Li ion аккумуляторная. Литиевая батарея: слухи, мифы и реальность

В 1991 году.

Энциклопедичный YouTube

  • 1 / 5

    Характеристики литий-ионных аккумуляторов зависят от химического состава составляющих компонентов и варьируются в следующих пределах:

    • напряжение единичного элемента:
      • номинальное : 3,7 (у аккумуляторов на максимальное напряжение 4,35 номинальное напряжение равно 3,8 ) (при разряде до середины ёмкости током, по величине равной пятой части ёмкости аккумулятора);
      • максимальное: 4,23 или 4,4 (у аккумуляторов на 4,35 );
      • минимальное: 2,5-2,75-3,0 (в зависимости от ёмкости и максимального напряжения);
    • удельная энергоёмкость : 110 … 243 Вт /кг ;
    • внутреннее сопротивление : 5 … 15 Ом / ;
    • число циклов заряд/разряд до достижения 80 % ёмкости : 600;
    • время быстрого заряда: 15 мин … 1 час ;
    • саморазряд при комнатной температуре: 3 % в месяц ;
    • ток нагрузки относительно ёмкости С представленной в :
      • постоянный: до 65С ;
      • импульсный: до 500С ;
      • оптимальный: до 1С ;
    • диапазон рабочих температур : от −20 °C до +60 °C (наиболее оптимальная +20 °C);

    Из-за превышения напряжения при заряжании аккумулятор может загореться, поэтому в корпус аккумуляторов встраивают контроллер заряда аккумуляторов , который защищает аккумулятор от превышения напряжения заряда. Также этот контроллер может опционально контролировать температуру аккумулятора, отключая его при перегреве, ограничивать глубину разряда и ток потребления. Тем не менее надо учитывать, что не все аккумуляторы снабжаются защитой. В целях снижения себестоимости или увеличения ёмкости производители могут не устанавливать её.

    Литиевые аккумуляторы имеют специальные требования при подключении нескольких банок последовательно. Зарядные устройства для таких многобаночных аккумуляторов снабжаются схемой балансировки  ячеек . Смысл балансировки в том, что электрические свойства банок могут немного отличаться, и какая-то банка достигнет полного заряда раньше других. При этом необходимо прекратить заряд этой банки, продолжая заряжать остальные. Эту функцию выполняет специальный узел балансировки аккумулятора. Он шунтирует заряженную банку так, чтобы ток заряда шёл мимо неё.

    Зарядные устройства могут поддерживать конечное напряжение заряда в диапазоне 4,05-4,2 для детектирования наличия аккумулятора.

    Устройство

    Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделённых пористым сепаратором, пропитанным электролитом. Пакет электродов помещён в герметичный корпус, катоды и аноды подсоединены к клеммам-токосъёмникам. Корпус иногда оснащают предохранительным клапаном, сбрасывающим внутреннее давление при аварийных ситуациях или нарушениях условий эксплуатации. Литий-ионные аккумуляторы различаются по типу используемого катодного материала. Переносчиком заряда в литий-ионном аккумуляторе является положительно заряженный ион лития, который имеет способность внедряться (интеркалироваться) в кристаллическую решётку других материалов (например, в графит, окислы и соли металлов) с образованием химической связи, например: в графит с образованием LiC 6 , оксиды (LiMnO 2) и соли (LiMn R O N) металлов.

    Первоначально в качестве отрицательных пластин применялся металлический литий , затем - каменноугольный кокс . В дальнейшем стал применяться графит . Применение оксидов кобальта позволяет аккумуляторам работать при значительно более низких температурах, повышает количество циклов разряда/заряда одного аккумулятора. Распространение литий-железо-фосфатных аккумуляторов обусловлено их относительно низкой стоимостью. Литий-ионные аккумуляторы применяются в комплекте с системой контроля и управления - СКУ или BMS (battery management system), - и специальным устройством заряда/разряда.

    В настоящее время в массовом производстве литий-ионных аккумуляторов используются три класса катодных материалов:

    • кобальтат лития LiCoO 2 и твёрдые растворы на основе изоструктурного ему никелата лития
    • литий-марганцевая шпинель LiMn 2 O 4
    • литий-феррофосфат LiFePO 4 .

    Электро-химические схемы литий-ионных аккумуляторов:

    • литий-кобальтовые LiCoO 2 + 6C → Li 1-x CoO 2 + LiC 6
    • литий-ферро-фосфатные LiFePO 4 + 6C → Li 1-x FePO 4 + LiC 6

    Благодаря низкому саморазряду и большому количеству циклов заряда/разряда, Li-ion-аккумуляторы наиболее предпочтительны для применения в альтернативной энергетике. При этом, помимо системы СКУ они укомплектовываются инверторами (преобразователи напряжения).

    Преимущества

    • Высокая энергетическая плотность (ёмкость).
    • Низкий саморазряд.
    • Не требуют обслуживания.

    Недостатки

    1. Аккумуляторы Li-ion первого поколения были подвержены взрывному эффекту. Это объяснялось тем, что в них использовался анод из металлического лития, на котором в процессе многократных циклов зарядки/разрядки возникали пространственные образования (дендриты), приводящие к замыканию электродов и, как следствие, возгоранию или взрыву. Этот недостаток удалось окончательно устранить заменой материала анода на графит. Подобные процессы происходили и на катодах литий-ионных аккумуляторов на основе оксида кобальта при нарушении условий эксплуатации (перезарядке). Литий-ферро-фосфатные аккумуляторы полностью лишены этих недостатков. Кроме того, все современные зарядные устройства для литий-ионных аккумуляторов предотвращают перезаряд и перегрев вследствие слишком интенсивного заряда.

    Потеря ёмкости при хранении :

    Температура, ⁰C С 40 % зарядом, % за год Со 100 % зарядом, % за год
    0 2 6
    25 4 20
    40 15 35
    60 25 40 % за три месяца

    Разрядка в условиях низких температур приводит к снижению отдаваемой энергии, в особенности при температурах ниже 0 ⁰C. Так, снижение запаса отдаваемой энергии при понижении температуры от +20 ⁰C до +4 ⁰C приводит к уменьшению отдаваемой энергии на ~5-7 %, дальнейшее понижение температуры разрядки ниже 0 ⁰C приводит к потере отдаваемой энергии на десятки процентов и может приводить к преждевременному исчерпанию ресурса. Химия литий-ионных аккумуляторов более чувствительна к температурам заряжания, и оно оптимально при температурах ~ +20 ⁰C, а при температурах ниже +5 ⁰C не рекомендовано.

