Каскадное соединение транзисторов с оэ и об. Схема включения транзистора с общим коллектором (ОК)

Усилители содержат транзисторы, а также такие элементы, как резисторы, конденсаторы и катушки индуктивности. Пара­метры используемых элементов (их номиналы и напряжения) зависят от требований, предъявляемых к усилителю, а также от типа применяемых транзисторов. С появлением транзисторов различных типов стали возможны новые конфигурации схем усилителей. В биополярном р - n - р- или n - р - n -транзисторе создаются чередующиеся в определенном порядке области с различным видом проводимости, образующие базу, эмиттер и коллектор. Транзистор называется биполярным, поскольку пе­ренос зарядов в нем осуществляется как электронами, так и дырками. В полевых же (униполярных) транзисторах заряды переносятся носителями одного вида: либо электронами, либо дырками. Полевые транзисторы (ПТ) имеют три области, на­зываемые затвором, истоком и стоком, В зависимости от вида используемых носителей различают два типа полевых транзи­сторов: р- и я-канальные. Разным типам транзисторов соответ­ствуют различные характеристики, описываемые более подроб­но в этом разделе.

Наиболее распространенная схема построения усилителя на биполярном транзисторе - схема с общим (заземленным) эмит­тером (ОЭ); варианты таких схем показаны на рис. 11.1. Термин «общий эмиттер» указывает на то, что в соответствующей схе­ме сопротивление между выводом эмиттера и землей для сиг­нала мало, но из этого не следует, что оно во всех случаях ма­ло и для постоянного тока. Так, например, в схемах показан­ных на рис. 1.1, а и б, эмиттеры непосредственно заземлены, а в схеме на рис. 1.1, в между эмиттером и землей включено сопро­тивление, зашунтированное конденсатором. Поэтому, если ре­активное сопротивление этого конденсатора для сигнала мало, можно считать, что для сигнала эмиттер практически заземлен.

Для работы в классе А (разд. 1.4) напряжение смещения между базой и эмиттером должно быть прямым (отпирающим), а между коллектором и эмиттером - обратным (запирающим). Для получения такого смещения полярности источников пита­ния выбирают в зависимости от типа используемого транзисто­ра. Для транзистора р - n - р-типа (рис. 11 Л, а) плюс источника смещения должен быть подключен к эмиттеру р-типа, а ми­нус - к базе я-типа. Таким образом, прямое смещение получа­ется при отрицательном потенциале базы относительно эмитте­ра. Для обратного смещения коллектора р-типа его потенциал должен быть отрицательным. Для этого источник питания под­ключается положительным полюсом к эмиттеру, а отрицатель­ным к коллектору.

Входной сигнал создает на резисторе R 1 падение напряже­ния, которое алгебраически складывается с постоянным смещающим напряжением. В результате этого суммарный потенци­ал базы изменяется в соответствии с сигналом. С изменением потенциала базы меняется ток коллектора, а следовательно, и напряжение на резисторе R 2. При положительной полуволне входного напряжения прямое смещение уменьшается и ток че­рез R 2 соответственно уменьшается. Падение напряжения на R 2 также уменьшается, в результате чего между входным и вы­ходным сигналами образуется сдвиг фаз в 180°.

Если используется транзистор n - р - n-типа (рис. 1.1,6), то полярность обоих источников питания меняется на обратную. При этом базовый переход также оказывается смещенным в прямом направлении, а коллекторный - в обратном. Как и в предыдущем случае, между входным и выходным сигналами образуется сдвиг фаз в 180°.

На рис. 1.1,а и б изображены основные элементы усилителя, а схема усилителя, применяемая на практике, приведена на рис. 1.1,6. Здесь конденсатор С 1 не пропускает постоянной со­ставляющей входного сигнала, но имеет малое реактивное со­противление для его переменной составляющей, которая таким образом поступает на резистор R 2 . (Это так называемая RC -связь; более подробно она описана в разд. 1.5). Напряжение прямого смещения базы поступает с делителя напряжения Ri - R2, который подключен к источнику питания. Нужная вели­чина прямого смещения базы транзистора получается при над­лежащем выборе отношения величин сопротивлений R 1 и R 2 . При этом в транзисторе n - р - n-типа потенциал базы устанав­ливают более положительным, чем эмиттер. Коллекторный ре­зистор, на котором образуется выходной сигнал, обычно назы­вают резистором нагрузки и обозначают R н. Через разделитель­ный конденсатор С 3 сигнал поступает на следующий каскад. Входные и выходные цепи должны иметь общую заземленную точку (рис. 1.1, а).

Коэффициент усиления тока базы для схемы с ОЭ задается следующим соотношением:

где р - коэффициент усиления тока базы;

ДI б - приращение тока базы; ДI к - соответствующее приращение тока коллектора при-

Рис. 1.1. Схемы с общим эмиттером.

Таким образом, р равно отношению приращения коллектор­ного тока к соответствующему приращению базового тока прк постоянном коллекторном напряжении. Коэффициент усиление сигнального тока также называют коэффициентом прямой пере­дачи тока [ При достаточно большой величине сопротивления R 2 переменная состав­ляющая сигнального тока практически равна переменной составляющей тока базы. - Прим. ред. ]

Резистор R 3 (рис. 1.1,5) оказывает стабилизирующее дейст­вие на ток транзистора при изменении температуры. Падение напряжения на R 3 создает обратное (запирающее) смещение эмиттерного перехода транзистора, так как оно повышает по­тенциал эмиттера. Следовательно, оно уменьшает положитель­ное прямое смещение базы на величину этого падения напря­жения. Присутствие переменной составляющей напряжения на Rз вызвало бы уменьшение выходного сигнала и, следователь­но, коэффициента усиления усилителя (см. разд. 1.8). Для устранения этого эффекта резистор Rз шунтируют конденсато­ром С 2 .

При нагреве транзистора постоянная составляющая тока коллектора возрастает. Соответственно возрастает и падение напряжения на R z , что приводит к уменьшению прямого смеще­ния базы, а также тока коллектора. В результате осуществля­ется частичная компенсация температурного дрейфа тока.

Рис. 1.2. Схемы с общим истоком

На рис. 1.2 показана схема усилителя на полевом транзи­сторе, эквивалентная схеме с ОЭ, которая называется схемой с общим истоком. В этой схеме затвор соответствует базе би­полярного транзистора, исток - эмиттеру, а сток - коллектору. На схеме 1.2, а показан ПТ с каналом n-типа. Для транзистора с каналом р-типа стрелка на затворе будет направлена в про­тивоположную сторону. На рис. 1.2, б также показан транзи­стор с каналом д-типа, а на рис. 1.2, в - с каналом р-типа.

