Контакторы и магнитные пускатели. Общая характеристика и принцип работы

Для подачи питания на двигатели или любые другие устройства используют контакторы или магнитные пускатели. Устройства, предназначенные для частого включения и выключения питания. Схема подключения магнитного пускателя для однофазной и трехфазной сети и будет рассмотрена дальше.

Контакторы и пускатели — в чем разница

И контакторы и пускатели предназначены для замыкания/размыкания контактов в электрических цепях, обычно — силовых. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до 440 В постоянного тока и до 600 В переменного. Имеют:

  • некоторое количество рабочих (силовых) контактов, через которые подается напряжение на подключаемую нагрузку;
  • некоторое количество вспомогательных контактов — для организации сигнальных цепей.

Так в чем разница? Чем отличаются контакторы и пускатели. В первую очередь они отличаются степенью защиты. Контакторы имеют мощные дугогасительные камеры. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами. На малые токи — до 10 А — выпускают исключительно пускатели. Они, кстати, на большие токи не выпускаются.

Есть еще одна конструктивная особенность: пускатели выпускаются в пластиковом корпусе, у них наружу выведены только контактные площадки. Контакторы, в большинстве случаев, корпуса не имеют, потому должны устанавливаться в защитных корпусах или боксах, которые защитят от случайного прикосновения к токоведущим частям, а также от дождя и пыли.

Кроме того, есть некоторое отличие в назначении. Пускатели предназначены для запуска асинхронных трехфазных двигателей. Потому они имеют три пары силовых контактов — для подключения трех фаз, и одну вспомогательную, через которую продолжает поступать питание для работы двигателя после того, как кнопка «пуск» отпущена. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы.

Видимо потому что «начинка» и функции обоих устройств почти не отличаются, во многих прайсах пускатели называются «малогабаритными контакторами».

Устройство и принцип работы

Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы.

Основа пускателя — магнитопровод и катушка индуктивности. Магнитопровод состоит из двух частей — подвижной и неподвижной. Выполнены они в виде букв «Ш» установленные «ногами» друг к другу.

Нижняя часть закреплена на корпусе и является неподвижной, верхняя подпружинена и может свободно двигаться. В прорези нижней части магнитопровода устанавливается катушка. В зависимости от того, как намотана катушка, меняется номинал контактора. Есть катушки на 12 В, 24 В, 110 В, 220 В и 380 В. На верхней части магнитопровода есть две группы контактов — подвижные и неподвижные.

При отсутствии питания пружины отжимают верхнюю часть магнитопровода, контакты находятся в исходном состоянии. При появлении напряжения (нажали кнопку пуск, например) катушка генерирует электромагнитное поле, которое притягивает верхнюю часть сердечника. При этом контакты меняют свое положение (на фото картинка справа).

При пропадании напряжения электромагнитное поле тоже исчезает, пружины отжимают подвижную часть магнитопровода вверх, контакты возвращаются в исходное состояние. В этом и состоит принцип работы эклектромагнитного пускателя: при подаче напряжения контакты замыкаются, при пропадании — размыкаются. Подавать на контакты и подключать к ним можно любое напряжение — хоть постоянное, хоть переменное. Важно чтобы его параметры не были больше заявленных производителем.

Есть еще один нюанс: контакты пускателя могут быть двух типов: нормально замкнутыми и нормально разомкнутыми. Из названий следует их принцип работы. Нормально замкнутые контакты при срабатывании отключаются, нормально разомкнутые — замыкаются. Для подачи питания используется второй тип, он и есть наиболее распространенным.

Схемы подключения магнитного пускателя с катушкой на 220 В

Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп». Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.

С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.

Подключение пускателя с катушкой 220 В к сети

Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.

Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).

Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.

При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть. Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания . В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).

Схема с кнопками «пуск» и «стоп»

Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже. Обратите внимание, что

Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.

В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.

Питание для двигателя или любой другой нагрузки (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.

Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.

Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В

Эта схема отличается только тем, что в ней подключаются к контактам L1, L2, L3 три фазы и также три фазы идут на нагрузку. На катушку пускателя — контакты A1 или A2 — заводится одна из фаз. На рисунке это фаза B, но чаще всего это фаза С как менее нагруженная. Второй контакт подсоединяется к нулевому проводу. Также устанавливается перемычка для поддержания электропитания катушки после отпускания кнопки ПУСК.

Как видите, схема практически не изменилась. Только в ней добавилось тепловое реле, которое защитит двигатель от перегрева. Порядок сборки — в следующем видео. Отличается только сборка контактной группы — подключаются все три фазы.

Реверсивная схема подключения электродвигателя через пускатели

В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».

Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.

Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.

Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой пускателей изображены контакты KM1 и KM2. Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.

Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.

При сборке схем электроснабжения, контроля и управления может возникнуть путаница в области силовых коммутационных устройств. Сложности вызывает выбор между контакторами и магнитными пускателями. Похожее назначение, принцип действия и конструкция привели к тому, что не каждый может сказать, чем отличается контактор от пускателя. Небольшие отличия в строении и характеристиках основных узлов определяют принадлежность устройств к той или иной группе приборов.

