала и точном измерении времени между посланным зондирующим импульсом и принятым отраженным.

К этому классу приборов относятся искатели повреждений в линиях электропередачи. Искатель повреждений генерирует зондирующий импульс напряжения, который распространяется в линии, порождая отражения от различных неоднородностей. Измеряя время между зондирующим и отраженным импульсами, можно определять местонахождение аварийного участка.

К этому же классу приборов относятся импульсные ультразвуковые дефектоскопы. Источником зондирующих сигналов в них служит пье-зопреобразователь, дающий акустический импульс; он же используется и для обратного преобразования отраженного акустического сигнала в электрический.

Точное измерение времени между зондирующим и отраженным импульсами производится одним из двух способов: измерением расстояния между импульсами на экране электронно-лучевой трубки или подсчетом числа меток времени, генерируемых с эталонной частотой. Второй из этих методов оказался более предпочтительным и получил широкое распространение и развитие.

Время -- наиболее удобная физическая величина для эталонирования и прецизионного измерения. Кварцевые генераторы давно и прочно вошедшие в практику радиотехнических систем, продолжают до наших дней сохранять свое место и значимость, как простые и сравнительно дешевые эталоны частоты или интервалов времени с точностью порядка 10 -6 --10 -7 .

Приборы для ультразвуковой дефектоскопии и искатели повреждений широко распространены в энергетике, машиностроении, железнодорожном транспорте. Они не требуют мощных установок высокого напряжения, как рентгеновские промышленные аппараты, экологически безопасны в отличие от радиоизотопных дефектоскопов. При частоте ультразвуковых колебаний 2--4 МГц удается обнаруживать неоднородности в материале площадью до 1 мм 2 . В Советском Союзе промышленное производство дефектоскопов ведется с 50-х годов.

Промышленное применение развертывающего преобразования связано с измерением ширины листа прокатываемого металла. При большой скорости движения полосы горячего металла в условиях вибрации единственным способом измерения могло быть бесконтактное оптическое сканирование. Измеритель проката был разработан в лаборатории автоматики Института черной металлургии (Г.Х. Зарезанко). Два сканирующих измерительных устройства определяли координаты обеих кромок листа, разность координат в 1960 г. с помощью показывающих и регистрирующих приборов позволяли быстро измерить и зафиксировать ширину ленты проката. Создателю установки пришлось решить проблему оптических помех, точного и воспроизводимого измерения положения фронта импульсов при сравнительно низкой крутизне.

Развертывающее преобразование в промышленных устройствах было реализовано с помощью специально разработанного для таких устройств прибора -- диссектора. Сравнительно низкая чувствительность компенсировалась большой яркостью источника света. Быстродействие диссектора оказалось существенно выше, чем у передающих телевизионных трубок с накоплением заряда.

Естественным следующим шагом на пути развития развертывающих и сканирующих устройств стали установки промышленного телевидения. Их основные функции -- наблюдение за процессами в условиях, когда непосредственное нахождение оператора вблизи объекта невозможно, нежелательно или сопряжено с опасностью .

На развитие импульсной техники решающее влияние оказало развитие радиолокации. Это направление способствовало, во-первых, формированию импульсов высокой энергии. Повышение мощности излучаемого импульса при разумных ограничениях на среднюю энергию установки стало возможным лишь благодаря импульсному характеру работы при отношении периода к длительности импульса порядка 1000. Во-вторых, разрешающая способность импульсного устройства во времени могла быть повышена только за счет увеличения крутизны фронтов используемых сигналов. Как и во многих других направлениях, промышленное использование импульсной техники стало вторичным результатом их применения в оборонных отраслях. Благодаря импульсному характеру сигнала удавалось получать импульсы высоких энергий от относительно маломощных устройств. Этому способствовало свойство электронных ламп с оксидными катодами давать огромные по сравнению со средними токи импульсной эмиссии. Электронная лампа со средним током в десятки миллиампер могла длительное время эксплуатироваться с импульсными токами в несколько ампер.