Цепи смещения ПТ отличаются от цепей смещения бипо­лярных транзисторов вследствие существенного различия ха­рактеристик этих приборов. Биполярные транзисторы являются усилителями сигнального тока и воспроизводят на выходе уси­ленный входной сигнальный ток, в то время как в полевых транзисторах выходным сигнальным током управляет приложен­ное ко входу напряжение сигнала.

Существуют два типа ПТ: с управляющим р - n-переходом и металл - окисел - полупроводник (МОП). (МОП-транзи­сторы называют также полевыми транзисторами с изолирован­ным затвором.) Полевые транзисторы обоих типов изготовляют с nи р-каналами.

В схеме на рис. 1.2, а используется ПТ с управляющим р - я-переходом, а в схеме на рис. 1.2, б - МОП-транзистор, ра­ботающий в режиме обогащения. На рис. 1.2, в изображен МОП-транзистор, работающий в режиме обеднения. У МОП-транзисторов затвор изображается как бы в виде обкладки конденсатора, что символизирует емкость, возникающую в ре­зультате формирования очень тонкого слоя окисла, изолирую­щего металлический контакт вывода затвора от канала. (От этого способа производства и произошел термин «МОП-тран­зистор».)

Поскольку ПТ управляются напряжением входного сигнала, а не током, как биполярные транзисторы, параметр «коэффи­циент усиления» сигнального тока заменяется передаточной проводимостью g m . Передаточная проводимость является мерой качества полевого транзистора и характеризует способность на­пряжения затвора управлять током стока. Выражение для пе­редаточной проводимости выглядит следующим образом:

Единица измерения g m , называемая сименсом, есть величина, обратная единице измерения сопротивления (1 См=1/Ом). Как следует из выражения (1.2), параметр g m для ПТ есть отноше­ние приращения тока стока к приращению напряжения затвора при постоянной величине напряжения между истоком и стоком.

В полевом транзисторе с управляющим р - n-переходом и ка­налом n-типа (рис. 1.2,а) при поступлении отрицательного на­пряжения на затвор происходит обеднение канала носителями зарядов и проводимость канала уменьшается. (Для ПТ с кана­лом р-типа проводимость уменьшается при действии положи­тельного напряжения на затвор.) Поскольку однопереходный по­левой транзистор имеет только две зоны с разными типами прово­димости (выводы истока и стока подключены к одной зоне, а вы­вод затвора - к другой), проводимость между истоком и стоком того же типа, что и проводимость канала. Следовательно, в отли­чие от биполярного транзистора, у которого при U Q 3 = 0 ток кол­лектора равен 0, ток канала может протекать даже при нулевом напряжении затвор - исток. Поскольку ток канала это функция напряжения U зи, канал полевого транзистора с управляющим р - n-переходом может проводить ток в обоих направлениях: от истока к стоку и в обратном направлении (у биполярного транзистора ток коллектора в рабочем режиме имеет всегда одно направление). При этом рабочая точка (например, для схем класса А) для таких транзисторов устанавливается путем подачи напряжения обратного смещения затвора в отличие от прямого смещения базового перехода в биполярных транзи­сторах [В транзисторе с управляющим р - n-переходом обычно подается запи­рающее напряжение U 8и на переход (отрицательное для n-канала) и макси­мальный ток в канале получается при U 3 и = 0. Направление тока в канале за­висит от полярности источника питания, подключенного к каналу; при изме­нении полярности источника питания вывод, бывший стоком, становится исто­ком и наоборот. - Прим. ред. ].

Как было отмечено выше, затвор в МОП-транзисторах изо­лирован от канала диэлектриком, например двуокисью крем­ния (SiO 2). При этом затвор имеет очень высокое входное со­противление и на него может подаваться как прямое смещение для обогащения канала носителями (что будет увеличивать про­ходящий ток), так и обратное смещение для обеднения канала носителями (что уменьшает ток канал а). Поэтому возможно из­готовление двух различных типов МОП-транзисторов: для ра­боты в обогащенном и обедненном режимах (здесь имеются в виду МОП-транзисторы с встроенным каналом).

В МОП-транзисторе обедненного типа имеется ток стока при нулевом смещении на входе. Напряжением обратного сме­щения ток стока уменьшают до некоторой величины, зависящей от требуемого динамического диапазона входного сигнала. Как показано на рис. 1.2,6, у транзисторов обедненного типа линия, изображающая канал, непрерывная, что означает наличие замк­нутой цепи и протекание тока в канале (тока стока) при нуле­вом смещении затвора.

В МОП-транзисторах обогащенного типа ток стока при ну­левом смещении мал. Напряжением смещения ток стока увели­чивают до некоторой величины, зависящей от динамического диапазона входного сигнала. У МОП-транзисторов обогащен­ного типа линия, изображающая канал, прерывистая, что сим­волизирует как бы разрыв цепи при нулевом смещении. Для того чтобы увеличить ток до величины, необходимой для нор­мальной работы такой схемы, как усилитель, нужно использо­вать соответствующее смещение.

Рабочие характеристики схем, изображенных на рис. 1.Д аналогичны характеристикам схем, представленных на рис. 1.11. Схема на рис. 1.2, в наиболее пригодна для практического ис­пользования. Как и в ранее рассмотренном случае, имеет место инверсия фазы между входным и выходным сигналами. Напря­жение источника питания обычно обозначают Е с. Для того что­бы уменьшить падение напряжения сигнала на внутреннем со­противлении источников питания и смещения, их шунтируют емкостями соответствующей величины (рис. 11.2, а). Через эти емкости замыкаются токи сигнала цепей затвора и стока.

Транзистором называется полупроводниковый прибор, который может усиливать, преобразовывать и генерировать электрические сигналы. Первый работоспособный биполярный транзистор был изобретен в 1947 году. Материалом для его изготовления служил германий. А уже в 1956 году на свет появился кремниевый транзистор.

В биполярном транзисторе используются два типа носителей заряда - электроны и дырки, отчего такие транзисторы и называются биполярными. Кроме биполярных существуют униполярные (полевые) транзисторы, у которых используется лишь один тип носителей - электроны или дырки. В этой статье будут рассмотрены .