Сравнение контактора и магнитного пускателя

Удобнее всего определять различия этих устройств, рассматривая их вместе по определённым параметрам в разных категориях. Основные категории , в которых будет проводиться сравнение:

  • назначение;
  • конструкция;
  • принцип действия;
  • комплектация.

Описание назначения устройств

Контактор можно использовать для коммутации любых силовых цепей постоянного или переменного тока, при этом нет контакторов, которые были бы предназначены для переключения токов менее 100 ампер, и максимальный ток может достигать величины 4800 А. Номинальное напряжение главной цепи может составлять 2 тыс. вольт. Поэтому контакторы часто используют для подачи напряжения не к отдельным устройствам, а к группам электропотребителей.

Магнитные пускатели тоже могут работать в сетях постоянного тока, но прежде всего они предназначены для работы в сетях переменного тока. С их помощью осуществляют дистанционный пуск, остановку или реверс трехфазных асинхронных электродвигателей с короткозамкнутым ротором, реостатный запуск или регулирование оборотов машин с фазным ротором. В зависимости от величины устройства, ток силовой цепи находится в пределах от нуля до двухсот пятидесяти ампер при напряжении до 660 В.

Особенности конструкции аппаратов

По конструкции оба аппарата похожи друг на друга . Они состоят из следующих основных узлов:

  • электромагнитного привода;
  • главных контактов;
  • вспомогательных контактов.

Пускатель всегда имеет три силовых контакта, что связано с его назначением. Всё устройство помещено в защитный корпус из диэлектрического материала. Корпус обеспечивает защиту от случайного прикосновения к токоведущим частям, а также от неблагоприятных факторов окружающей среды. Поэтому этот аппарат можно устанавливать практически в любых помещениях, нужно только обеспечить его защиту от попадания влаги внутрь корпуса.

Отличие контактора от магнитного пускателя в том, что он может применяться в самых разнообразных электрических сетях, поэтому количество главных контактов, в зависимости от назначения, составляет от двух до четырёх штук. Для обеспечения высокой частоты переключений и гашения электрической дуги, каждый силовой контакт оснащён дугогасительной камерой, что значительно увеличивает износостойкость и коммутационную способность. Часто имеет открытое исполнение, то есть катушка управления и контакты не имеют защитного корпуса, поэтому монтируются такие устройства только в специальных щитах управления.

Оба вида устройств не являются самостоятельными элементами. Для удобства их использования в схемах управления контакторы и пускатели оснащаются вспомогательными контактами, которые переключаются одновременно с главными. Вспомогательные контакты могут быть нормально замкнутыми или нормально разомкнутыми. Их количество колеблется от одного до пяти штук.

Принцип действия механизмов

Исполнительным механизмом пускателя всегда является электромагнит, поэтому он и называется магнитным. При таком типе привода якорь (подвижная часть) электромагнита соединён с главными и вспомогательными контактами. При подаче напряжения на катушку управления, по ней начинает течь ток, возникает магнитное поле, которое притягивает якорь и приводит к переключению контактов. После отключения катушки , возврат устройства в исходное состояние происходит под действием сжатой, при срабатывании, пружины.

Работа магнитного контактора, происходит по тому же принципу, что и у пускателя. Для мощных контакторов, кроме электромагнитного, может применяться электропневматический привод. В этом случае главные и вспомогательные контакты переключаются за счёт энергии сжатого воздуха, подача которого осуществляется через электроклапан.

По напряжению питания катушек, при электромагнитном управлении, устройства не отличаются. Величина этого напряжения для сети постоянного тока может составлять от 12 до 440 вольт, а для переменного тока - от 24 до 660 вольт.

Комплектация устройств

Пускатели могут устанавливаться в достаточно сложных схемах управления электродвигателями. Например, они применяются для переключения ступеней сопротивления при реостатном пуске. Наличие большого числа цепей контроля, управления, защиты и сигнализации приводит к тому, что расположенных на устройстве вспомогательных контактов недостаточно для построения схемы. Для того чтобы не устанавливать дополнительные реле, в верхней части некоторых типов пускателей расположены специальные защёлки, с помощью них можно присоединить дополнительные контактные группы, число которых может доходить до восьми. Таким же способом, вместо контактов, могут присоединяться механические реле времени.

Для защиты электродвигателей от перегрузки используют тепловые реле, многие из которых подключаются и крепятся непосредственно к магнитному пускателю. Такое конструктивное решение повышает надёжность схемы, так как уменьшается количество соединительных проводов. Кроме того, это позволяет облегчить монтаж и сделать расположение элементов более компактным.

Возможность комплектации контакторов дополнительными устройствами не предусмотрена, поэтому их лучше применять в простых схемах.

Отличия пускателя от контактора

Проведя сравнение двух этих устройств, становится очевидным, что все отличия пускателя обусловлены его применением для запуска электродвигателей. Проще говоря, магнитный пускатель - это контактор, предназначенный для управления электродвигателями.