    Эффект памяти

    По результатам исследований учёных Института Пауля Шерера (Швейцария) было обнаружено, что литий-ионные аккумуляторы имеют эффект памяти . Как отмечают авторы исследования, для Li-Ion аккумуляторов:

    …фактически эффект крохотный: относительное отклонение в напряжении составляет всего несколько единиц на тысячу.

    Оригинальный текст (англ.)

    The effect is in fact tiny: the relative deviation in voltage is just a few parts per thousand.

    Речь идёт исключительно о принципиальном наличии эффекта, а не о его сколько-нибудь существенном влиянии на работу аккумулятора.

    Ключевой идеей исследования был поиск эффекта как такового.

    Оригинальный текст (англ.)

    But the key was the idea of looking for it at all.

    Как показало исследование, частые циклы неполной зарядки и последующей разрядки приводят к возникновению отдельных «микроэффектов памяти», которые затем суммируются. Это происходит потому, что основой работы батареи являются процессы высвобождения и обратного захвата ионов лития, динамика которых ухудшается в случае неполной зарядки .

    Во время заряжания ионы лития один за другим покидают частицы литий-феррофосфата, размер которых составляет десятки микрометров. Катодный материал начинает разделяться на частицы с разным содержанием лития. Заряжание батареи происходит на фоне возрастания электрохимического потенциала. В определённый момент он достигает предельного значения. Это приводит к ускорению высвобождения оставшихся ионов лития из катодного материала, но они уже не меняют суммарное напряжение батареи.

    Если батарея не будет полностью заряжена, то на катоде останется некоторое число частиц, близких к пограничному состоянию. Они практически достигли барьера высвобождения ионов лития, но не успели его преодолеть. При разряде свободные ионы лития стремятся вернуться на место и рекомбинировать с ионами феррофосфата. Однако на поверхности катода их также встречают частицы в пограничном состоянии, уже содержащие литий. Обратный захват затрудняется, и нарушается микроструктура электрода.

    В настоящее время просматриваются два пути решения проблемы: внесение изменений в алгоритмы работы системы управления батареями и разработка катодов с увеличенной площадью поверхности.

    Большую роль в долговечности и исправной работе аккумулятора играет его эксплуатация. Многие специалисты выделяют два простых правила, которые помогут продлить срок службы батареи:

    Старение

    Температурный режим заряда литий-полимерных и литий-ионных аккумуляторов влияет на их ёмкость: ёмкость снижается при зарядке на холоде или в жару. Глубокий разряд полностью выводит из строя литий-ионный аккумулятор. Также на жизненный цикл аккумуляторов влияет глубина его разряда перед очередной зарядкой и зарядка токами выше установленных производителем. Крайне чувствительны они и к напряжению зарядки. Если его повысить всего на 4 %, то аккумуляторы будут вдвое быстрее терять ёмкость от цикла к циклу. Ток зарядки зависит от разницы напряжений между аккумулятором и зарядным устройством и от сопротивления как самого аккумулятора, так и подводимых к нему проводов. Поэтому увеличение напряжения зарядки на 4 % может приводить к увеличению тока зарядки в 10 раз. Это отрицательно сказывается на аккумуляторе. Он может перегреваться и деградировать. Оптимальные условия хранения Li-ion-аккумуляторов достигаются при 40-процентном заряде от ёмкости аккумулятора и температуре 0…10 °C . Литиевые аккумуляторы стареют, даже если не используются. Через 2 года батарея теряет около 20 % ёмкости. Соответственно, нет необходимости покупать аккумулятор «про запас» или чрезмерно увлекаться «экономией» его ресурса. При покупке стоит посмотреть на дату производства, чтобы знать, сколько данный источник питания уже пролежал на складе. В случае если с момента изготовления прошло более двух лет, лучше воздержитесь от покупки.

    Снижение ёмкости при низких температурах

    При снижении температуры окружающего воздуха ниже 0 °C происходит снижение мощности литий-ионного аккумулятора до 40-50 % . Владельцы носимой электроники менее всего подвержены отрицательным последствиям использования техники в условиях низких температур, а сегменты промышленности, задействованные в производстве беспилотных летательных аппаратов, роботизированных систем и космической техники, крайне нуждаются в новых подогреваемых аккумуляторах. Для решения этой проблемы созданы конструкции аккумуляторов с внутренним подогревом .

    Взрывоопасность

    Литиевые аккумуляторы изредка проявляют склонность к взрывному самовозгоранию. Интенсивность горения даже от миниатюрных аккумуляторов такова что может приводить к тяжким последствиям. Авиакомпании и международные организации принимают меры к ограничению перевозок литиевых аккумуляторов и устройств с ними на авиатранспорте.

    Самовозгорание литиевого аккумулятора очень плохо поддается тушению традиционными средствами. В процессе термического разгона неисправного или поврежденного аккумулятора происходит не только выделение запасенной электрической энергии, но и ряд химических реакций, выделяющих энергию для саморазогрева, кислород и горючие газы. Потому вспыхнувший аккумулятор способен гореть без доступа воздуха и для его тушения непригодны средства изоляции от атмосферного кислорода. Более того, металлический литий активно реагирует с водой с образованием горючего газа водорода, потому тушение литиевых аккумуляторов водой эффективно только для тех видов аккумуляторов, где масса литиевого электрода невелика. В целом тушение загоревшегося литиевого аккумулятора неэффективно. Цель тушения снизить температуру аккумулятора и предотвратить распространение пламени

    В современных мобильных телефонах, фотоаппаратах и других устройствах чаще всего используются литий-ионные батареи, сменившие щелочные и никель-кадмиевые, которые они превосходят по многим параметрам. Впервые аккумуляторы с анодом из лития появились в 70-е годы предыдущего столетия и сразу стали очень востребованы благодаря высокому напряжению и энергоемкости.

    История появления

    Разработки были недолгими, но на практическом уровне возникали трудности, которые разрешили только в 90-е годы прошлого века. Из-за высокой активности лития внутри элемента протекали химические процессы, которые приводили к возгоранию.