Большинство кремниевых транзисторов имеют структуру n-p-n, что также объясняется технологией производства, хотя существуют и кремниевые транзисторы типа p-n-p, но их несколько меньше, нежели структуры n-p-n. Такие транзисторы используются в составе комплементарных пар (транзисторы разной проводимости с одинаковыми электрическими параметрами). Например, КТ315 и КТ361, КТ815 и КТ814, а в выходных каскадах транзисторных УМЗЧ КТ819 и КТ818. В импортных усилителях очень часто применяется мощная комплементарная пара 2SA1943 и 2SC5200.

Часто транзисторы структуры p-n-p называют транзисторами прямой проводимости, а структуры n-p-n обратной. В литературе такое название почему-то почти не встречается, а вот в кругу радиоинженеров и радиолюбителей используется повсеместно, всем сразу понятно, о чем идет речь. На рисунке 1 показано схематичное устройство транзисторов и их условные графические обозначения.

Рисунок 1.

Кроме различия по типу проводимости и материалу, биполярные транзисторы классифицируются по мощности и рабочей частоте. Если мощность рассеивания на транзисторе не превышает 0,3 Вт, такой транзистор считается маломощным. При мощности 0,3…3 Вт транзистор называют транзистором средней мощности, а при мощности свыше 3 Вт мощность считается большой. Современные транзисторы в состоянии рассеивать мощность в несколько десятков и даже сотен ватт.

Транзисторы усиливают электрические сигналы не одинаково хорошо: с увеличением частоты усиление транзисторного каскада падает, и на определенной частоте прекращается вовсе. Поэтому для работы в широком диапазоне частот транзисторы выпускаются с разными частотными свойствами.

По рабочей частоте транзисторы делятся на низкочастотные, - рабочая частота не свыше 3 МГц, среднечастотные - 3…30 МГц, высокочастотные - свыше 30 МГц. Если же рабочая частота превышает 300 МГц, то это уже сверхвысокочастотные транзисторы.

Вообще, в серьезных толстых справочниках приводится свыше 100 различных параметров транзисторов, что также говорит об огромном числе моделей. А количество современных транзисторов таково, что в полном объеме их уже невозможно поместить ни в один справочник. И модельный ряд постоянно увеличивается, позволяя решать практически все задачи, поставленные разработчиками.

Существует множество транзисторных схем (достаточно вспомнить количество хотя бы бытовой аппаратуры) для усиления и преобразования электрических сигналов, но, при всем разнообразии, схемы эти состоят из отдельных каскадов, основой которых служат транзисторы. Для достижения необходимого усиления сигнала, приходится использовать несколько каскадов усиления, включенных последовательно. Чтобы понять, как работают усилительные каскады, надо более подробно познакомиться со схемами включения транзисторов.

Сам по себе транзистор усилить ничего не сможет. Его усилительные свойства заключаются в том, что малые изменения входного сигнала (тока или напряжения) приводят к значительным изменениям напряжения или тока на выходе каскада за счет расходования энергии от внешнего источника. Именно это свойство широко используется в аналоговых схемах, - усилители, телевидение, радио, связь и т.д.

Для упрощения изложения здесь будут рассматриваться схемы на транзисторах структуры n-p-n. Все что будет сказано об этих транзисторах, в равной степени относится и к транзисторам p-n-p. Достаточно только поменять полярность источников питания, и , если таковые имеются, чтобы получить работающую схему.

Всего таких схем применяется три: схема с общим эмиттером (ОЭ), схема с общим коллектором (ОК) и схема с общей базой (ОБ). Все эти схемы показаны на рисунке 2.

Рисунок 2.

Но прежде, чем перейти к рассмотрению этих схем, следует познакомиться с тем, как работает транзистор в ключевом режиме. Это знакомство должно упростить понимание в режиме усиления. В известном смысле ключевую схему можно рассматривать как разновидность схемы с ОЭ.

Работа транзистора в ключевом режиме

Прежде, чем изучать работу транзистора в режиме усиления сигнала, стоит вспомнить, что транзисторы часто используются в ключевом режиме.

Такой режим работы транзистора рассматривался уже давно. В августовском номере журнала «Радио» 1959 года была опубликована статья Г. Лаврова «Полупроводниковый триод в режиме ключа». Автор статьи предлагал изменением длительности импульсов в обмотке управления (ОУ). Теперь подобный способ регулирования называется ШИМ и применяется достаточно часто. Схема из журнала того времени показана на рисунке 3.

Рисунок 3.

Но ключевой режим используется не только в системах ШИМ. Часто транзистор просто что-то включает и выключает.

В этом случае в качестве нагрузки можно использовать реле: подали входной сигнал - реле включилось, нет - сигнала реле выключилось. Вместо реле в ключевом режиме часто используются лампочки. Обычно это делается для индикации: лампочка либо светит, либо погашена. Схема такого ключевого каскада показана на рисунке 4. Ключевые каскады также применяются для работы со светодиодами или с оптронами.

Рисунок 4.

На рисунке каскад управляется обычным контактом, хотя вместо него может быть цифровая микросхема или . Лампочка автомобильная, такая применяется для подсветки приборной доски в «Жигулях». Следует обратить внимание на тот факт, что для управления используется напряжение 5В, а коммутируемое коллекторное напряжение 12В.

Ничего странного в этом нет, поскольку напряжения в данной схеме никакой роли не играют, значение имеют только токи. Поэтому лампочка может быть хоть на 220В, если транзистор предназначен для работы на таких напряжениях. Напряжение коллекторного источника также должно соответствовать рабочему напряжению нагрузки. С помощью подобных каскадов выполняется подключение нагрузки к цифровым микросхемам или микроконтроллерам.

В этой схеме ток базы управляет током коллектора, который, за счет энергии источника питания, больше в несколько десятков, а то и сотен раз (зависит от коллекторной нагрузки), чем ток базы. Нетрудно заметить, что происходит усиление по току. При работе транзистора в ключевом режиме обычно для расчета каскада пользуются величиной, называемой в справочниках «коэффициент усиления по току в режиме большого сигнала», - в справочниках обозначается буквой β. Это есть отношение тока коллектора, определяемого нагрузкой, к минимально возможному току базы. В виде математической формулы это выглядит вот так: β = Iк/Iб.