Из-за такого условного отличия, многие современные производители электронных устройств магнитные пускатели в своих каталогах определяют как «малогабаритные контакторы переменного тока».

На современном этапе развития постоянное усовершенствование контакторов привело к тому, что они стали универсальными и могут выполнять любые функции. Поэтому можно смело утверждать, что понятие «магнитный пускатель» становится неактуальным.

5.1 Общие сведения

Контактор – аппарат для коммутации силовых эл.цепей. Они широко используются в системах дистанционного управления эл.приводами, автоматики. Категории применения контакторов характеризуются параметрами коммутируемых ими цепей в зависимости от характера нагрузки.

а) контакторы переменного тока: АС-1, АС-2, АС-3, АС-4, АС-11, АС-22.

б) контакторы постоянного тока: ДС-1, ДС-2, ДС-3, ДС-4, ДС-5, ДС-11, ДС-12.

Номинальный ток контактора I ном представляет собой ток, который можно пропускать по замкнутым главным контактам в течение 8 часов без коммутации, причем превышение температуры частей контактора не должна быть больше допустимой.

Номинальным напряжением U H называется наибольшее напряжение коммутируемой цепи, для работы при котором предназначен контактор.

Механическая износостойкость определяется числом циклов включено, отключено – ВО контактора без ремонта и замены его узлов и деталей. Она составляет 10÷20 млн операций.

Коммутационная износостойкость определяется числом циклов ВО цепи с током, после которого требуется замена контактов. Она составляет 2÷3 млн операций.

Собственное время включения состоит из времени нарастания потока в эл.магните до значения потока трогания и времени движения якоря. Большая часть этого времени тратится на нарастание потока.

Собственное время отключения – время с момента обесточивания эл.магнита до момента размыкания контактов. Оно определяется временем спада потока от установившегося значения до потока отпускания.

Контактор имеет следующие основные узлы: контактную систему, дугогасительное устройство, эл.магнит и систему вспомогательных контактов.

5.2 Контакторы постоянного тока

Предназначены для коммутации цепей постоянного тока и приводятся в действие эл.магнитом постоянного тока.

Выпускаются контакторы серии КПВ – 600, типа КТПВ – 600, КП 7, КП 207, КМВ – 521, КМГ16, КМГ19, МК5, МК6, серия МК на постоянном токе и другие.

Номинальные напряжения: главной цепи – 220, 440 В; втягивающей катушки – 24, 48, 60, 110, 220, 440 В.

Контактная система . Применяются линейные перекатывающиеся контакты, а в серии МК мостикового типа. Для предотвращения вибрации контактов контактная пружина создает предварительное нажатие, составляющее примерно 50 % конечного.

Контакторы серии КПВ имеют два исполнения контактной системы: с замыкающими и размыкающими контактами.

В контакторах постоянного тока наибольшее распространение получили дугогасительные устройства с эл.магнитным дутьем с катушкой тока.

Электромагнит. Распространены эл.магниты клапанного типа. С целью повышения механической износостойкости применяется вращение якоря на призме.


При включении эл.магнита преодолеваются усилия возвратной и контактной пружин. Тяговая характеристика эл.магнита должна во всех точках идти выше характеристики этих пружин при минимально допустимом напряжении на катушке 0,85U H и нагретом ее состоянии.

Наиболее тяжелым моментом при включении является преодоление силы в момент касания главных контактов, так как эл.магнит должен развивать значительное усилие при большом рабочем зазоре.

Для контакторов постоянного тока, коэффициент возврата К В = U ОТП / U СР мал (0,2÷0,3), что не позволяет использовать контактор для защиты двигателя от снижения напряжения.

Наибольшее напряжение на катушке не должно превышать 1,1U H , так как при большем напряжении увеличивается износ контактов из-за усиления ударов якоря, а температура катушки может превышать допустимое значение.

С целью уменьшения мдс катушки, а следовательно, и потребляемой ею мощности рабочий ход якоря выбирается небольшим – 8-10 мм. Для надежного гашения дуги при малых токах требуется зазор контактов 17-20 мм. В связи с этим расстояние точки касания подвижного контакта от оси вращения подвижной системы берется в 1,5-2 раза больше, чем расстояние от оси полюса до оси вращения.

5.3 Контакторы переменного тока.

Выпускаются на токи от 10 до 1000А при числе главных контактов от одного до пяти (рис.31)

Из-за более благоприятных условий гашения дуги зазор между главными контактами делается меньше, чем в контакторах постоянного тока.

Подвижный контакт в отличие от контакторов постоянного тока плоский без перекатывания.

Рисунок 31. Конструкция электромагнита контактора переменного тока.

Для удобства эксплуатации подвижный и неподвижный контакты сделаны легко сменяемыми.

В контакторах переменного тока распространена мостиковая контактная система с двумя разрывами цепи на каждый полюс, которая обеспечивает быстрое гашение дуги при отсутствии гибких связей. В качестве материала главных контактов применяется металлокерамика, а для вспомогательных – серебро или биметалл (медь, покрытая тонкой пластиной из серебра).