В отличие от радиолокационных систем технические средства промышленной электроники заняли полный диапазон возможностей и способов импульсной модуляции. Регулирование среднего и действующего напряжений осуществлялось путем изменения коэффициента заполнения при широтно-импульсном регулировании. Исторически первой была освоена разновидность импульсного регулирования, при которой синхронное с сетью отпирание вентиля осуществлялось с запаздыванием по отношению к моменту естественной коммутации. Широтно-импульсное регулирование постоянного напряжения получило распространение в высокоэкономичных импульсных стабилизаторах постоянного напряжения. Это стимулировало развитие и инженерное приложение теории замкнутых импульсных систем.

Анализу импульсных систем в 60-е годы посвящены фундаментальные работы Я.З. Цыпкина . В промышленной электронике для решения задач регулирования мощности импульсная техника стала главным инструментом воздействия. Классические методы управления преобразователями, основанные на использовании угла запаздывания отпирания управляемых вентилей, вначале базировались на сдвиге фазы управляющего сеточного напряжения ртутных преобразователей (так называемый горизонтальный метод). Следующим и гораздо более перспективным стал вертикальный метод. Сущность его состояла в фиксации момента сравнения развертывающего (гармонического или пилообразного) сигнала с управляющим. Вертикальный метод фазосмещения стал основным инструментом широтно-импульсного, фазоим-пульсного и (в соответствующем исполнении) частотно-импульсного регулирования.

Многоканальная система импульсно-фазового управления преобразователями служит для управления многофазными преобразователями. Система содержит несколько (по числу фаз) источников опорного напряжения, синхронных с напряжениями питания соответствующих фаз. Напряжения опорных источников сравниваются с помощью компараторов с единственным для всех фаз управляющим сигналом. Задержка срабатывания каждого компаратора дает запаздывание момента отпирания вентиля в соответствующей фазе. Форма опорного напряжения (косинусоидальная или пилообразная) дает разные регулировочные характеристики.

Для успешной реализации вертикального способа фазосмещения необходимо было решить вспомогательные задачи формирования опорного напряжения, сравнивания двух сигналов, формирования управляющего импульса определенной амплитуды и длительности в момент равенства двух сигналов. Для выполнения этих задач были разработаны специальные импульсные схемы: в 1918 г. М.А. Бонч-Бруевичем было предложено катодное реле; в 1919 г. американцы X. Абрагам и Е. Блох изобрели мультивибратор; в 1919 г. американцы В. Иклс и Ф. Джордан изобрели схему, без которой трудно представить себе современную компьютерную цивилизацию, -- триггер. Были сделаны сотни изобретений различного рода формирователей импульсов, генераторов линейно изменяющихся напряжений и токов, блокинг-генераторов (мощных импульсных схем с глубокой положительной обратной связью).

Анализ схем с обратными связями, возникновение колебаний в нелинейных системах, решение задач об устойчивости таких схем стали предметом работ А.А. Андронова, А.А. Витта, С.Э. Хайкина(1959 г.) .

ИМПУЛЬСНАЯ ТЕХНИКА, область радиотехники и электроники, охватывающая разработку и использование методов и средств генерирования, преобразования и усиления электрических импульсов, их измерения и индикации, а также исследование импульсных процессов в электрических цепях. Наиболее широко электрические импульсы - как одиночные, так и последовательности (серии) импульсов, образующих импульсные сигналы, - используются в системах автоматики, телемеханики и вычислительной техники, радиосвязи и радиолокации, телевидения и измерительной техники.

Импульсные сигналы, несущие информацию или управляющие работой электронных устройств, различаются по амплитуде, длительности и частоте следования импульсов, а также их взаимному расположению в серии. Большое значение в импульсной технике имеет скважность - отношение периода повторения импульсов одной серии к их длительности. Скважность, например, определяет отношение пиковой мощности импульсных сигналов к их средней мощности, что для многих импульсных устройств является важнейшим показателем работы.