Для большинства современных транзисторов коэффициент β достаточно велик, как правило, от 50 и выше, поэтому при расчете ключевого каскада его можно принять равным всего 10. Даже, если ток базы и получится больше расчетного, то транзистор от этого сильнее не откроется, на то он и ключевой режим.

Чтобы зажечь лампочку, показанную на рисунке 3, Iб = Iк/β = 100мА/10 = 10мА, это как минимум. При управляющем напряжении 5В на базовом резисторе Rб за вычетом падения напряжения на участке Б-Э останется 5В - 0,6В = 4,4В. Сопротивление базового резистора получится: 4,4В / 10мА = 440 Ом. Из стандартного ряда выбирается резистор с сопротивлением 430 Ом. Напряжение 0,6В это напряжение на переходе Б-Э, и при расчетах о нем не следует забывать!

Для того, чтобы база транзистора при размыкании управляющего контакта не осталась «висеть в воздухе», переход Б-Э обычно шунтируется резистором Rбэ, который надежно закрывает транзистор. Об этом резисторе не следует забывать, хотя в некоторых схемах его почему-то нет, что может привести к ложному срабатыванию каскада от помех. Собственно, все про этот резистор знали, но почему-то забыли, и лишний раз наступили на «грабли».

Номинал этого резистора должен быть таким, чтобы при размыкании контакта напряжение на базе не оказалось бы меньше 0,6В, иначе каскад будет неуправляемым, как будто участок Б-Э просто замкнули накоротко. Практически резистор Rбэ ставят номиналом примерно в десять раз больше, нежели Rб. Но даже если номинал Rб составит 10Ком, схема будет работать достаточно надежно: потенциалы базы и эмиттера будут равны, что приведет к закрыванию транзистора.

Такой ключевой каскад, если он исправен, может включить лампочку в полный накал, или выключить совсем. В этом случае транзистор может быть полностью открыт (состояние насыщения) или полностью закрыт (состояние отсечки). Тут же, сам собой, напрашивается вывод, что между этими «граничными» состояниями существует такое, когда лампочка светит вполнакала. В этом случае транзистор наполовину открыт или наполовину закрыт? Это как в задаче о наполнении стакана: оптимист видит стакан, наполовину налитый, в то время, как пессимист считает его наполовину пустым. Такой режим работы транзистора называется усилительным или линейным.

Работа транзистора в режиме усиления сигнала

Практически вся современная электронная аппаратура состоит из микросхем, в которых «спрятаны» транзисторы. Достаточно просто подобрать режим работы операционного усилителя, чтобы получить требуемый коэффициент усиления или полосу пропускания. Но, несмотря на это, достаточно часто применяются каскады на дискретных («рассыпных») транзисторах, и поэтому понимание работы усилительного каскада просто необходимо.

Самым распространенным включением транзистора по сравнению с ОК и ОБ является схема с общим эмиттером (ОЭ). Причина такой распространенности, прежде всего, высокий коэффициент усиления по напряжению и по току. Наиболее высокий коэффициент усиления каскада ОЭ обеспечивается когда на коллекторной нагрузке падает половина напряжения источника питания Eпит/2. Соответственно, вторая половина падает на участке К-Э транзистора. Это достигается настройкой каскада, о чем будет рассказано чуть ниже. Такой режим усиления называется классом А.

При включении транзистора с ОЭ выходной сигнал на коллекторе находится в противофазе с входным. Как недостатки можно отметить то, что входное сопротивление ОЭ невелико (не более нескольких сотен Ом), а выходное в пределах десятков КОм.

Если в ключевом режиме транзистор характеризуется коэффициентом усиления по току в режиме большого сигнала β , то в режиме усиления используется «коэффициент усиления по току в режиме малого сигнала», обозначаемый, в справочниках h21э. Такое обозначение пришло из представления транзистора в виде четырехполюсника. Буква «э» говорит о том, что измерения производились при включении транзистора с общим эмиттером.

Коэффициент h21э, как правило, несколько больше, чем β, хотя при расчетах в первом приближении можно пользоваться и им. Все равно разброс параметров β и h21э настолько велик даже для одного типа транзистора, что расчеты получаются лишь приблизительными. После таких расчетов, как правило, требуется настройка схемы.

Коэффициент усиления транзистора зависит от толщины базы, поэтому изменить его нельзя. Отсюда и большой разброс коэффициента усиления у транзисторов взятых даже из одной коробки (читай одной партии). Для маломощных транзисторов этот коэффициент колеблется в пределах 100…1000, а у мощных 5…200. Чем тоньше база, тем выше коэффициент.

Простейшая схема включения транзистора ОЭ показана на рисунке 5. Это просто небольшой кусочек из рисунка 2, показанного во второй части статьи. Такая схема называется схемой с фиксированным током базы.

Рисунок 5.

Схема исключительно проста. Входной сигнал подается в базу транзистора через разделительный конденсатор C1, и, будучи усиленным, снимается с коллектора транзистора через конденсатор C2. Назначение конденсаторов, - защитить входные цепи от постоянной составляющей входного сигнала (достаточно вспомнить угольный или электретный микрофон) и обеспечить необходимую полосу пропускания каскада.

Резистор R2 является коллекторной нагрузкой каскада, а R1 подает постоянное смещение в базу. С помощью этого резистора стараются сделать так, чтобы напряжение на коллекторе было бы Eпит/2. Такое состояние называют рабочей точкой транзистора, в этом случае коэффициент усиления каскада максимален.

Приблизительно сопротивление резистора R1 можно определить по простой формуле R1 ≈ R2 * h21э / 1,5…1,8. Коэффициент 1,5…1,8 подставляется в зависимости от напряжения питания: при низком напряжении (не более 9В) значение коэффициента не более 1,5, а начиная с 50В, приближается к 1,8…2,0. Но, действительно, формула настолько приблизительна, что резистор R1 чаще всего приходится подбирать, иначе требуемая величина Eпит/2 на коллекторе получена не будет.

Коллекторный резистор R2 задается как условие задачи, поскольку от его величины зависит коллекторный ток и усиление каскада в целом: чем больше сопротивление резистора R2, тем выше усиление. Но с этим резистором надо быть осторожным, коллекторный ток должен быть меньше предельно допустимого для данного типа транзистора.

Схема очень проста, но эта простота придает ей и отрицательные свойства, и за эту простоту приходится расплачиваться. Во - первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, - подбирай заново смещение, выводи на рабочую точку.