Система дугогашения состоит из последовательной катушки, сердечника, полюсных пластин и керамической камеры. В контакторах переменного тока широко применяются дугогасительные решетки.

Электромагнит. Широкое распространение получили эл.магниты

с Ш и П – образными магнитопроводами. Для амортизации удара якоря о неподвижный сердечник последний крепится к основанию с помощью пружин.

С целью устранения вибрации якоря во включенном положении на полюсах магнитной системы устанавливаются короткозамкнутые витки, которые наиболее эффективны при малом рабочем зазоре. Для плотного прилегания полюсов их поверхность должна шлифоваться.

Из-за изменения индуктивности катушки ток при притянутом якоре значительно меньше, чем при отпущенном. Индуктивное сопротивление катушки эл.магнита , если учесть, что , то .

.

15-кратного.

Эл.магниты контакторов переменного тока могут также питаться от сети постоянного тока.

В связи с большим пусковым током недопустима подача напряжения на катушку, если якорь по каким – либо причинам удерживается в отпущенном состоянии.

Относительно высокий коэффициент возврата Кв=0,6÷0,7 позволяет использовать контакторы переменного тока для защиты двигателей от снижения сетевого напряжения.

Срабатывание и отпускание эл.магнита переменного тока происходит значительно быстрее, чем эл.магнита постоянного тока. Собственное время срабатывания контакторов составляет 0,03÷0,05 с, а время отпускания 0,02 с.

При питании катушки от сети постоянного тока применяют специальную катушку с форсировочным резистором, который шунтирован размыкающим вспомогательным контактом контактора (рис.33).

2.-главный контакт;

3.- дугогасительная камера;

4.-токовая катушка дугогашения;

5.- изоляционная плита.

Контактор имеет вспомогательные 2 з и 2 р контакты, расположенные слева от главного контакта.

Рисунок 33. Конструкция контакторов однополюсных постоянного тока, на ток 2500 А, напряжением до 1000 В КП 7У3 – без отключающих пружин, КП 207У3- с отключающими пружинами.

Контакторы переменного тока выпускаются следующих типов: КТ6000/00, КТ6000/20, КТП6000/00, КТ6000/2, КТ64, КТП64, КТ65, КТП65, серии КТ (КТ7000Б, КТП7000Б, КТ6500, КТП6500, КТ7039), КТ7000, КНТ, серии МК, КМГ15, КМГ16, КМГ19, КМГ17-19, КМГ17Д19, КМГ18-19, КМГ18Д19, КТ6600, КТ6000Б, КТ6000А, КТП6000Б, КТ7100У, КТ7200У и другие.

Номинальное напряжение: главная цепь – 380, 660, 1140 В, втягивающая катушка –24, 36, 42, 110, 127, 220, 230, 240, 380, 400, 415, 500, 660 В.

Контакторы герсиконовые серии КМГ15, типов КМГ16, КМГ19,
КМГ17-19, КМГ17Д19, КМГ18-19, КМГ18Д19.

КМГ – контактор магнитоуправляемый герметичный. Основным элементом контакторов является герсикон – силовой геркон.

Количество полюсов – 1, 2, 3

Номинальные токи – 6,3; 10 А

Номинальное напряжение – переменный 380 В, постоянный 75 В.

Номинальное напряжение включающих катушек:

На постоянном токе – 12, 24, 48, 60, 10, 20 В;

На переменном – 110, 127, 220 В.

Контакторы серии МК. Предназначена для работы в силовых эл.цепях постоянного – 220, 440 В и переменного тока – 380, 500, 660 В.

Номинальный ток: главной цепи 40, 63, 100, 160 А; вспомогательных контактов 10А.

Контакторы с блоком бездуговой коммутации предназначены для работы в повторно-кратковременном и кратковременном режимах работы.

Конструкция контакторов моноблочная. Основные сборочные единицы: магнитная система, системы контактов главной и вспомогательной цепей. Контакторы с бездуговой коммутацией имеют полупроводниковый блок.

Магнитная система всех контакторов, за исключением МК1-10, МК2-10, двухкатушечная, катушки соединяются параллельно или последовательно в зависимости от напряжения цепи управления.

Системы контактов главной цепи конструктивно выполнены в виде одно-, двух- и трех- элементных блоков, мостикового типа.

Контакторы серии КТ6600 переменного тока 660 В с управлением переменным током 36-600 В, 66 серии. Номинальный ток 63, 100, 160 А.

Количество главных контактов 2, 3, 4, 5.

Конструкция контакторов моноблочная с поворотной системой. Контактор состоит из эл. магнита, контактно - дугогасительной системы и блока вспомогательной контактов.

Якорь эл.магнита – внедряющийся, на верхнем полюсе сердечника установлены экран.