Длительность импульсов в зависимости от области применения может изменяться в значительных пределах. В автоматике, например, оперируют с импульсами длительностью порядка 0,01-1 с, в импульсной радиосвязи - 10 -4 -10 -6 с, в вычислительной технике - до 10 -9 с. Часто даже в одной области техники применяют импульсы с различной длительностью и частотой следования. При воздействии импульсов тока или напряжения на электрическую цепь, обладающую свойством запасать энергию, возникают переходные процессы, значение которых в импульсной технике весьма велико. Явления, связанные с переходными процессами, часто используют в работе импульсных устройств, но в ряде случаев они оказывают вредное влияние и приводят к схемному и конструктивному усложнению аппаратуры. Специфичность методов и средств формирования, преобразования, измерения и регистрации импульсных сигналов и анализа процессов в импульсных устройствах обусловлены главным образом их нестационарностью.

Для импульсных сигналов характерна высокая концентрация энергии в небольших временных интервалах; например, мощность в радиоимпульсе, излучаемом радиолокационным передатчиком, достигает десятков МВт и более, что в несколько тысяч раз выше мощности, усреднённой за время передачи всей последовательности импульсов. Такая концентрация энергии позволяет решать многие задачи при передаче электрических сигналов, когда отклик на выходе системы пропорционален мощности сигнала на её входе. Мощные кратковременные электромагнитные импульсы широко применяются в физических исследованиях свойств материи, сопровождают природные явления. Воздействия электромагнитных импульсов приводят к нарушениям работы в первую очередь систем энергоснабжения, к помехам, перебоям в работе радиотехнических служб (связи, вещания, радиолокации, радионавигации, радиоастрономии и др.), радиоэлектронной аппаратуры.

Первые импульсные системы - искровые радиопередатчики для телеграфных и речевых сигналов - созданы А. С. Поповым в 1895 и 1903 годах соответственно. Бурное развитие импульсной техники с начала 1930-х годов связано, прежде всего, с зарождением и совершенствованием радиолокации и телевидения. В 1930-40-х годах были заложены основы формирования импульсов практически любой формы с помощью усилительных элементов - радиоламп, а также пассивных элементов - резисторов, конденсаторов, катушек индуктивности; в 1950-х годах на смену радиолампам пришли транзисторы, позднее интегральные аналоговые микросхемы, всё шире стали применяться цифровые методы. В конце 20 века формирование импульсов аппаратным методом заменяется формированием вычислительными (программными) методами, позволяющими синтезировать импульсы заданной формы с необходимыми параметрами.

С. Л. Мишенков.

Импульсные устройства предназначены для генерирования, формирования, усиления, передачи, преобразования и измерения электрической импульсов. К ним относятся импульсные генераторы, импульсные трансформаторы, триггеры, мультивибраторы, счётчики импульсов и др. Импульсные устройства подвергаются прерывистому воздействию электрических сигналов, различающихся по форме, амплитуде и длительности, частоте следования, а также по расположению их в серии согласно избранному виду импульсной модуляции и некоторому условному коду. В импульсных устройствах используются одиночные импульсы и последовательности (серии) импульсов. В радиолокаторах, системах радионавигации, радиосвязи и т. п. импульсные сигналы имеют частотное заполнение от десятков Гц до десятков ГГц. С помощью импульсных устройств можно весьма точно фиксировать время воздействия импульсных сигналов, изготовлять бесконтактные электронные ключи. В логических схемах на импульсных устройствах используется чёткое разделение двух возможных состояний электронной схемы: «есть напряжение» - «нет напряжения» («да» - «нет»). Для выполнения логических операций разной сложности служат, например, дифференцирующие цепи и интегрирующие цепи, формирующие линии, импульсные трансформаторы и усилители, линии задержки, ограничители, фиксаторы уровня, пересчётные схемы, триггеры, мультивибраторы, блокинг-генераторы, импульсные делители частоты, селекторы импульсов, кодирующие устройства (и декодирующие), дешифраторы, матрицы, элементы памяти ЭВМ и др. С помощью соответствующих преобразований и логических операций над импульсными сигналами выделяют, анализируют, распознают и регистрируют полезную информацию, содержащуюся в обрабатываемых импульсах. Импульсные устройства широко применяются в радиоизмерительных приборах (частотомерах, осциллографах, анализаторах спектра, измерителях временных интервалов и др.).