Во-вторых, от температуры окружающей среды, - с повышением температуры возрастает обратный ток коллектора Iко, что приводит к увеличению тока коллектора. И где же тогда половина напряжения питания на коллекторе Eпит/2, та самая рабочая точка? В результате транзистор греется еще сильнее, после чего выходит из строя. Чтобы избавиться от этой зависимости, или, по крайней мере, свести ее к минимуму, в транзисторный каскад вводят дополнительные элементы отрицательной обратной связи - ООС.

На рисунке 6 показана схема с фиксированным напряжением смещения.

Рисунок 6.

Казалось бы, что делитель напряжения Rб-к, Rб-э обеспечит требуемое начальное смещение каскада, но на самом деле такому каскаду присущи все недостатки схемы с фиксированным током. Таким образом, приведенная схема является всего лишь разновидностью схемы с фиксированным током, показанной на рисунке 5.

Схемы с термостабилизацией

Несколько лучше обстоит дело в случае применения схем, показанных на рисунке 7.

Рисунок 7.

В схеме с коллекторной стабилизацией резистор смещения R1 подключен не к источнику питания, а к коллектору транзистора. В этом случае, если при увеличении температуры происходит увеличение обратного тока, транзистор открывается сильнее, напряжение на коллекторе уменьшается. Это уменьшение приводит к уменьшению напряжения смещения, подаваемого на базу через R1. Транзистор начинает закрываться, коллекторный ток уменьшается до приемлемой величины, положение рабочей точки восстанавливается.

Совершенно очевидно, что такая мера стабилизации приводит к некоторому снижению усиления каскада, но это не беда. Недостающее усиление, как правило, добавляют наращиванием количества усилительных каскадов. Зато подобная ООС позволяет значительно расширить диапазон рабочих температур каскада.

Несколько сложней схемотехника каскада с эмиттерной стабилизацией. Усилительные свойства подобных каскадов остаются неизменными в еще более широком диапазоне температур, чем у схемы с коллекторной стабилизацией. И еще одно неоспоримое преимущество, - при замене транзистора не приходится заново подбирать режимы работы каскада.

Эмиттерный резистор R4, обеспечивая температурную стабилизацию, также снижает усиление каскада. Это для постоянного тока. Для того, чтобы исключить влияние резистора R4 на усиление переменного тока, резистор R4 шунтирован конденсатором Cэ, который для переменного тока представляет незначительное сопротивление. Его величина определяется диапазоном частот усилителя. Если эти частоты лежат в звуковом диапазоне, то емкость конденсатора может быть от единиц до десятков и даже сотен микрофарад. Для радиочастот это уже сотые или тысячные доли, но в некоторых случаях схема прекрасно работает и без этого конденсатора.

Для того, чтобы лучше понять, как работает эмиттерная стабилизация, надо рассмотреть схему включения транзистора с общим коллектором ОК.

Схема с общим коллектором (ОК) Показана на рисунке 8. Эта схема является кусочком рисунка 2, из второй части статьи, где показаны все три схемы включения транзисторов.

Рисунок 8.

Нагрузкой каскада является эмиттерный резистор R2, входной сигнал подается через конденсатор C1, а выходной снимается через конденсатор C2. Вот тут можно спросить, почему же эта схема называется ОК? Ведь, если вспомнить схему ОЭ, то там явно видно, что эмиттер соединен с общим проводом схемы, относительно которого подается входной и снимается выходной сигнал.

В схеме же ОК коллектор просто соединен с источником питания, и на первый взгляд кажется, что к входному и выходному сигналу отношения не имеет. Но на самом деле источник ЭДС (батарея питания) имеет очень маленькое внутреннее сопротивление, для сигнала это практически одна точка, один и тот же контакт.

Более подробно работу схемы ОК можно рассмотреть на рисунке 9.

Рисунок 9.

Известно, что для кремниевых транзисторов напряжение перехода б-э находится в пределах 0,5…0,7В, поэтому можно принять его в среднем 0,6В, если не задаваться целью проводить расчеты с точностью до десятых долей процента. Поэтому, как видно на рисунке 9, выходное напряжение всегда будет меньше входного на величину Uб-э, а именно на те самые 0,6В. В отличие от схемы ОЭ эта схема не инвертирует входной сигнал, она просто повторяет его, да еще и снижает на 0,6В. Такую схему еще называют эмиттерным повторителем. Зачем же такая схема нужна, в чем ее польза?

Схема ОК усиливает сигнал по току в h21э раз, что говорит о том, что входное сопротивление схемы в h21э раз больше, чем сопротивление в цепи эмиттера. Другими словами можно не опасаясь спалить транзистор подавать непосредственно на базу (без ограничительного резистора) напряжение. Просто взять вывод базы и соединить его с шиной питания +U.

Высокое входное сопротивление позволяет подключать источник входного сигнала с высоким импедансом (комплексное сопротивление), например, пьезоэлектрический звукосниматель. Если такой звукосниматель подключить к каскаду по схеме ОЭ, то низкое входное сопротивление этого каскада просто «посадит» сигнал звукоснимателя, - «радио играть не будет».

Отличительной особенностью схемы ОК является то, что ее коллекторный ток Iк зависит только от сопротивления нагрузки и напряжения источника входного сигнала. При этом параметры транзистора тут вообще никакой роли не играют. Про такие схемы говорят, что они охвачены стопроцентной обратной связью по напряжению.

Как показано на рисунке 9 ток в эмиттерной нагрузке (он же ток эмиттера) Iн = Iк + Iб. Принимая во внимание, что ток базы Iб ничтожно мал по сравнению с током коллектора Iк, можно полагать, что ток нагрузки равен току коллектора Iн = Iк. Ток в нагрузке будет (Uвх - Uбэ)/Rн. При этом будем считать, что Uбэ известен и всегда равен 0,6В.

Отсюда следует, что ток коллектора Iк = (Uвх - Uбэ)/Rн зависит лишь от входного напряжения и сопротивления нагрузки. Сопротивление нагрузки можно изменять в широких пределах, правда, при этом особо усердствовать не надо. Ведь если вместо Rн поставить гвоздь - сотку, то никакой транзистор не выдержит!

Схема ОК позволяет достаточно легко измерить статический коэффициент передачи тока h21э. Как это сделать, показано на рисунке 10.

Рисунок 10.