Главные контакты (подвижные) пальцевого типа, контактные параметры регулируются. Используется эл.магнитное гашение дуги. Дугогасительные камеры – отдельные на каждый полюс. Для ограничения вылета дуги в камерах установлены пружинные пламегасители, а для ускорения гашения – потенциальный рог подвижного контакта.

Главные контакты выполнены с контактными накладками из металлокерамической композиции на основе серебра. Вспомогательные контакты – на основе серебра. Вспомогательные контакты – мостикового типа с контактной частью из серебра.

Контакторы серии КТ6000/00, КТП6000/00, КТ6000/20.

КТ – управление переменным током, КТП – постоянным током. Iн=16 А.

Наибольшая частота включений в час 600, а для КТ6000/20-60 в час.

После включения контакторов КТ6000/20 напряжения снимается, а подвижная система контактора удерживается во включенном положении защелкивающим механизмом.

Отключение контактора производится с помощью эл. магнита защелкивающего механизма при включении его на напряжение. После отключения контакторов напряжения с катушками эл.магнита защелки автоматически снимается.

Контакты выполняются из серебра.

Контакторы серий КТ6000/2, КТ6000/3.

2 – с замыкающими контактами и защелкой;

3 – с замыкающими и размыкающими контактами и защелкой.

Номинальный ток замыкающих контактов – 130, 250, 630, 1000 А. Замыкающих контактов – 1, 2, 3. Допустимая частота включений 60 в час.

Магнитная, контакто–дугогасительная система, контакты вспомогательной цепи установлены вдоль рейки и вала контактора.

Защелкивающий механизм контакторов устанавливается над магнитной системой. Контакторы имеют эл. магнитное дугогасительное устройство, состоящее из дугогасительной катушки, магнитопровода, рога неподвижного контакта и дугогасительной камеры с узкой щелью.

Замыкающие и размыкающие контакты выполнены с металлокерамическими накладками на основе серебра.

Контакторы серии КТ6000А, КТ6000Б, КТП6000Б, КТ7000Б.

Номинальный ток – 100, 160, 250, 400, 630 А.

Количество полюсов: 2, 3, 4, 5.

А – повышенная коммутационная способность – 500 тыс. циклов

Б – модернизированные.

Частота включений в час от 30 до 1200.

Контакторы выполняются с магнитной системой поворотного типа.

Главные контакты замыкающие пальцевого типа.

Контакторы типов КТ7100У, КТ7200У. Iн=63, 125 А.

У – унифицированные, для встройки в магнитные пускатели.

Конструкции моноблочного типа с поворотной подвижной системой.

Главные подвижные контакты пальцевого типа, контактные параметры регулируются. Используется эл.магнитное гашение дуги. Контактные накладки из металлокерамической композиции серебра. Вспомогательные контакты мостикового типа из серебра.

Контакторы типов КП7, КП207. Iн=2500 А, Uн=600 В.

Однополюсные. Контактор состоит из магнитной системы с двумя включающими катушками, контактной системой и дугогасительного устройства (рис.33). Контактная система имеет две пары параллельно включенных главных контактов и одну пару дугогасительных. Дугогасительная катушка включена последовательно с дугогасительными контактами, причем главные контакты в замкнутом состоянии шунтируют дугогасительные контакты. Главные контакты с серебряными накладками.

Контакторы вакуумные серии КТ12Р.

Р – рудничные. Iн=250, 400 А; Uн=600, 1140 В.

Частота включений в час, циклов ВО до 1200. предназначены для включения и отключения АД с К3 ротором, трансформаторов и т.д.

Три вакуумные дугогасительные камеры.

Полное перемещение якоря 9 мм.

Полупроводниковое дугогасительное устройство к контактору МК приведено на рис.35,а


Рисунок 35. Схемы полупроводниковых приставок к контакторам.

Главные контакты ГК шунтированы тиристорами VS1 и VS2, управление которыми осуществляется через диоды VD2 и VD3. Пусть в данный полупериод направление тока соответствует показанному на рис., то напряжение, приложенное между мостиком ГК и верхним неподвижным главным контактом, через VD2 открывает VS1, по которому начинает проходить ток цепи. После прохождения тока через нуль тиристор закрывается, и процесс отключения заканчивается.

Если ток имеет обратную полярность, то работают диод VD3 и тиристор VS2.

Для защиты управляющих переходов тиристоров от перенапряжений служат диоды VD1 и VD4.

RC цепочка снижает перенапряжение на тиристорах.

I-выводы для переднего присоединения проводников, II-то же для заднего

1- неподвижный контакт,

2- подвижный контакт

3- рог дугогасителя

4- рычаг, связанный с якорем

5- регулировочный винт

6- пружина подвижного контакта

7- регулировочная гайка

9,10- гибкое соединение

11- колодка

12- крепежная рейка

16- дугогасительная камера

17- пластина стальная (пламя-гасители)

Рисунок 34. Конструкция контактора переменного тока КТ 64-3У3 на ток 100 А, напряжение 380 В. (Модификация КТ 6000)

На рис.35,б показано полупроводниковое устройство контакторов КТ64, КТП64, КТ65, КТП65 (рис.34) для одной фазы. Параллельно ГК включается встречно-параллельно тиристоры VS1 и VS2. Управление осуществляется с трансформаторов тока ТТ, одетого на шину главного контакта. Во включенном состоянии контактора, ток проходит только по контактам, т.к. падение напряжения на них меньше порогового напряжения тиристоров.