Лит.: Ицхоки Я. С., Овчинников Н. И. Импульсные цифровые устройства. М., 1972; Ерофеев Ю. Н. Импульсные устройства. 3-е изд. М., 1989, Зельдин Е. А. Импульсные устройства на микросхемах. М., 1991; Фролкин В. Т., Попов Л. Н. Импульсные и цифровые устройства. М., 1992; Браммер Ю. А., Пащук И. Н. Импульсные и цифровые устройства. 8-е изд. М., 2006.

План лекции

1. Общие сведения.

2. Мультивибраторы.

3. Блокинг-генератор.

3.1. Принцип работы блокинг-генератора.

3.2. Порядок расчета блокинг-генератора.

4. Генераторы пилообразного напряжения.

4.1. Основные параметры генераторов пилообразного напряжения.

4.2. Разновидности схем транзисторных генераторов пилообразного напряжения.

5. Триггер на транзисторах.

Общие сведения.

Импульсная техника – раздел электроники, предметом которого является разработка теоретических основ, практических методов и технических средств генерирования, преобразования и измерения параметров электрических импульсов, а также исследование импульсных процессов в электрических цепях.

Наиболее часто в импульсных электронных устройствах используются импульсы прямоугольной (рис. 1,а), трапецеидальной (рис. 1,б), треугольной (рис. 1,в) и экспоненциальной (рис. 1,г) формы.

Рисунок 1

Импульсы, формы которых приведены на рис. 1,а…г, являются идеализированными. Форма реальных импульсов не является геометрически правильной из-за нелинейности характеристик полупроводниковых приборов и влияния реактивных сопротивлений в схемах. Поэтому реальные прямоугольные импульсы, наиболее часто используемые в практических импульсных схемах, имеют форму, приведенную на рис. 1,д. Участки быстрого нарастания и спада напряжения или тока называются фронтом и срезом импульса , а интервал, на котором напряжение или ток изменяются сравнительно медленно, - вершиной импульса .



Упрощенная форма реального прямоугольного импульса показана на рисунке 1,е. Спрямленные отрезки ab, bc, cd отображают соответственно фронт, вершину и срез импульса, а отрезки de и ef – нарастание и спад обратного импульса. Скорость нарастания напряжения или тока на рисунке 1,е характеризуется крутизной фронта импульса

а убывание напряжения или тока на вершине относительным снижением

Одним из важнейших показателей импульсных сигналов является длительность импульсов . Помимо указанного параметра τ а, определяющего активную длительность вершины на уровне 0,5U m , длительность импульса характеризует время t и, определяемое либо на уровне 0,1U m , либо по основанию импульса (рис. 1,е).

К основным параметрам импульсов относится период повторения импульсов Т – интервал времени между началом двух соседних однополярных импульсов. Величину, обратную периоду повторения, называют частотой следования импульсов f. Часть периода Т занимает пауза t п – отрезок времени между окончанием и началом двух соседних импульсов t п = T – t и.

Отношение длительности импульса к периоду повторения называется коэффициентом заполнения

Величина, обратная коэффициенту заполнения, называется скважностью импульсов

Качество работы импульсных устройств во многом определяется временем восстановления импульса t вос (рис. 1,е). Чем меньше t вос, тем надежнее работает схема, тем выше ее быстродействие.

Мультивибраторы

Одним из наиболее распространенных генераторов импульсов прямоугольной формы является мультивибратор, представляющий собой двухкаскадный резистивный усилитель с глубокой положительной обратной связью. Одна из наиболее простых и типичных схем мультивибратора приведена на рис. 2. Элементы схемы подобраны так, чтобы обеспечить идентичность каждого из усилительных каскадов, собранных на однотипных транзисторах VТ1, VT2. При R1 = R4, R2 = R3, C1 = C2 и одинаковых параметрах транзистора мультивибратор называется симметричным.