Сначала следует измерить ток нагрузки, как показано на рисунке 10а. При этом базу транзистора никуда подключать не надо, как показано на рисунке. После этого измеряется ток базы в соответствии с рисунком 10б. Измерения должны в обоих случаях производиться в одних величинах: либо в амперах, либо в миллиамперах. Напряжение источника питания и нагрузка должны оставаться неизменными при обоих измерениях. Чтобы узнать статический коэффициент передачи тока достаточно ток нагрузки разделить на ток базы: h21э ≈ Iн/Iб.

Следует отметить, что при увеличении тока нагрузки h21э несколько уменьшается, а при увеличении напряжения питания увеличивается. Эмиттерные повторители часто строятся по двухтактной схеме с применением комплементарных пар транзисторов, что позволяет увеличить выходную мощность устройства. Такой эмиттерный повторитель показан на рисунке 11.

Рисунок 11.

Рисунок 12.

Включение транзисторов по схеме с общей базой ОБ

Такая схема дает только усиление по напряжению, но обладает лучшими частотными свойствами по сравнению со схемой ОЭ: те же транзисторы могут работать на более высоких частотах. Основное применение схемы ОБ это антенные усилители диапазонов ДМВ. Схема антенного усилителя показана на рисунке 12.

Усилитель с общим эмиттером раньше являлся базовой схемой всех усилительных устройств.

В прошлой статье мы с вами говорили о самой простой схеме смещения транзистора. Эта схема (рисунок ниже) зависит от , а он в свою очередь зависит от температуры, что не есть хорошо. В результате на выходе схемы могут появиться искажения усиливаемого сигнала.

Чтобы такого не произошло, в эту схему добавляют еще парочку и в результате получается схема с 4-мя резисторами:


Резистор между базой и эмиттером назовем R бэ , а резистор, соединенный с эмиттером, назовем R э . Теперь, конечно же, главный вопрос: «Зачем они нужны в схеме?»

Начнем, пожалуй, с R э .

Как вы помните, в предыдущей схеме его не было. Итак, давайте предположим, что по цепи +Uпит—->R к ——> коллектор—> эмиттер—>R э —-> земля бежит электрический ток, с силой в несколько миллиампер (если не учитывать крохотный ток базы, так как I э = I к + I б ) Грубо говоря, у нас получается вот такая цепь:

Следовательно, на каждом резисторе у нас будет падать какое-то напряжение. Его величина будет зависеть от силы тока в цепи, а также от номинала самого резистора.

Чуток упростим схемку:

R кэ — это сопротивление перехода коллектор-эмиттер. Как вы знаете, оно в основном зависит от базового тока.

В результате, у нас получается простой делитель напряжения , где


Мы видим, что на эмиттере уже НЕ БУДЕТ напряжения в ноль Вольт, как это было в прошлой схеме. Напряжение на эмиттере уже будет равняться падению напряжения на резисторе R э .

А чему равняется падение напряжения на R э ? Вспоминаем закон Ома и высчитываем:

Как мы видим из формулы, напряжение на эмиттере будет равняться произведению силы тока в цепи на номинал сопротивления резистора R э . С этим вроде как разобрались. Для чего вся эта канитель, мы разберем чуть ниже.

Какую же функцию выполняют резисторы R б и R бэ ?


Именно эти два резистора представляют из себя опять же простой делитель напряжения . Они задают определенное напряжение на базу, которое будет меняться, если только поменяется +Uпит , что бывает крайне редко. В остальных случаях напряжение на базе будет стоять мертво.

Вернемся к R э.

Оказывается, он выполняет самую главную роль в этой схеме.

Предположим, у нас из-за нагрева транзистора начинает увеличиваться ток в этой цепи.

Теперь разберем поэтапно, что происходит после этого.

а) если увеличивается ток в этой цепи, то следовательно увеличивается и падение напряжения на резисторе R э .

б) падение напряжения на резисторе R э — это и есть напряжение на эмиттере U э . Следовательно, из-за увеличения силы тока в цепи U э стало чуток больше.

в) на базе у нас фиксированное напряжение U б , образованное делителем из резисторов R б и R бэ

г) напряжение между базой эмиттером высчитывается по формуле U бэ = U б — U э . Следовательно, U бэ станет меньше, так как U э увеличилось из-за увеличенной силы тока, которая увеличилась из-за нагрева транзистора.

д) Раз U бэ уменьшилось, значит и сила тока I б , проходящая через базу-эмиттер тоже уменьшилась.

е) Выводим из формулы ниже I к

I к =β х I б

Следовательно, при уменьшении базового тока, уменьшается и коллекторный ток;-) Режим работы схемы приходит в изначальное состояние. В результате схема у нас получилась с отрицательной обратной связью, в роли которой выступил резистор R э . Забегая вперед, скажу, что О трицательная О братная С вязь (ООС) стабилизирует схему, а положительная наоборот приводит к полному хаосу, но тоже иногда используется в электронике.

Расчет усилительного каскада


1) Первым делом находим из даташита максимально допустимую рассеиваемую мощность, которую транзистор может рассеять на себе в окружающую среду. Для моего транзистора это значение равняется 150 миллиВатт. Мы не будем выжимать из нашего транзистора все соки, поэтому уменьшим нашу рассеиваемую мощность, умножив на коэффициент 0,8:

P рас = 150х0,8=120 милливатт.

2) Определим напряжение на U кэ . Оно должно равняться половине напряжения Uпит.

U кэ = Uпит / 2 = 12/2=6 Вольт.

3) Определяем ток коллектора:

I к = P рас / U кэ = 120×10 -3 / 6 = 20 миллиампер.

4) Так как половина напряжения упала на коллекторе-эмиттере U кэ , то еще половина должна упасть на резисторах. В нашем случае 6 Вольт падают на резисторах R к и R э . То есть получаем:

R к + R э = (Uпит / 2) / I к = 6 / 20х10 -3 = 300 Ом.

R к + R э = 300 , а R к =10R э, так как K U = R к / R э , а мы взяли K U =10 ,

то составляем небольшое уравнение:

10R э + R э = 300

11R э = 300

R э = 300 / 11 = 27 Ом

R к = 27х10=270 Ом

5) Определим ток базы I базы из формулы:

Коэффициент бета мы замеряли в прошлом примере. Он у нас получился около 140.


Значит,

I б = I к / β = 20х10 -3 /140 = 0,14 миллиампер

6) Ток делителя напряжения I дел , образованный резисторами R б и R бэ , в основном выбирают так, чтобы он был в 10 раз больше, чем базовый ток I б :

I дел = 10I б = 10х0,14=1,4 миллиампер.