    В начале 90-х произошел ряд несчастных случаев - пользователи телефонов, разговаривая, получали сильные ожоги в результате самопроизвольного воспламенения элементов, а затем и самих устройств связи. В связи с этим батареи полностью сняли с производства и вернули из продажи выпущенные ранее.

    В современных литиево-ионных аккумуляторах чистый металл не используется, только его ионизированные соединения, так как они более стабильны. К сожалению, ученым пришлось пойти на существенное снижение возможностей аккумулятора, однако удалось добиться главного - люди больше не страдали от ожогов.

    Кристаллическая решетка различных соединений углерода оказалась подходящей для интеркаляции ионов лития на отрицательном электроде. При зарядке они переходят с анода на катод, а при разряде наоборот.

    Принцип действия и разновидности

    В каждом литий-ионном аккумуляторе основу минусового электрода составляют углеродсодержащие вещества, структура которых может быть упорядоченной или частично упорядоченной. В зависимости от материала меняется процесс интеркаляции Li в C. Плюсовой электрод в основном выполняется из латированного оксида никеля или кобальта.

    Суммируя все реакции, их можно представить в следующих уравнениях:

    1. LiCoO2 → Li1-xCoO2 + xLi+ + xe - для катода.
    2. С + xLi+ + xe → CLix - для анода.

    Уравнения представлены для случая разряда, при заряде они протекают в обратную сторону. Ученые проводят работы по исследованию новых материалов, состоящих из смешанных фосфатов и оксидов. Эти материалы планируется использовать для катода.

    Выделяют два вида Li-Ion аккумуляторов:

    1. цилиндрический;
    2. призматический.

    Главное отличие - расположение пластин (в призматическом - друг на друге). От этого зависит размер литионного аккумулятора. Как правило, призматические плотнее и компактнее.

    Кроме того, внутри существует система безопасности - механизм, который при возрастании температуры увеличивает сопротивление, а при повышенном давлении разрывает цепь анод-катод. Благодаря электронной плате становится невозможным замыкание, так как она контролирует процессы внутри АКБ.

    Противоположные по полярности электроды разделяются сепаратором. Корпус должен быть герметичным, вытекание электролита или попадание внутрь воды и кислорода разрушат и батарею и само электронное устройство-носитель.

    У различных производителей литионный аккумулятор может выглядеть абсолютно по-разному, нет единой формы изделия. Отношение активных масс анода к катоду должно быть примерно 1:1, иначе возможно образование металла лития, которое приведет к возгоранию.

    Достоинства и недостатки

    АКБ обладают превосходными параметрами, различающимися у разных производителей. Номинальным напряжением является 3,7−3,8 В при максимальном 4,4 В. Энергетическая плотность (один из главных показателей) составляет 110−230 Вт*ч/кг.

    Внутреннее сопротивление составляет от 5 до 15 мОм/1Ач. Срок службы по количеству циклов (разряд/заряд) равен 1000−5000 единиц. Время для быстрой зарядки - 15−60 минут. Один из самых значимых плюсов - медленный процесс саморазряда (всего 10−20% за год, из которых 3−6% за первый месяц). Диапазоном рабочих температур является 0 С - +65 С, при температурах ниже нуля заряд невозможен.

    Зарядка происходит в несколько этапов:

    1. до определенного момента протекает максимальный ток заряда;
    2. при достижении рабочих параметров ток постепенно уменьшается до 3% от максимального значения.

    При хранении примерно каждые 500 часов необходима периодическая подзарядка, направленная на компенсацию саморазряда. При перезаряде может осаждаться металлический литий, который, взаимодействуя с электролитом, образует кислород. Таким образом повышается риск разгерметизации вследствие повышения внутреннего давления.

    Частые перезарядки сильно снижают срок службы батареи. Кроме того, влияет окружающая среда, температура, ток и т. д.

    У элемента есть недостатки, среди которых выделяют следующие:

    Условия эксплуатации

    Лучше всего хранить аккумулятор при следующих условиях : заряд должен быть не менее 40%, а температура - не очень низкой или высокой. Лучшим вариантом является диапазон от 0С до +10С. Обычно за 2 года теряется около 4% емкости, из-за чего не рекомендуется покупать аккумуляторы более ранних дат изготовления.

    Ученые изобрели способ, позволяющий увеличить срок годности. В электролит добавляют соответствующий консервант. Однако для таких батарей следует провести «тренинг» в виде 2−3 циклов полного разряда/заряда, чтобы впоследствии они смогли работать в обычном режиме. В противном случае возможно возникновение «эффекта памяти» и последующее вздутие всей конструкции. При правильном использовании и соблюдении всех норм хранения аккумулятор может служить долгое время, при этом его емкость останется на высоком уровне.

    Который широко распространён в современной бытовой электронной технике и находит свое применение в качестве источника энергии в электромобилях и накопителях энергии в энергетических системах. Это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны , ноутбуки , электромобили , цифровые фотоаппараты и видеокамеры . Первый литий-ионный аккумулятор выпустила корпорация Sony в 1991 году .

    Характеристики

    В зависимости от электро-химической схемы литий-ионные аккумуляторы показывают следующие характеристики:

    • Напряжение единичного элемента 3,6 В.
    • Максимальное напряжение 4,2 В, минимальное 2,5–3,0 В. Устройства заряда поддерживают напряжение в диапазоне 4,05–4,2 В
    • Энергетическая плотность : 110 … 230 Вт*ч/кг
    • Внутреннее сопротивление : 5 … 15 мОм/1Ач
    • Число циклов заряд/разряд до потери 20 % ёмкости: 1000-5000
    • Время быстрого заряда: 15 мин - 1 час
    • Саморазряд при комнатной температуре: 3 % в месяц
    • Ток нагрузки относительно ёмкости (С):
      • постоянный - до 65С, импульсный - до 500С
      • наиболее приемлемый: до 1С
    • Диапазон рабочих температур: −0 ... +60 °C(при отрицательных температурах заряжание батарей невозможен)