Рисунок 2

Т.к. идеальной симметрии схемы практически невозможно, то любая, даже самая незначительная асимметрия мгновенно приведет к тому, что один из транзисторов закроется, а другой будет открыт и доведен до режима насыщения. Допустим, что по тем или иным причинам ток коллектора транзистора VT2 оказался несколько больше коллекторного тока транзистора VT1. Это приведет к увеличению падения напряжения на резисторе R4 и снижению отрицательного потенциала на коллекторе VT2. Через конденсатор С2 изменение потенциала коллектора транзистора VT2 передается на базу транзистора VT1. Это приведет к уменьшению тока коллектора транзистора VT1 и к увеличению отрицательного потенциала на его коллекторе. Через С1 изменение потенциала коллектора транзистора VT1 передается на базу транзистора VT2, что вызывает дополнительное увеличение тока коллектора этого транзистора. Далее процесс повторяется, и в конечном итоге транзистор VT2 полностью откроется и войдет в режим насыщения, а транзистор VT1 закроется. Этот процесс протекает лавинообразно.

В режиме запирания транзистора VT1 конденсатор С1 заряжается по цепи: 0, участок эмиттер – база открытого транзистора VT2, С1, R1, -Eк. В то же время конденсатор С2 разряжается через открытый транзистор VT2 и резистор R3.

Переключение схемы из одного состояния в другое зависит от скорости заряда и разряда конденсаторов. По мере заряда конденсатора С1 положительный потенциал точки А все более нарастает, а по мере разряда конденсатора С2 положительный потенциал точки В все более снижается. В связи с этим потенциал базы транзистора VT2 постепенно повышается, а потенциал базы транзистора VT1 снижается. В определенный момент времени транзистор VT1 отопрется, начнется лавинообразный процесс нарастания тока этого транзистора, а транзистор VT2 запрется. Этот процесс переключения повторяется. Таким образом, транзисторы в мультивибраторе по очереди находятся или в режиме отсечки тока или в режиме насыщения и с каждого коллектора можно снять прямоугольные импульсы с амплитудой, почти равной величине напряжения питания источника. Схема будет генерировать импульсы (режим самовозбуждения ). Такой режим называется автоколебательным .

На рис. 3 приведены временные диаграммы токов, протекающих в транзисторах, и напряжений на коллекторах и базах транзисторов. Исходный момент t 0 соответствует тому случаю, когда транзистор VT1 заперт, а транзистор VT2 открыт. Моменты t 1 , t 2 , t 3 соответствуют переключению схемы.

Приведенная на рис. 2 схема получила название схемы с коллекторно-базовыми емкостными связями.

Рисунок 3

При расчете мультивибратора в автоколебательном режиме должны быть заданы: период следования импульсов Т; длительность импульсов t и; амплитуда импульсов U m ; длительность фронта τ ф; длительность среза τ с; время восстановления t вос; температура окружающей среды t окр (или допустимая температурная нестабильность мультивибратора σ Т в заданном диапазоне изменения температуры).

В результате расчета необходимо выбрать тип транзисторов и определить параметры элементов схемы.

1) Определяем напряжение источника питания

. (5)

Если напряжение источника питания задано и значительно превышает амплитуду импульсов U m , то можно расчет мультивибратора вести на бо́льшую амплитуду, чем задано, а импульсы снимать с помощью делителя напряжения в коллекторной цепи одного из транзисторов, как показано на рис. 4.

Рисунок 4

2) Выбираем тип транзисторов, параметры которых удовлетворяют условиям:

где U КБ max – максимально допустимое постоянное напряжение коллектор – база для выбранного типа транзистора;

f h 21э – предельная частота коэффициента передачи тока биполярного транзистора.

Если мультивибратор работает при повышенных температурах или от него требуется высокая температурная стабильность (σ Т < 5%), то выбирают кремниевые транзисторы; если допустимое значение σ Т > 5% - германиевые транзисторы.