7) Находим напряжение на эмиттере по формуле:

U э = I к R э = 20х10 -3 х 27 = 0,54 Вольта

8) Определяем напряжение на базе:

U б = U бэ + U э

Давайте возьмем среднее значение падения напряжения на базе-эмиттер U бэ = 0,66 Вольт . Как вы помните — это падение напряжения на P-N переходе.

Следовательно, U б =0,66 + 0,54 = 1,2 Вольта . Именно такое напряжение будет теперь находиться у нас на базе.

9) Ну а теперь, зная напряжение на базе (оно равняется 1,2 Вольта), мы можем рассчитать номинал самих резисторов.

Для удобства расчетов прилагаю кусочек схемы каскада:

Итак, отсюда нам надо найти номиналы резисторов. Из формулы закона Ома высчитываем значение каждого резистора.

Для удобства пусть у нас падение напряжения на R б называется U 1 , а падение напряжения на R бэ будет U 2 .

Используя закон Ома, находим значение сопротивлений каждого резистора.

R б = U 1 / I дел = 10,8 / 1,4х10 -3 = 7,7 КилоОм . Берем из ближайшего ряда 8,2 КилоОма

R бэ = U 2 / I дел = 1,2 / 1,4х10 -3 = 860 Ом . Берем из ряда 820 Ом.

В результате у нас будут вот такие номиналы на схеме:


Проверка работы схемы в железе

Одной теорией и расчетами сыт не будешь, поэтому собираем схему в реале и проверяем ее в деле. У меня получилась вот такая схемка:


Итак, беру свой и цепляюсь щупами на вход и выход схемы. Красная осциллограмма — это входной сигнал, желтая осциллограмма — это выходной усиленный сигнал.

Первым делом подаю синусоидальный сигнал с помощью своего китайского генератора частоты :


Как вы видите, сигнал усилился почти в 10 раз, как и предполагалось, так как наш коэффициент усиления был равен 10. Как я уже говорил, усиленный сигнал по схеме с ОЭ находится в противофазе, то есть сдвинут на 180 градусов.

Давайте подадим еще треугольный сигнал:


Вроде бы гуд. Если присмотреться, то есть небольшие искажения. Нелинейность входной характеристики транзистора дает о себе знать.

Если вспомнить осциллограмму схемы с двумя резисторами

то можно увидеть существенную разницу в усилении треугольного сигнала


Заключение

Схема с ОЭ во времена пика популярности биполярных транзисторов использовалась как самая ходовая. И этому есть свое объяснение:

Во-первых , эта схема усиливает как по току, так и по напряжению, а следовательно и по мощности, так как P=UI .

Во-вторых , ее входное сопротивление намного больше, чем выходное, что делает эту схему отличной малопотребляемой нагрузкой и отличным источником сигнала для следующих за ней нагрузок.

Ну а теперь немного минусов:

1) схема потребляет небольшой ток, пока находится в режиме ожидания. Это значит, питать ее долго от батареек не имеет смысла.

2) она уже морально устарела в наш век микроэлектроники. Для того, чтобы собрать усилитель, проще купить готовую микросхему и сделать на ее базе

Название полупроводникового прибора транзистор образовано из двух слов: transfer – передача + resist – сопротивление. Потому что его действительно можно представить в виде некоторого сопротивления, которое будет регулироваться напряжением одного электрода. Транзистор иногда еще называют полупроводниковым триодом.

Создан первый биполярный транзистор был в 1947 году, а в 1956 году за его изобретение трое ученых были удостоены нобелевской премии по физике.

Биполярный транзистор – это полупроводниковый прибор, который состоит из трех полупроводников с чередующимся типом примесной проводимости. К каждому слою подключен и выведен электрод. В биполярном транзисторе используются одновременно заряды, носители которых электроны (n - “ negative ”) и дырки (p – “ positive ”), то есть носители двух типов, отсюда и образование приставки названия «би» - два.

Транзисторы различаются по типу чередования слоев:

P n p -транзистор (прямая проводимость);

Npn- транзистор (обратная проводимость).

База (Б) – это электрод, который подключен к центральному слою биполярного транзистора. Электроды от внешних слоев именуются эмиттер (Э) и коллектор (К).

Рисунок 1 – Устройство биполярного транзистора

На схемах обозначаются « VT », в старой русскоязычной документации можно встретить обозначения «Т», «ПП» и «ПТ». Изображаются биполярные транзисторы на электрических схемах, в зависимости от чередования проводимости полупроводников, следующим образом:


Рисунок 2 – Обозначение биполярных транзисторов

На рисунке 1, изображенном выше, отличие между коллектором и эмиттером не видны. Если посмотреть на упрощенное представление транзистора в разрезе, то видно, что площадь p - n перехода коллектора больше чем у эмиттера.


Рисунок 3 – Транзистор в разрезе

База изготовляется из полупроводника со слабой проводимостью, то есть сопротивление материала велико. Обязательное условие – тонкий слой базы для возможности возникновения транзисторного эффекта. Так как площадь контакта p - n перехода у коллектора и эмиттера разные, то менять полярность подключения нельзя. Эта характерность относит транзистор к несимметричным устройствам.

Биполярный транзистор имеет две ВАХ (вольт амперные характеристики): входную и выходную.

Входная ВАХ – это зависимость тока базы (I Б ) от напряжения база-эмиттер (U БЭ ).



Рисунок 4 – Входная вольтамперная характеристика биполярного транзистора

Выходная ВАХ – это зависимость тока коллектора (I К ) от напряжения коллектор-эмиттер (U КЭ ).



Рисунок 5 – Выходная ВАХ транзистора

Принцип работы биполярного транзистора рассмотрим на npn типе, для pnp аналогично, только рассматриваются не электроны, а дырки. Транзистор имеет два p-n перехода . В активном режиме работы один из них подключен с прямым смещением, а другой – обратным. Когда переход ЭБ открыт, то электроны с эмиттера легко перемещаются в базу (происходит рекомбинация). Но, как говорилось ранее, слой базы тонкий и проводимость ее мала, по этому часть электронов успевает переместиться к переходу база-коллектор. Электрическое поле помогает преодолеть (усиливает) барьер перехода слоев, так как электроны здесь неосновные носители. При увеличении тока базы, переход эмиттер-база откроется больше и с эмиттера в коллектор сможет проскочить больше электронов. Ток коллектора пропорционален току базы и при малом изменении последнего (управляющий), коллекторный ток значительно меняется. Именно так происходит усиления сигнала в биполярном транзисторе.