    Устройство

    Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделенных пропитанными электролитом пористыми сепараторами. Пакет электродов помещен в герметичный корпус, катоды и аноды подсоединены к клеммам-токосъемникам. Корпус имеет предохранительный клапан, сбрасывающий внутреннее давление при аварийных ситуациях и нарушении условий эксплуатации. Литий-ионные аккумуляторы различаются по типу используемого катодного материала. Переносчиком тока в литий-ионном аккумуляторе является положительно заряженный ион лития, который имеет способность внедряться (интеркалироваться) в кристаллическую решетку других материалов (например, в графит, окислы и соли металлов) с образованием химической связи, например: в графит с образованием LiC6, окислы (LiMO 2) и соли (LiM R O N) металлов. Первоначально в качестве отрицательных пластин применялся металлический литий, затем - каменноугольный кокс. В дальнейшем стал применяться графит. В качестве положительных пластин до недавнего времени применяли оксиды лития с кобальтом или марганцем, но они все больше вытесняются литий-ферро-фосфатными, которые оказались безопасны, дешевы и нетоксичны и могут быть подвержены утилизации, безопасной для окружающей среды. Литий-ионные аккумуляторы применяются в комплекте с системой контроля и управления - СКУ или BMS (battery management system) и специальным устройством заряда/разряда. В настоящее время в массовом производстве литий-ионных аккумуляторов используются три класса катодных материалов: - кобальтат лития LiCoO 2 и твердые растворы на основе изоструктурного ему никелата лития - литий-марганцевая шпинель LiMn 2 O 4 - литий-феррофосфат LiFePO 4 . Электро-химические схемы литий-ионных аккумуляторов: литий-кобальтовые LiCoO2 + 6xC → Li1-xCoO2 + xLi+C6 литий-ферро-фосфатные LiFePO4 + 6xC → Li1-xFePO4 + xLi+C6

    Благодаря низкому саморазряду и большому количеству циклов заряда-разряда, Li-ion-аккумуляторы наиболее предпочтительны для применения в альтернативной энергетике. При этом помимо системы BMS (СКУ) они укомплектовываются инверторами (преобразователи напряжения).

    Преимущества

    • Высокая энергетическая плотность.
    • Низкий саморазряд.
    • Отсутствие эффекта памяти .
    • Не требуют обслуживания.

    Недостатки

    Аккумуляторы Li-ion первого поколения были подвержены взрывному эффекту. Это объяснялось тем, что в них использовался анод из металлического лития, на котором в процессе многократных циклов зарядки/разрядки возникали пространственные образования (дендриты), приводящие к замыканию электродов и, как следствие, возгоранию или взрыву. Эту проблему удалось окончательно решить заменой материала анода на графит. Подобные процессы происходили и на катодах литий-ионных аккумуляторов на основе оксида кобальта при нарушении условий эксплуатации (перезарядке). Литий-ферро-фосфатные аккумуляторы полностью лишены этих недостатков. Кроме того, все современные литий-ионные аккумуляторы снабжаются встроенной электронной схемой, которая предотвращает перезаряд и перегрев вследствие слишком интенсивного заряда.

    Аккумуляторы Li-ion при неконтролируемом разряде могут иметь более короткий жизненный цикл в сравнении с другими типами аккумуляторов. При полном разряде литий-ионные аккумуляторы теряют возможность заряжаться при подключении зарядного напряжения. Эта проблема решаема путем приложения импульса более высокого напряжения, но это отрицательно сказывается на дальнейших характеристиках литий-ионных аккумуляторов. Максимальный срок «жизни» Li-ion аккумулятора достигается при ограничении заряда сверху на уровне 95 % и разряда 15–20 %. Такой режим эксплуатации поддерживается системой контроля и управления BMS (СКУ), которая входит в комплект любого литий-ионного аккумулятора.

    Оптимальные условия хранения Li-ion-аккумуляторов достигаются при заряде на уровне 40–70 % от ёмкости аккумулятора и температуре около 5 °C. При этом низкая температура является более важным фактором для малых потерь ёмкости при долговременном хранении. Средний срок хранения (службы) литий-ионного АКБ составляет в среднем 36 месяцев, хотя может колебаться в интервале от 24 до 60 месяцев.

    Потеря ёмкости при хранении :

    температура с 40 % зарядом со 100 % зарядом
    0 ⁰C 2 % за год 6 % за год
    25 ⁰C 4 % за год 20 % за год
    40 ⁰C 15 % за год 35 % за год
    60 ⁰C 25 % за год 40 % за три месяца

    Согласно всем действующим регламентам хранения и эксплуатации литий-ионных аккумуляторов, для обеспечения длительного хранения необходимо подзаряжать их до уровня 70 % ёмкости 1 раз в 6–9 месяцев.

    См. также

    Примечания

    Литература

    • Хрусталёв Д. А. Аккумуляторы. М: Изумруд, 2003.
    • Юрий Филипповский Мобильное питание. Часть 2. (RU). КомпьютерраLab (26 мая 2009). - Подробная статья о Li-ion аккумуляторах.. Проверено 26 мая 2009.

    Ссылки

    • ГОСТ 15596-82 Термины и определения.
    • ГОСТ 61960-2007 Аккумуляторы и аккумуляторные батареи литиевые
    • Литий-ионные и литий-полимерные аккумуляторы. iXBT (2001 г.)
    • Литий-ионные аккумуляторные батареи отечественного производства

    Эксплуатация, зарядка, плюсы и минусы литиевых аккумуляторов

    Очень многие сегодня используют электронные устройства в своей повседневной жизни. Сотовые телефоны, планшеты, ноутбуки… Все знают, что это такое. Но немногие знают, что ключевым элементом этих устройств является литиевый аккумулятор. Этим типом аккумуляторных батарей комплектуется практически каждое мобильное устройство. Сегодня мы поговорим о литиевых аккумуляторах. Эти АКБ и технология их производства постоянно развиваются. Существенное обновление технологии происходит раз в 1─2 года. Мы рассмотрим общий принцип работы литиевых батарей, а разновидностям будут посвящены отдельные материалы. Ниже будет рассмотрена история возникновения, эксплуатация, хранение, преимущества и недостатки литиевых аккумуляторов.