При выборе транзисторов по их частотным свойствам, можно, кроме соотношения (7), руководствоваться следующими рекомендациями: если заданная длительность фронта τ ф не меньше (0,2 …),5)мкс, то могут быть использованы низкочастотные транзисторы; если же τ ф < (0,2 … 0,5)мкс – следует выбрать высокочастотные транзисторы.

3) Находим сопротивления резисторов R1 = R4 = Rк. При этом необходимо выполнить условие

, (8)

где I Ки max – максимально допустимый импульсный ток коллектора;

I КБ 0 – обратный ток транзистора.

Как правило, для маломощных транзисторов R к выбирают не менее (0,5 … 1) кОм, а для мощных – не менее (200 … 300) Ом.

4) Находим сопротивление резисторов R2 = R3 = R Б

где h 21э – коэффициент передачи тока;

К нас – коэффициент насыщения транзистора.

Коэффициент насыщения определяется из соотношения

. (10)

При К нас < 1 транзистор работает в ненасыщенном режиме, при К нас = 1 находится на грани насыщения, при К нас > 1 – в режиме насыщения.

Для обеспечения режима открытого транзистора при неглубоком насыщении выбирают К нас = 1…4.

В некоторых схемах симметричных мультивибраторов для регулировки периода автоколебаний в цепь баз транзисторов включают источник регулируемого напряжения (Е Б на рис. 5). Формула для определения периода генерируемых импульсов

, (11)

где R Б = R2 = R3; С = С1 = С2;

U Б m – часть напряжения, которая передается с коллекторов в цепи баз.

Рисунок 5

5) Определяем емкости конденсаторов С1 и С2. Для симметричного мультивибратора

. (12)

Для несимметричного мультивибратора

6) Находим время восстановления схемы

Как видно, для уменьшения t вос, т.е. для улучшения формы генерируемых импульсов, следует уменьшать величины R K и С. Однако с уменьшением емкости С уменьшаются длительность импульса и период колебаний. Для предотвращения этого необходимо увеличивать сопротивление резисторов R Б, но при этом ухудшается термостабильность схемы. Уменьшение R K также нецелесообразно, так как это приводит к увеличению тока насыщения транзистора и уменьшению перепада напряжения на коллекторе, что может нарушить самовозбуждение схемы. Поэтому, если полученное значение I вос оказалось больше заданного, в схему мультивибратора следует внести изменения. На рис. 6,а показана схема симметричного мультивибратора с корректирующими диодами.

Рисунок 6

В схеме ток заряда конденсаторов связи С1 и С2 замыкается не через коллекторные резисторы R1 и R4, а через вспомогательные резисторы R5, R6, что обеспечивается включением диодов VD1, VD2. Диоды не препятствуют развитию лавинообразных процессов нарастания и спадания токов транзисторов, но позволяют уменьшить постоянную времени заряда конденсаторов С1 и С2. Благодаря этому напряжение на коллекторе запертого транзистора после опрокидывания схемы устанавливается близким к –Ек намного быстрее (рис. 6,б), чем в основной схеме мультивибратора.

Блокинг-генератор

Все электронные устройства имеют дело с электрическими сигналами, изменяющимися во времени. Именно благодаря этому изменению во времени сигнал может нести в себе какую-то информацию. По характеру изменения различают сигналы аналоговые импульсные и цифровые.

Аналоговый сигнал может принимать любые значения в определенных пределах. В любой момент времени математически может быть представлен аналитической функцией без разрывов (рис 1.1а).

Рис 1.1. Электрические сигналы; а) аналоговый, б) импульсный, в) цифровой

Устройства, работающие только с аналоговыми сигналами, называются аналоговыми устройствами.

Цифровой сигнал может принимать только два значения высокое/низкое или 0/1 (иногда третье значение - «нет сигнала»). Допускаются некоторые отклонения от этих значений (рис 1.1в). Устройства, работающие исключительно с цифровыми сигналами, называются цифровыми устройствами.