При отключении контактора ток переходит в цепь тиристоров, находящихся во включенном состоянии под воздействием управления с ТТ. При этом дуга не образуется, так как падение на тиристорах не превышает 4÷5 В, что меньше, чем на дуге.

При перемене знака синусоидального тока управляющие импульса снимаются, а при первом переходе синусоиды тока через нуль тиристоры закрываются.

Имеются и обычные дугогасительные камеры, если устройство вышло из строя.

5.4 Магнитные пускатели.

Являются основным видом аппаратуры управления низковольтными (до 660 В) АД с К3 ротором. Для защиты их от перезагрузок недопустимой продолжительности и «потери фазы» в пускателе устанавливается эл.тепловые реле.

При включении АД Iп=(5÷6)Iн. При таком токе даже незначительная вибрация контактов быстро выводит их из строя. С целью уменьшения времени вибрации контакты и подвижные части пускатели делают возможно легче, уменьшается их скорость, увеличивается контактное нажатие.

При отключении двигателя восстанавливающиеся напряжение на контактах равно разности напряжения сети и эдс двигателя. В результате на контактах появляется напряжение, составляющее (15-20)% Uн, т.е. отключение происходит в облегченных условиях.

Пускателю в работе приходится отключать двигатель от сети сразу после пуска. В этих случаях он отключает ток равный 6Iн и восстанавливающемся напряжении, равным Uн сети.

По действующим нормам после 50-кратного включения и отключения заторможенного двигателя пускатель должен быть пригоден для дальнейшей работы.

Учитывая условия работы пускателя. В них используется мостиковая контактная система с двухкратным разрывом цепи, а это позволяет осуществлять бездуговую коммутация без применения дугогасительных устройств. Токоведущие шинки от зажимов к неподвижным контактам выполняется таким образом, что эл. динамические силы сдувают дугу с контактов.

Магнитная система включает в себя П или Ш – образный прямоходовой эл.магнит (рис.32). Контактное нажатие создается пружиной, упирающейся в траверсу.

1- неподвижные контакты;

2- подвижные контакты;

3- контактный мостик;

4- прижимная пружина;

5- деталь связи контактных мостиков;

6- траверса;

7- якорь электромагнита;

8- возвратная пружина;

9- катушка электромагнита;

10- корпус.

Рисунок 32. Типовая конструкция прямоходового магнитного пускателя.

Возврат пускателя в исходное положение происходит за счет пружины, расположенной внутри эл.магнита.

Для устранения вибрации якоря используют К3 витки.

Высокий коэффициент возврата эл.магнитов переменного ток позволяет защищать двигатель от понижения напряжения сети (эл. магнит отпускает при U=(0,6÷0,7)Uн).

Для реверсивных приводов используют два пускателя взаимосблокированных электрически либо механически.

Выпускаются магнитные пускатели серии ПМЛ, ПМА, ПМ12 и типа ПМА-0000, ПМУ.

В технических данных пускателей указываются их номинальный ток и номинальная мощность двигателя при различных напряжениях, а также категория применения.

В пускателях серии ПМА на токи от 40 до 160А и напряжении 380-660 В эл.магнит может быть как переменного, так и постоянного тока.

Пускатели комплектуются эл.тепловыми реле типа ТРП (однофазное), ТРН (двухфазное), РТТ и РТЛ (трехфазное). Реле ТРП, РТЛ имеют комбинированную систему нагрева. Возврат реле в исходное положение после срабатывания производится кнопкой.

Пускатели могут комплектоваться ограничителями перенапряжений типа ОПН (рис.37), которые должны ограничивать коммутационные перенапряжения на катушках управления. На дугогасительной камере могут встраиваться дополнительные приставки: контактные типа ПКЛ или пневмоприставки ПВЛ, кнопки «Пуск» или «Стоп» и сигнальная лампа.

а) на R-C элементной базе б) на варисторной в) на диодной

элементной базе элементной базе

Рисунок 37. Схемы электрические принципиальные включения ограничителей перенапряжений.

Эл.тепловые реле подсоединяются непосредственно к корпусам пускателей.

В пускателях в сейсмостойком исполнении последовательно и параллельно включающей катушки включается стабилитроны.

Пускатели серии ПМЛ. Могут быть выполнены с трехполюсными реле РТЛ и комплектоваться ОПН. Величина пускателя по Iн 1-10А, 2-25А, 3-40А,
4-63А. Могут иметь дополнительные приставки: ПКЛ, ПВЛ, кнопки «Пуск», «Стоп», сигнальные лампы.

Контакторы пускателей имеют прямоходовую магнитную систему Ш-образного типа.