    Исследования в этом направлении проводились ещё в начале 20 века. «Первые ласточки» в семействе литиевых аккумуляторов появились в начале семидесятых годов прошлого столетия. Анод этих батарей был выполнен из лития. Они быстро стали востребованы благодаря тому, что обладали высокой удельной энергией. Благодаря наличию лития, очень активного восстановителя, разработчикам удалось сильно нарастить номинальное напряжение и удельную энергию элемента. Разработка, последующие испытания и доводки технологии «до ума» заняли около двух десятков лет.


    За это время решались в основном вопросы с безопасность использования литиевых аккумуляторов, подбором материалов и т. п. Вторичные литиевые элементы с апротонными электролитами и разновидность с твёрдым катодом похожи по электрохимическим процессам, протекающих в них. В частности, на минусовом электроде идёт анодное растворение лития. В кристаллическую решётку плюсового электрода идёт внедрение лития. Когда аккумуляторный элемент заряжается, то процессы на электродах идут в обратном направлении.

    Материалы для плюсового электрода разработали достаточно быстро. Основное требование к ним было в том, чтобы на них проходило обратимые процессы.

    Речь идёт об анодной экстракции и катодном внедрении. Эти процессы ещё называют анодным деинтеркалированием и катодным интеркалированием. Исследователи испытывали различные материалы в качестве катода.

    Требование было в том, чтобы отсутствовали изменения при циклировании. В частности, изучались такие материалы, как:

    • TiS2 (дисульфид титана);
    • Nb(Se)n (селенид ниобия);
    • сульфиды и диселениды ванадия;
    • сульфиды меди и железа.

    Все перечисленные материалы имеют слоистую структуру. Проводились исследования и с материалами более сложных составов. Для этого использовались добавки некоторых металлов в небольших количествах. Это были элементы имеющее катионы большего радиуса, чем у Li.

    Высокие удельные характеристики катода были получены на оксидах металлов. Пробовались разные оксиды на предмет обратимой работы, которая зависит от степени искажения кристаллической решётки материала оксида, когда туда внедряются катионы лития. В расчёт принималась и электронная проводимость катода. Задача заключалась в том, чтобы обеспечить изменения объёма катода не более 20 процентов. Согласно исследованиям, наилучшие результаты показали оксиды ванадия и молибдена.



    С анодом возникли главные сложности при создании литиевых аккумуляторов. Точнее в процессе зарядки, когда происходит катодное осаждение Li. При этом образуется поверхность с очень высокой активностью. Литий осаждается на поверхности катода в виде дендритов и в результате образуется пассивная плёнка.

    Получается так, что эта плёнка обволакивает частицы лития и препятствует их контакту с основой. Этот процесс называется инкапсулированием и приводит к тому, что после зарядки аккумулятора определённая часть лития исключается из электрохимических процессов.

    В итоге после определённого количества циклов, электроды изнашивались и нарушалась температурная стабильность процессов внутри литиевого аккумулятора.

    В какой-то момент элемента разогревался до точки плавления Li и реакция переходила в неконтролируемую фазу. Так, в начале 90-х годов на предприятия компаний, занимавшихся их выпуском, возвратили много литиевых АКБ. Это были одни из первых аккумуляторов, которые стали применяться в мобильных телефонах. В момент разговора (ток достигает максимального значения) по телефону из этих батарей происходил выброс пламени. Было немало случаев, когда пользователю обжигало лицо. Образование дендритов при осаждении лития, помимо опасности пожара и взрыва, может приводить к короткому замыканию.

    Поэтому исследователи потратили много времени и сил на разработку методом обработки поверхности катода. Разрабатывались способы введения в электролит добавок, препятствующих образованию дендритов. В этом направлении учёные достигли успехов, но полностью проблема не решена до сих пор. Эти проблемы с использованием металлического лития пытались решить и другим методом.

    Так, отрицательный электрод стали изготавливать из литиевых сплавов, а не из чистого Li. Самым успешным оказался сплав лития и алюминия. Когда идёт процесс разряда, то в электроде из такого сплава вытравливается литий, а при заряде, наоборот. То есть, в процессе цикла заряд-разряд изменяется концентрация Li в сплаве. Конечно, произошла некоторая потеря активности лития в сплаве по сравнению с металлическим Li.

    Потенциал электрода из сплава снизился где-то на 0,2─0,4 вольта. Рабочее напряжение литиевой батареи снизилось и одновременно уменьшилось взаимодействие электролита и сплава. Это стало положительным фактором, поскольку уменьшился саморазряд. Но сплав лития и алюминия не получил широкого распространения. Проблема здесь заключалась в том, что при циклировании сильно изменялся удельный объем этого сплава. Когда происходил глубокий разряд, то электрод охрупчивался и осыпался. Из-за снижения удельных характеристик сплава исследования в этом направлении были прекращены. Изучались и другие сплавы.


    Как показали исследования, лучше всего подходят сплав Li с тяжёлыми металлами. Примером может служить сплав Вуда. Они хорошо показали себя в плане сохранения удельного объёма, но удельные характеристики оказались недостаточными для использования в литиевых аккумуляторах.

    В результате из-за того, что металлический литий нестабилен, исследования стали вести в другом направлении. Было решено исключить из компонентов батареи литий в чистом виде, а использовать его ионы. Так появились литий─ионные (Li-Ion) аккумуляторы.

    Энергетическая плотность литий─ионных АКБ меньше, чем у литиевых. Но безопасность и удобство эксплуатации у них значительно выше. Можете прочитать подробнее про по указанной ссылке.

    Эксплуатация и срок службы

    Эксплуатация

    Правила эксплуатации будут рассмотрены на примере распространённых литиевых аккумуляторов, которые применяются в мобильных устройствах (телефонах, планшетах, ноутбуках). В большинстве случаев от «дурака» такие аккумуляторы защищает встроенный контроллер. Но пользователю полезно знать базовые вещи об устройстве, параметрах и эксплуатации литиевых АКБ.

    Для начала следует запомнить, что литиевый аккумулятор должен иметь напряжением от 2,7 до 4,2 вольта. Нижнее значение здесь говорит о минимальном уровне заряда, верхнее – о максимальном. В современных Li батареях электроды выполняются из графита и в их случае нижняя граница напряжения составляет 3 вольта (2,7 – это значение для электродов из кокса). Электрическая энергия, которую отдаёт аккумулятор при падении напряжения от верхней границы к нижней, называется его ёмкостью.