Импульсный сигнал, как и аналоговый, может иметь любые значения в определенном диапазоне. В некоторые моменты времени его поведение резко изменяется и он не может быть описан единой аналитической функцией без разрывов (рис 1.1б). В современной электронике иногда импульсные сигналы формируются цифровыми методами (цифроаналоговый преобразователь, аналоговые коммутаторы и т.д.). Такие устройства принято называть аналого-цифровыми. Таким образом, понятие импульсный сигнал является обобщающим. Цифровые и аналого-цифровые устройства являются частным случаем импульсных устройств.

Цифровые сигналы защищены гораздо лучше аналоговых от действия шумов, наводок и помех. Небольшие отклонения от разрешенных значений не искажают цифровой сигнал, так как всегда существуют зоны допустимых отклонений. В определенных пределах на них не влияет изменение температуры, напряжения питания, разброс параметров элементов, допускают длительное хранение без потерь, качественную передачу по каналам связи.

Особенностью цифровых сигналов, чтобы его можно было распознать, является то, что он должен оставаться в каждом из своих разрешенных уровней хотя бы в течение какого-то минимального временного интервала. Аналоговый сигнал может принимать любое свое значение бесконечно малое время. Поэтому максимально достижимое быстродействие аналоговых устройств принципиально больше, чем цифровых.

Аналоговый сигнал более емкий с точки зрения передачи информации, так как передает информацию каждым текущим значением своего уровня в отличие от цифрового, у которого всего лишь два уровня. Для передачи того же объема полезной информации, который содержится в одном аналоговом сигнале, приходиться использовать многоразрядные цифровые сигналы (8, 16 разрядов, иногда и более).

Аналоговые устройства, как правило, требуют значительной трудоемкости на индивидуальную настройку и регулировку. Цифровые устройства проще проектировать и налаживать.

Взаимное преобразование аналоговых и цифровых сигналов требует применение специальной аппаратуры – аналого-цифровых и цифроаналоговых преобразователей. Так, чтобы реализовать преимущества цифровой обработки сигналов зачастую требуется значительные затраты.

Современные электронные устройства содержат обычно и аналоговую и цифровую часть. Аналоговая электроника чаще используется для предварительной обработки сигналов в реальном времени, когда на первый план выдвигается быстродействие, а требования к точности преобразования предъявляются умеренные. Цифровую обработку обычно используется на следующем этапе, когда требуется высокая точность преобразования сигналов, надежное долговременное хранение информации, передача по каналам связи в условиях помех. Однозначного рецепта нет, когда применять аналоговую и когда цифровую обработку сигналов. Граница зависит от уровня элементной базы и квалификации разработчика.

Рис. 1.2. Параметры импульсного сигнала

Импульсный сигнал, показанный на рис. 1.2, характеризуется следующими параметрами:

U m – амплитуда импульса – наибольшее отклонение напряжения Umax от исходного уровня Umin;

Если импульсы следуют через равные промежутки, то говорят о периодической последовательности импульсов с периодом повторения

T и = t и + t п,

где t и и t п – соответственно длительность импульса и паузы между импульсами; обычно определяются по уровню 0,5 от амплитуды импульса;

Участок импульса, на котором происходит отклонение напряжения от исходного уровня, называется фронтом , а участок, где напряжение возвращается к исходному уровню – спадом (срезом ). В реальном импульсе бывает трудно указать границы фронта и спада, и их длительность t ф и t ср рассчитываются на уровне 0.1 Um и 0.9U m . Уровень обычно по умолчанию считается равным 10% (0.1) от амплитуды, хотя иногда встречается 5% (0.05), но обязательно с оговоркой.

Число импульсов, следующих в течении одной секунды называется частотой повторения импульса Fи ;

Для описания периодической последовательности импульсов используется параметр скважность импульсов x, который представляет собой отношение интервала между импульсами (паузы) к длительности самого импульса ;

В тех случаях, когда обычно имеют дело с короткими периодическими импульсами (большой скважности), например, радиолокации, когда tи <

Частным случаем периодической последовательности импульсов, у которых длительность импульса равна длительности паузы, является меандр , для которого скважность x=1.