Пускатели типа ПМА-0000 . Могут комплектоваться трехполюсными реле РТТ5-06, ОПН на R-C или варисторной элементной базе, кнопками управления и сигнальной лампой. Величина пускателя: 0- на 6,3А.

Пускатели имеют Ш-образную магнитную систему.

Пускатели серии ПМА. Предназначены для управления трехфазными АД с К3 ротором мощностью от 18,5 до 75 кВт. При наличии реле РТТ-2П, РТТ-3П или аппаратов позисторной защиты АЗП или УВТЗ-1М защищают двигатели от перегрузок недопустимой продолжительности.

Эл.тепловые реле с температурой компенсацией и ручным возвратом имеют диапазон регулирования тока несрабатывания (0,85-1,15)Iн.

Пускатели могут комплектоваться: ОПН, кнопками «Пуск», «Стоп», сигнальной лампой.

Величины пускателей: 3-40А; 4-63А; Д-80А; 5-100А; 6-160А. Номинальные напряжения включающих катушек переменного тока: 24-660 В; постоянного тока: 24-440 В.

Контакторы пускателей 3-й величины имеют прямоходовую Ш–образную магнитную систему.

Контакторы пускателей 4,5 и6-й величины имеют прямоходовую магнитную систему П–образного типа. В них вертикальное перемещение якоря с помощью Г–образного рычага преобразуется в горизонтальное перемещение траверсы, несущей подвижные главные контакты.

Пускатели серии ПМ12 . Могут комплектоваться: ОПН, реле РТТ-5, кнопками «Пуск», «Стоп», сигнальной лампой.

Обозначение номинального тока: 004-4А; 016-16А; 025-25А; 040-40А;
063-63А.

Контакторы пускателей имеют прямоходовую Ш–образную магнитную систему.

5.5 Тиристорный пускатель.

Один из вариантов схемы показан на рис.36.

И пускатели представляют собой специальные электромагнитные устройства, которые широко используются в системах управления и защиты электрифицированных объектов. При помощи предложенных механизмов можно осуществлять дистанционное подключение, остановку и отключение электрических приводов различного оборудования как промышленного типа, так и некоторого бытового. Эти электромеханические узлы станут незаменимыми в тех случаях, когда требуется выполнять частые пуски электрических моторов или осуществлять подключение электрооборудования, питающегося токами высокого ампеража. Рассмотрим, что же собой представляют эти устройства, и какое между ними сходство и основные отличия.

Что такое контактор?

Контактор представляет собой исполнительный электромеханический механизм, выполненный в виде блока, в котором расположены быстродействующие контактные группы. Контактор может функционировать как самостоятельное устройство или использоваться в конструкции другого оборудования или системе управления и защиты электрифицированного объекта. Контакторная система является коммутационным узлом, который поддерживает дистанционное управление и может использоваться для частых коммутаций электрических цепей, работающих в нормальных режимах эксплуатации. Для замыкания / размыкания контактов в основном применяются электромагнитные приводы, которые приводят в действие исполнительный механизм. В отличие от релейной системы, которая также может замыкать или размыкать контакты контактор производит одновременный разрыв электрической цепи сразу в нескольких местах, в то время, как реле это делает только в одном месте.

Что такое магнитный пускатель?

Магнитные пускатели являются также коммутационными устройствами, которые являются фактически модифицированными контакторами, поддерживающими возможность коммутации мощных нагрузок переменного и постоянного тока. Эти устройства эффективно применяются для включений/отключений силовых электроцепей. Предлагаемые коммутационные системы владеют достаточно широкой областью применения. Основное их предназначение - это пуск, реверсирование током и остановка 3-фазного электрического асинхронного привода. Кроме этого, эти устройства успешно могут применяться в системах дистанционного управления различными электрифицированными объектами. Кроме основных рабочих элементов контакторы могут доукомплектовываться различными дополнительными узлами такими, как тепловые реле, вспомогательные контактные группы, автоматы для пуска электродвигателей и пр.

Что общего между контактором и пускателем?

Чтобы понять, в чем же отличия между этими двумя коммутационными системами сначала разберемся, в чем же они схожи между собой.

Общим между пускателем и контактором является то, что оба этих устройства применяются для коммутации электрических цепей, питающих электрооборудование. И контакторы и пускатели применяются для пуска/остановки электродвигателей переменного тока, а также для ввода или вывода ступеней сопротивления, если пуск/остановка выполняются по реостатному принципу.

И контактор, и пускатель владеет в своей конструкции дополнительными парами контактов, используемыми для цепей управления. Они могут быть нормально замкнутыми или нормально разомкнутыми парами контактов.

Отличия между контакторами и пускателями

Рассмотрим основные отличия между этими двумя коммутационными устройствами.

Габаритные размеры.

Контактор, в отличие от пускателя является довольно таки увесистым и крупногабаритным устройством. Например, 100-амперный контактор в сравнении с таким же пускателем в несколько раз тяжелее и имеет существенно большие размеры.