Рисунок 6 – Активный режим работы транзистора

Смотря на рисунок можно объяснить принцип действия транзистора чуть проще. Представьте себе, что КЭ – это водопроводная труба, а Б – кран, с помощью которого Вы можете управлять потоком воды. То есть, чем больше ток вы подадите на базу, тем больше получите на выходе.

Значение коллекторного тока почти равно току эмиттера, исключая потери при рекомбинации в базе, которая и образовывает ток базы, таким образом справедлива формула:

І Э =І Б +І К.

Основные параметры транзистора:

Коэффициент усиления по току – отношение действующего значения коллекторного тока к току базы.

Входное сопротивление – следуя закону Ома оно будет равно отношению напряжения эмиттер-база U ЭБ к управляющему току I Б .

Коэффициент усиления напряжения – параметр находится отношением выходного напряжения U ЭК к входному U БЭ .

Частотная характеристика описывает способность работы транзистора до определенной, граничной частоты входного сигнала. После превышения предельной частоты физические процессы в транзисторе не будут успевать происходить и его усилительные способности сведутся на нет.

Схемы включения биполярных транзисторов

Для подключения транзистора нам доступны только его три вывода (электрода). По этому для его нормальной работы требуются два источника питания. Один электрод транзистора будет подключаться к двум источникам одновременно. Следовательно, существуют 3 схемы подключения биполярного транзистора: ОЭ – с общим эмиттером, ОБ – общей базой, ОК – общим коллектором. Каждая обладает как преимуществами, так и недостатками, в зависимости от области применения и требуемых характеристик делают выбор подключения.

Схема включения с общим эмиттером (ОЭ) характеризуется наибольшим усилением тока и напряжения, соответственно и мощности. При данном подключении происходит смещение выходного переменного напряжения на 180 электрических градусов относительно входного. Основной недостаток – это низкая частотная характеристика, то есть малое значение граничной частоты, что не дает возможность использовать при высокочастотном входном сигнале.

(ОБ) обеспечивает отличную частотную характеристику. Но не дает такого большого усиления сигнала по напряжению как с ОЭ. А усиление по току не происходит совсем, поэтому данную схему часто называют токовый повторитель, потому что она имеет свойство стабилизации тока.

Схема с общим коллектором (ОК) имеет практически такое же усиление по току как и с ОЭ, а вот усиление по напряжению почти равно 1 (чуть меньше). Смещение напряжения не характерно для данной схемы подключения. Ее еще называю эмиттерный повторитель, так как напряжение на выходе (U ЭБ ) соответствуют входному напряжению.

Применение транзисторов:

Усилительные схемы;

Генераторы сигналов;

Электронные ключи.

При любом включении транзистора в схему, через один из его выводов, будет течь входной и выходной ток, этот вывод называют общим.

Существуют три схемы включения биполярного транзистора:

  • с общим эмиттером;
  • с общим коллектором;
  • с общей базой;
Начнём со схемы, с общим эмиттером. Схема с общим эмиттером обладает следующими свойствами:
  • большим коэффициентом усиления по току;




Во всех осциллограммах в статье первый канал - входной сигнал, второй канал - выходной сигнал. Входной сигнал берется после разделительного конденсатора, иначе конденсатор вносит сдвиг фазы.
На осциллограмме видно, что амплитуда выходного сигнала в несколько раз превышает амплитуду входного, при этом сигнал на выходе инвертирован относительно входного сигнала, это значит, что когда сигнал входе возрастает на выходе он убывает и наоборот. На схеме пунктирной линией изображен конденсатор, его можно подключить если надо увеличить коэффициент усиления. Давайте подключим его.


Видим, что выходной сигнал увеличился примерно на порядок, то есть в 10 раз. Такая схема включения транзистора применяется, в усилителях мощности.
При включении конденсатора входное сопротивление схемы уменьшилось, что привело к искажениям сигнала генератора, а следовательно и выходного сигнала.

Схема с общим коллектором.

  • входной сигнал подаётся на базу;
  • выходной сигнал снимается с эмиттера;
Схема с общим коллектором обладает следующими свойствами:
  • большим коэффициент усиления по току;
  • напряжения входного и выходного сигнала отличаются примерно на 0,6 V;


Давайте соберём нарисованную выше схему и посмотрим как будет изменяться выходной сигнал в зависимости от входного.


На осциллограмме видно, что амплитуды сигналов равны потому, что осциллограф отображает только переменную составляющую, если включить осциллограф на отображение постоянной составляющей, то разница между сигналом на входе и выходе составит 0,6 V. Схема сигнал не инвертирует и применяется в качестве буфера или для согласования каскадов.
Под буфером в электронике понимается схема, которая увеличивает нагрузочную способность сигнала, то есть сигнал остается такой же формы, но способен выдать больший ток.

Схема с общей базой.

  • входной сигнал подаётся на эмиттер;
  • выходной сигнал снимается с коллектора;
Схема с общей базой обладает следующими свойствами:
  • большим коэффициентом усиления по напряжению;
  • близким к нулю усилением по току, ток эмиттера больше тока коллектора на ток базы;


Давайте соберём нарисованную выше схему и посмотрим как будет изменяться выходной сигнал в зависимости от входного.


На осциллограмме видно, что амплитуда выходного сигнала примерно в десять раз превышает амплитуду входного сигнала, также сигнал на выходе не инвертирован относительно входного сигнала. Применяется такая схема включения транзистора в радиочастотных усилителях. Каскад с общей базой обладает низким входным сопротивлением, поэтому сигнал генератора искажается, следовательно и выходной сигнал тоже.
Возникает вопрос, почему не использовать для усиления радиочастот схему с общим эмиттером ведь она увеличивает амплитуду сигнала? Все дело в ёмкости перехода база-коллектор, её ещё называют ёмкостью Миллера. Для радиочастот эта ёмкость обладает малым сопротивлением, таким образом, сигнал вместо того, чтобы течь через переход база-эмиттер проходит через эту ёмкость и через открытый транзистор стекает на землю. Как это происходит показано на рисунке ниже.


Пожалуй, это всё, что хотелось рассказать про схемы включения транзистора.