Цифровые сигналы являются частным случаем импульсных, имеют два разрешенных уровня напряжения. Для удобства формального математического описания один из этих уровней называется уровнем логической единицы (единичным уровнем), а другой – уровнем логического нуля (нулевым уровнем). Чаще всего уровню логического нуля соответствует низкий уровень напряжения, а логической единице – высокий уровень напряжения. Принято называть такую логику положительной . Иногда в системных шинах микропроцессоров, при передаче сигналов через каналы связи используют обратное представление, называемой отрицательной логикой ; логический нуль – высокий уровень, а логическая единица – низкий уровень. Есть и более сложные методы кодирования. Но мы в основном будем использовать понятия положительной логики. Структура типового логического элемента (ЛЭ) показана на Рис 1.3. Узел входной логики выполняет логические операции над входными сигналами. Каждый входной логический сигнал I (Input) описывается набором параметров;

¾ логические уровни входного/выходного напряжения Е 0 и Е 1 ,

¾ входные токи I 0 и I 1 , соответствующие входным уровням.

Каждый входной сигнал должен подаваться на отдельный вход ЛЭ. Иначе подаче нескольких входных сигналов на один вход ЛЭ возможна конкуренция сигналов и, как следствие, неопределенность уровня напряжения на входе, что конечно не допустимо.

Количество входов m называется коэффициентом объединения по входу m и может быть 1 £ m £1.

Рис. 1.3. Структура типового логического элемента.

Максимальное m=8 обусловлено тем, что единица информации - байт содержит 8 бит (может принимать 2 8 =256 состояний, что считается достаточным для кодирования любого символа информации – чисел от 0 до 9, букв алфавита и т.д.). В редких случаях, когда требуется ЛЭ с большим количеством входов, к входу ЛЭ подключают специальную ИС – логический расширитель.

Транзисторный ключ, который на рис 1.3 условно изображен как механический ключ, управляется результирующим сигналом входной логики и обычно выполняет две функции:

¾ логическую операцию отрицания «НЕ» (при высоком уровне на входе, ключ замыкается, и уровень сигнала на выходе становиться низким);

¾ обеспечивает требуемую нагрузочную способность ЛЭ, чтобы иметь возможность управлять последующими несколькими ЛЭ. Нагрузочная способность n (коэффициент разветвления) – число входов, которое может быть подключено к данному выходу без нарушения работы. Этот параметр определяется отношением выходного тока I out ЛЭ к входному I in

Стандартная величина n =10 при использовании микросхем одного типа (одной серии).

Входной ток микросхемы при приходе на вход логического нуля (), как правило, отличается от входного тока при приходе на вход логической единицы (). Например, = -0.4 мА, а = 20 мкА (считается, что положительный ток втекает во вход микросхемы, а отрицательный - вытекает из него). Точно так же выходной ток микросхемы при выдаче логического нуля () может отличаться (и обычно отличается) от выходного то­ка при выдаче логической единицы (). Например, для одной и той же микросхемы < -0,4 мА, a < 8 мА (считается, что положительный ток втекает в выход микросхемы, а отрицатель­ный - вытекает из него). Надо также учитывать, что разные входы и выходы одной и той же микросхемы могут иметь раз­личные входные и выходные токи.

Для выходных напряжений логического нуля () и едини­цы () в справочниках обычно задаются предельно допусти­мые значения при заданной величине выходного тока. При этом, чем больше выходной ток, тем меньше напряжение логической единицы и тем больше напряжение логического нуля. Напри­мер, > 2,5 В (при < - 0,4 мА), a < 0,5 В (при <8mA).

Задаются в справочниках также и допустимые уровни вход­ных напряжений, которые микросхема еще воспринимает как правильные логические уровни нуля и единицы. Например, > 2,0 В, < 0,8 В. Как правило, входные напряжения логи­ческих сигналов не должны выходить за пределы напряжения питания.