Конструкционные особенности

Если рассматривать конструкцию контактора, то сразу бросаются в глаза мощные силовые контакторы с дугогасительными камерами. Защитного кожуха, как такового, в контакторах нет, контактор монтируется на специальных щитах, расположенных в закрытых помещениях.

Что касается пускателя, то его силовые контакты всегда находятся под защитой пластикового корпуса. Больших камер дугогашения в пускателях нет, поэтому их не рекомендуют использовать в мощных электроцепях, где требуется частая коммутация.

Защищенность

Благодаря использованию пластикового корпуса в пускателе, а в некоторых случаях и металлического кожуха, эти устройства отличаются высокой степенью защищенности от воздействий внешних факторов. Поэтому такие пускатели можно устанавливать даже под открытым небом, что нельзя делать с контакторами.

Назначение устройств

Основным назначением пускателя является пуск и остановка 3-фазных электрических приводов, работающих на переменном токе. Кроме этого, эти устройства могут осуществлять коммутацию цепей для подачи питания на осветительные системы, обогревательное оборудование и прочее электрическое оборудование.

Что касается контактора, то он подходит для коммутации любых цепей постоянного и переменного тока.

Заключение

Исходя из выше сказанного, следует, что пускатель является своего рода одной из модификаций контактора и может применяться для определенных целей. Контакторы, конструкция которых модифицируется постоянно, могут применяться практически в любом случае для выполнения коммутации электрических цепей. Поэтому на современном потребительском рынке контакторы практически вытеснили пускатели и успешно выполняют их функции.

Даже самые опытные наладчики электрооборудования и просто специалисты с высшим образованием далеко не всегда могут объяснить принципиальную разницу между и контактором переменного тока. Попробуем самостоятельно разобраться в этом вопросе.

Общим между контактором и пускателем является то, что оба они предназначены для коммутации цепей, как правило, силовых. Поэтому контакторы и пускатели часто используют для запуска двигателей переменного тока, а также для ввода/вывода ступеней сопротивлений, если этот пуск реостатный.

И контактор, и пускатель кроме силовых контактов обязательно имеет в своем составе хотя бы одну (а чаще всего - далеко не одну) пару контактов для цепи управления: нормально замкнутую или нормально разомкнутую. Этим контакторы и пускатели схожи. А чем же они, все-таки, отличаются?

По номенклатуре многих торговых организаций электромагнитные пускатели проходят как «малогабаритные контакторы переменного тока». Так, может быть, ответ на вопрос кроется в компактности пускателя? Ведь действительно, стоит только взять в руки контактор и пускатель с одинаковой номинальной токовой нагрузкой, и разница в их габаритах станет заметна вашим не то, что глазам, - рукам и пальцам.

Скромный трехполюсный контактор на 100 ампер - штука довольно увесистая, ею, как говорят, и зашибить можно. А стоамперный пускатель - это, конечно, не пушинка, но удержать его на ладони одной руки вполне реально. К тому же, надо отметить, что слаботочных контакторов, например, на 10 ампер, просто не выпускают. Поэтому для коммутации слабых цепей приходится использовать исключительно пускатели, которые отличаются совсем уж небольшими размерами. Так что габариты - это действительно одно из различий между контакторами и пускателями.

Рис. 1. Электромагнитный контактор КТ6043 ОАО Завод "Электроконтактор"

Второе различие состоит в конструкции. Любой контактор имеет в своем составе мощные пары силовых контактов, оснащенные дугогасительными камерами. Собственного корпуса контактор не имеет и монтируется в специальных помещениях, закрывающихся на ключ во избежание доступа посторонних лиц и воздействия атмосферных осадков.

А вот силовые контакты пускателя всегда укрыты под пластиковым корпусом, но громоздких дугогасительных камер у них нет. Это приводит к тому, что в составе мощных цепей с частыми коммутациями пускатели не монтируют из опасения, что контакты их менее защищены от часто возникающей электрической дуги, чем у контакторов переменного тока.

Зато пускатель имеет более высокую степень защиты электрооборудования, особенно если он оборудован дополнительным металлическим кожухом. Тогда пускатель можно устанавливать хоть под открытым небом, чего никогда нельзя сделать с контактором.

Третье различие между контактором переменного тока и пускателем заключается в их назначении. Хотя пускатели часто применяют для подачи электропитания на обогреватели, электромагнитные катушки, различные мощные светильники и прочие электроприемники, основное их назначение - запуск асинхронных трехфазных двигателей переменного тока.

Поэтому любой пускатель имеет три пары силовых контактов, а его контакты управления предназначены для удержания пускателя во включенном состоянии и для сборки сложных цепей управления, предусматривающих, например, реверсивный пуск.

Рис. 2. Электромагнитные пускатели ПМЛ

В то же время контактор предназначен для коммутации абсолютно любой силовой цепи переменного тока. Поэтому и количество полюсов, то есть пар силовых контактов, у контактора бывает разным - от двух до четырех.

Вот по этим трем различиям силовые электромагнитные коммутационные устройства переменного тока и были подразделены на контакторы и пускатели.