    Чтобы продлить срок службы литиевых аккумуляторов производители несколько сужают диапазон напряжения. Часто это 3,3─4,1 вольта. Как показывает практика, максимальный срок службы литиевых батарей достигается при уровне заряда 45 процентов. Если аккумулятор передерживать на зарядке или сильно разряжать, то срок эксплуатации сокращается. Обычно рекомендуется ставить литиевый аккумулятор заряжаться при 15─20% заряда. А прекращать зарядку надо сразу после достижения 100% ёмкости.

    Но, как уже говорилось, от перезарядки и глубокого разряда аккумулятор спасает его контроллер. Эта управляющая плата с микросхемой имеется практически на всех литиевых аккумуляторных батареях. В различной потребительской электронике (планшет, смартфон, ноутбук) работу контроллера, интегрированного в АКБ, ещё дополняет микросхема, которая распаяна на плате самого устройства.

    В общем, правильная эксплуатация литиевых аккумуляторов обеспечивается их контроллером. От пользователя в основном требуется не встревать в этот процесс и не заниматься самодеятельностью.

    Срок службы

    Срок службы литиевых аккумуляторных батарей составляет около 500 циклов заряд-разряд. Это значение справедливо для большинства современных литий─ионных и литий─полимерных аккумуляторов. По времени срок службы может быть разный. Это зависит от интенсивности использования мобильного устройства. При постоянном использовании, нагрузкой ресурсоёмкими приложениями (видео, игры) аккумулятор может исчерпать свой лимит за год. Но в среднем срок службы литиевых аккумуляторов составляет 3─4 года.

    Процесс зарядки

    Сразу стоит отметить, что для нормальной эксплуатации батареи, нужно использовать штатное зарядное устройство, которое поставляется в комплекте с гаджетом. В большинстве случаев это источник постоянного тока с напряжением 5 вольт. Штатные зарядки для телефона или планшета обычно отдают ток около 0,5─1 * С (С – номинальная ёмкость батареи).
    Стандартным режимом зарядки литиевого аккумулятора считается следующий. Этот режим используется в контроллерах компании Sony и обеспечивает максимальную полноту зарядки. На рисунке ниже этот процесс представлен в графическом виде.



    Процесс состоит из трёх этапов:

    • продолжительность первого этапа около одного часа. При этом ток зарядки держится на постоянном уровне до тех пор, пока напряжение АКБ не достигнет значения 4,2 вольта. По окончании степень заряженности равна 70%;
    • второй этап также идёт около часа. В это время контроллер поддерживает постоянное напряжение 4,2 вольта, а ток зарядки при этом снижается. Когда сила тока падает примерно до 0,2*C, запускается заключительный этап. По окончании степень заряженности равна 90%;
    • на третьем этапе ток постоянно снижается при напряжении 4,2 вольта. В принципе, эта стадия повторяет второй этап, но имеет строгое ограничение по времени в 1 час. После этого контроллер отключает батарею от зарядного устройства. По окончании степень заряженности равна 100%.

    Контроллеры, которые способны обеспечить такую стадийность, стоят довольно дорого. Это отражается на стоимости аккумулятора. В целях удешевления многие производители устанавливают в аккумуляторы контроллеры с упрощённой системой заряда. Часто это бывает только первый этап. Зарядка прерывается при достижении напряжения 4,2 вольта. Но в этом случае литиевая батарея заряжается лишь на 70% от ёмкости. Если литиевый аккумулятор вашего устройства заряжается 3 часа и меньше, то, скорее всего, он имеет упрощённый контроллер.

    Стоит отметить ещё ряд моментов. Периодически (раз в 2─3 месяца) делайте полный разряд АКБ (чтобы телефон отключился). Затем проводится полная зарядка до 100%. После этого вынимаете батарею на 1─2 минуты, вставляете и включаете телефон. Уровень заряда будет меньше 100%. Заряжаете полностью и так делаете несколько раз, пока при вставке батареи не будет показан полный заряд.


    Помните, что через разъём USB ноутбука, десктопа, переходника от прикуривателя в машине зарядка идёт значительно медленнее, чем от штатного ЗУ. Это объясняется ограничением интерфейса USB по току в 500 мА.

    Также помните о том, что на холоде и при низком атмосферном давлении литиевые аккумуляторы теряют часть своей ёмкости. При отрицательных температурах этот тип батарей становится неработоспособным.

    Литий-ионные и литий-полимерные аккумуляторы

    Инженерная мысль непрерывно развивается: ее стимулируют постоянно возникающие проблемы, требующие для своего решения разработки новых технологий. В свое время на смену никель-кадмиевым (NiCd) аккумуляторам пришли никель-металлгидридные (NiMH), а сейчас место литий-ионных (Li-ion) пытаются занять литий-полимерные (Li-pol) аккумуляторы. NiMH аккумуляторы в какой-то степени потеснили NiCd, но в силу таких неоспоримых достоинств последних, как способность отдавать большой ток, низкая стоимость и длительный срок службы, не смогли обеспечить их полноценной замены. А вот как обстоит дело с литиевыми аккумуляторами? Каковы их особенности и чем отличаются Li-pol аккумуляторы от Li-ion? Попробуем разобраться в этом вопросе.

    Как правило, все мы при покупке мобильника или портативного компьютера не задумываемся о том, какой аккумулятор у них внутри и чем вообще различаются эти устройства. И только потом, столкнувшись на практике с потребительскими качествами тех или иных аккумуляторов, начинаем анализировать и выбирать. Тем, кто спешит и желает сразу получить ответ на вопрос, какой аккумулятор является оптимальным для сотового телефона, я отвечу коротко — Li-ion. Дальнейшая информация предназначена для любознательных.

    Для начала небольшой экскурс в историю.

    Первые эксперименты по созданию литиевых батарей начались в 1912 году, но только спустя шесть десятилетий, в начале 70-х годов, они впервые были внедрены в бытовые устройства. Причем, подчеркну, это были именно батареи. Последовавшие вслед за этим попытки разработать литиевые аккумуляторы (перезаряжающиеся батареи) оказались неудачными из-за проблем, связанных с обеспечением безопасности их эксплуатации. Литий, самый легкий из всех металлов, имеет наибольший электрохимический потенциал и обеспечивает самую большую плотность энергии. Аккумуляторы, использующие литиевые металлические электроды, характеризуются и высоким напряжением, и превосходной емкостью. Но в результате многочисленных исследований в 80-х годах было выяснено, что циклическая работа (заряд — разряд) литиевых аккумуляторов приводит к изменениям на литиевом электроде, в результате которых уменьшается тепловая стабильность и появляется угроза выхода теплового состояния из-под контроля. Когда это происходит, температура элемента быстро приближается к точке плавления лития — и начинается бурная реакция с воспламенением выделяющихся газов. Так, например, большое количество литиевых аккумуляторов для мобильных телефонов, поставленных в Японию в 1991 году, было отозвано после нескольких случаев их воспламенения.

    Из-за свойственной литию неустойчивости исследователи обратили свой взор в сторону неметаллических литиевых аккумуляторов на основе ионов лития. Немного проиграв при этом в плотности энергии и приняв некоторые меры предосторожности при заряде и разряде, они получили более безопасные так называемые Li-ion аккумуляторы.

    Плотность энергии Li-ion аккумуляторов обычно вдвое превышает плотность стандартных NiCd , а в перспективе, благодаря применению новых активных материалов, предполагается еще больше увеличить ее и достигнуть трехкратного превосходства над NiCd. В дополнение к большой емкости Li-ion аккумулятор при разряде ведет себя аналогично NiCd (форма их разрядных характеристик подобна и отличается лишь напряжением).

    На сегодняшний момент существует множество разновидностей Li-ion аккумуляторов, причем можно долго говорить о преимуществах и недостатках того или иного типа, но отличить их по внешнему виду невозможно. Поэтому отметим только те достоинства и недостатки, которые свойственны всем типам этих устройств, и рассмотрим причины, вызвавшие появление на свет литий-полимерных аккумуляторов.

    Основные преимущества.

    • Высокая плотность энергии и как следствие большая емкость при тех же самых габаритах по сравнению с аккумуляторами на основе никеля.
    • Низкий саморазряд.
    • Высокое напряжение единичного элемента (3.6 В против 1.2 В у NiCd и NiMH), что упрощает конструкцию — зачастую аккумулятор состоит только из одного элемента. Многие производители сегодня применяют в сотовых телефонов именно такой одноэлементный аккумулятор (вспомните Nokia). Однако, чтобы обеспечить ту же самую мощность, необходимо отдать более высокий ток. А это требует обеспечения низкого внутреннего сопротивления элемента.
    • Низкая стоимость обслуживания (эксплуатационных расходов) - результат отсутствия эффекта памяти, требующего периодических циклов разряда для восстановления емкости.

    Недостатки.

    Технология изготовления Li-ion аккумуляторов постоянно улучшается. Она обновляется приблизительно каждые шесть месяцев, и понять, как «ведут себя» новые аккумуляторы после длительного хранения, трудно.

    Словом, всем был бы Li-ion аккумулятор хорош, если бы не проблемы с обеспечением безопасности его эксплуатации и высокая стоимость. Попытки решения этих проблем и привели к появлению литий-полимерных (Li-pol или Li-polymer) аккумуляторов.

    Основное их отличие от Li-ion отражено в названии и заключается в типе используемого электролита. Первоначально, в 70-х годах, применялся сухой твердый полимерный электролит, похожий на пластиковую пленку и не проводящий электрический ток, но допускающий обмен ионами (электрически заряженными атомами или группами атомов). Полимерный электролит фактически заменяет традиционный пористый сепаратор, пропитанный электролитом.

    Такая конструкция упрощает процесс производства, характеризуется большей безопасностью и позволяет выпускать тонкие аккумуляторы произвольной формы. К тому же отсутствие жидкого или гелевого электролита исключает возможность воспламенения. Толщина элемента составляет около одного миллиметра, так что разработчики оборудования свободны в выборе формы, очертаний и размеров, вплоть до внедрения его во фрагменты одежды.

    Но пока, к сожалению, сухие Li-polymer аккумуляторы обладают недостаточной электропроводностью при комнатной температуре. Внутреннее сопротивление их слишком высоко и не может обеспечить величину тока, необходимую для современных средств связи и электропитания жестких дисков переносных компьютеров. В то же время при нагревании до 60 °C и более электропроводность Li-polymer увеличивается до приемлемого уровня, однако для массового использования это не годится.

    Исследователи продолжают разработку Li-polymer аккумуляторов с сухим твердым электролитом, работающим при комнатной температуре. Подобные аккумуляторы, как ожидается, станут коммерчески доступными к 2005 году. Они будут стабильными, допускать 1000 полных циклов заряда-разряда и иметь более высокую плотность энергии, чем сегодняшние Li-ion аккумуляторы

    Тем временем некоторые виды Li-polymer аккумуляторов в настоящее время используются в качестве резервных источников питания в жарком климате. Например, часть производителей специально устанавливает нагревающие элементы, поддерживающие благоприятную для аккумулятора температуру.

    Вы спросите: как же так? На рынке вовсю продают Li-polymer аккумуляторы, изготовители комплектуют ими телефоны и компьютеры, а мы тут говорим, что для коммерческой эксплуатации они пока не готовы. Все очень просто. В данном случае речь идет об аккумуляторах не с сухим твердым электролитом. Для того чтобы повысить электропроводность небольших Li-polymer аккумуляторов, в них добавляют некоторое количество гелеобразного электролита. И большинство Li-polymer аккумуляторов, используемых сегодня для мобильных телефонов, фактически являются гибридами, поскольку содержат гелеобразный электролит. Правильнее было бы их называть литий-ионными полимерными. Но большинство изготовителей в рекламных целях маркируют их просто как Li-polymer. Остановимся подробнее на этом типе литий-полимерных аккумуляторов, поскольку на данный момент именно они представляют наибольший интерес.

    Итак, в чем различие между Li-ion и Li-polymer аккумулятором с добавкой гелеобразного электролита? Хотя характеристики и эффективность обеих систем во многом сходны, уникальность Li-ion полимерного (можно его и так назвать) аккумулятора заключается в том, что в нем все же используется твердый электролит, заменяющий пористый сепаратор. Гелевый электролит добавляется только для увеличения ионной электропроводности.

    Технические трудности и задержка в наращивании объемов производства задержали внедрение Li-ion полимерных аккумуляторов. Это вызвано, по мнению некоторых экспертов, желанием инвесторов, вложивших большие деньги в разработку и массовое производство Li-ion аккумуляторов, получить свои инвестиции обратно. Поэтому они и не спешат переходить на новые технологии, хотя при массовом производстве Li-ion полимерные аккумуляторы будут дешевле литий-ионных.

    А теперь об особенностях эксплуатации Li-ion и Li-polymer аккумуляторов.

    Их основные характеристики очень похожи. О заряде Li-ion аккумуляторов достаточно подробно рассказано в статье . В добавление приведу лишь график (Рис.1) из , иллюстрирующий стадии заряда, и небольшие пояснения к нему.


    Время заряда всех Li-ion аккумуляторов при начальном зарядном токе в 1С (численно равном номинальному значению емкости аккумулятора) составляет в среднем 3 часа. Полный заряд достигается при напряжении на аккумуляторе, равном верхнему порогу, и при уменьшении тока заряда до уровня, примерно равного 3% от начального значения. Аккумулятор во время заряда остается холодным. Как видно из графика, процесс заряда состоит из двух стадий. На первой (час с небольшим) напряжение растет при почти постоянном начальном токе заряда в 1С до момента первого достижения верхнего порога напряжения. К этому моменту аккумулятор заряжается примерно на 70% от своей емкости. В начале второго этапа напряжение остается почти постоянным, а ток уменьшается до тех пор, пока не достигнет вышеуказанных 3%. После этого заряд полностью прекращается.

    Если требуется поддерживать аккумулятор все время в заряженном состоянии, то подзаряд рекомендуется проводить через 500 часов, или 20 дней. Обычно его проводят при уменьшении напряжения на выводах аккумулятор до 4.05 В и прекращают при достижении 4.2 В

    Несколько слов о температурном диапазоне при заряде. Большинство разновидностей Li-ion аккумуляторов допускают заряд током в 1С при температуре от 5 до 45 °C. При температуре от 0 до 5 °C рекомендуется заряжать током в 0.1 С. Заряд при минусовой температуре запрещен. Для заряда оптимальна температура от 15 до 25 °C.

    Зарядные процессы в Li-polymer аккумуляторах почти идентичны вышеописанным, поэтому потребителю совершенно ни к чему знать, какой их двух типов аккумуляторов у него в руках. И все те зарядные устройства, которые он использовал для Li-ion аккумуляторов, годятся для Li-polymer.

    А теперь об условиях разряда. Обычно Li-ion аккумуляторы разряжают до значения 3.0 В на элемент, хотя для некоторых разновидностей нижний порог составляет 2.5 В. Производители оборудования с питанием от аккумуляторов, как правило, разрабатывают устройства с порогом выключения 3.0 В (на все случаи жизни). Что это означает? Напряжение на аккумуляторе при включенном телефоне постепенно уменьшается, и как только оно достигнет 3.0 В, аппарат предупредит вас и выключится. Однако это совсем не означает, что он перестал потреблять энергию от аккумулятора. Энергия, пусть незначительная, требуется для определения нажатия клавиши включения телефона и некоторых других функций. Кроме того, энергию потребляет собственная внутренняя схема управления и защиты, да и саморазряд, хоть и небольшой, но все же характерен даже для аккумуляторов на основе лития. В результате, если оставить литиевые аккумуляторы на длительный срок без подзарядки, напряжение на них упадет ниже 2.5 В, что очень плохо. В этом случае возможно отключение внутренней схемы управления и защиты, и не все зарядные устройства смогут зарядить такие аккумуляторы. Кроме того, глубокий разряд отрицательно сказывается на внутренней структуре самого аккумулятора. Полностью разряженный аккумулятор должен заряжаться на первом этапе током всего в 0.1C. Словом, аккумуляторы скорее любят находиться в заряженном состоянии, чем в разряженном.

    Несколько слов о температурных условиях при разряде (читай во время работы).

    Как правило, Li-ion аккумуляторы лучше всего функционируют при комнатной температуре. Работа в более теплых условиях серьезно сокращает срок их службы. Хотя, например, свинцово-кислотный аккумулятор имеет самую высокую емкость при температуре более 30 °C, но длительная эксплуатация в таких условиях сокращает жизнь аккумулятора. Точно так же и Li-ion лучше работают при высокой температуре, которая поначалу противодействует увеличению внутреннего сопротивления аккумулятора, являющемуся результатом старения. Но повышенная энергоотдача коротка, поскольку повышение температуры, в свою очередь, способствует ускоренному старению, сопровождаемому дальнейшим увеличением внутреннего сопротивления.

    Исключение составляют на данный момент только литий-полимерные аккумуляторы с сухим твердым полимерным электролитом. Для них жизненно необходима температура от 60 °C до 100 °C. И такие аккумуляторы заняли свою нишу на рынке резервных источников в местах с жарким климатом. Они помещаются в теплоизолированный корпус со встроенными элементами нагревания, питающимися от внешней сети. Li-ion полимерные аккумуляторы в качестве резервных, как считают, превосходят по емкости и долговечности VRLA аккумуляторы, особенно в полевых условиях, когда управление температурой невозможно. Но их высокая цена остается сдерживающим фактором.

    При низких температурах эффективность аккумуляторов всех электрохимических систем резко падает. В то время как для NiMH, SLA и Li-ion аккумуляторов температура -20 °C является пределом, при котором они прекращают функционировать, NiCd продолжают работать до -40 °C. Отмечу только, что речь опять же идет только об аккумуляторах широкого применения.

    Важно не забывать, что, хотя аккумулятор и может работать при низких температурах, это совсем не означает, что он может быть также заряжен в этих условиях. Восприимчивость к заряду у большинства аккумуляторов при очень низких температурах чрезвычайно ограничена, и ток заряда в этих случаях должен быть уменьшен до 0.1C.

    В заключение хочу отметить, что задать вопросы и обсудить проблемы, связанные с Li-ion, Li-polymer, а также другими типами аккумуляторов, можно на форуме в подфоруме по аксессуарам.

    При написании статьи использованы материалы [ — Аккумуляторы для мобильных устройств и портативных компьютеров. Анализаторы аккумуляторов.