Микросхема предназначенная для управления электронными устройствами. Что такое микроконтроллеры

Микроконтроллер - это специальная микросхема, предназначенная для управления различными электронными устройствами. Микроконтроллеры впервые появились в том же году, что и микропроцессоры общего назначения (1971).

Разработчики микроконтроллеров придумали остроумную идею - объединить процессор, память, ПЗУ и периферию внутри одного корпуса, внешне похожего на обычную микросхему. С тех пор производство микроконтроллеров ежегодно во много раз превышает производство процессоров, а потребность в них не снижается.

Микроконтроллеры выпускают десятки компаний, причем производятся не только современные 32-битные микроконтроллеры, но и 16, и даже 8-битные (как i8051 и аналоги). Внутри каждого семейства часто можно встретить почти одинаковые модели, различающиеся скоростью работы ЦПУ и объемом памяти.

Микроконтроллеры, как правило, не работает в одиночку, а запаивается в схему, где, кроме него, подключаются экраны, клавиатурные входы, различные датчики и т.д.

Софт для микроконтроллеров может привлечь внимание тех, кто обожает «гоняться за битами», так как обычно память в микроконтроллерах составляет от 2 до 128 Кб. Если меньше, то писать приходится на ассемблере или Форте, если есть возможность, то используют специальные версии Бейсика, Паскаля, но в основном - Си. Прежде чем окончательно запрограммировать микроконтроллер, его тестируют в эмуляторах - программных или аппаратных.

Тут может возникнуть вопрос: микропроцессор и микроконтроллер это просто разное название одного и того же устройства, или это все-таки разные вещи?

Микропроцессор это центральное устройство любой ЭВМ, выполненный по интегральной технологии. Само название говорит о том, что именно в нем происходят вычислительные процессы. Чтобы из него получилась ЭВМ, пусть даже не очень современная и мощная (вспомните любительские конструкции Радио-86 или Синклер), его надо дополнить внешними устройствами. В первую очередь это оперативная память и порты ввода вывода информации.

Микроконтроллер имеет внутри себя процессор, оперативную память, память программ, а кроме этого целый набор периферийных устройств, которые превращают процессор в полнофункциональную ЭВМ. По старой терминологии советских времен подобные устройства назывались Однокристальными Микро ЭВМ. Но советская вычислительная техника, как известно, зашла в тупик, а вместе с ней и ОМЭВМ.

Зарубежная же вычислительная техника на месте не стояла, поэтому ОМЭВМ стали называться контроллерами (от англ. Control - управлять, управление). И в самом деле, контроллеры оказались весьма пригодны для управления различной техникой, даже не очень сложной.

МИКРОКОНТРОЛЛЕР - это уже не процессор, но ещё и не компьютер.

Центральный процессор, имеющийся в каждом компьютере - главный вычислитель. Хотя компьютер и не предназначен исключительно для вычислительной нагрузки, процессор является в нём головным элементом. Но не только в компьютере имеется процессор.

Если вдуматься и присмотреться, то можно обнаружить, что процессоры применяются в большинстве приборов бытового предназначения. Только там используются не такие процессоры как в компьютере, а микропроцессоры и даже микроконтроллеры.

Так что же такое микроконтроллер и чем отличается от собственно процессора или это совершенно различные электронные компоненты?

Большие интегральные микросхемы или микросхемы с большой степенью интеграции и есть процессоры. Микропроцессоры, по сути те же процессоры, но из-за приставки «микро» определяется их суть, что они миниатюрнее своих «больших» собратьев. В своё историческое время процессор со своим размером мог занимать не одну комнату, впору их назвать как вымерших динозавров макро-процессорами, чтобы и их как-то упорядочить в современном представлении об электронике.

Уменьшенный в габаритах и скомпонованный процессор занимает меньше места и его можно поместить в более компактное изделие, это и есть микропроцессор. Но сам процессор мало что способен делать, кроме как данные пересылать между регистрами и совершать какие-то арифметические и логические действия над ними.

Чтобы микропроцессор мог переслать данные в память, эта самая память должна присутствовать либо на самом кристалле, на котором находится сам процессорный элемент, либо подключаться к внешней оперативной памяти выполненной в виде отдельного кристалла или модуля.

Кроме памяти процессор должен взаимодействовать с внешними устройствами - периферией. Иначе какой пользы можно ожидать от работы процессора, перемешивающего и перемещающего данные туда-сюда. Смысл возникает тогда, когда процессор взаимодействует с устройствами ввода-вывода. У компьютера это клавиатура, манипулятор мышь и устройства отображения как дисплей, опционально - принтер и, например, сканер опять же для ввода информации.

Чтобы управлять устройствами ввода-вывода, непременно необходимы соответствующие буферные схемы и элементы. На их основе реализуются интерфейсные так называемые аппаратные средства. Способы взаимодействия с интерфейсными элементами предполагают наличие схем портов ввода-вывода, дешифраторов адреса и формирователей шин с буферными схемами, для увеличения нагрузочной способности микропроцессора.

Интеграция процессора со всеми необходимыми дополнительными элементами, для того чтобы это изделие выливалось в какой-то завершённый конструктив и приводит к образованию микроконтроллера. Микросхема или микроконтроллерный чип реализует на одном кристалле процессор и интерфейсные схемы.

Самодостаточный чип, который содержит практически всё, чтобы этого хватало для построения законченного изделия и есть пример типового микроконтроллера. Например наручные электронные часы или часы-будильник имеют внутри микроконтроллер, который реализует все функции такового устройства. Отдельные периферийные устройства подключаются непосредственно к ножкам микросхемы микроконтроллера, либо совместно используются дополнительные элементы или микросхемы малой либо средней степени интеграции.

Микроконтроллеры широко используются в изделиях которые содержат всю систему целиком исключительно в одной миниатюрной микросхеме, часто называемой микросборкой. Например «чиповая» кредитная карточка содержит микроконтроллер внутри в пластиковой основе. так же внутри себя содержит микроконтроллер. И примеров использования и применения микроконтроллеров настолько обширен в современном мире, что легко обнаружить наличие контроллера в любом мало-мальски интеллектуальном устройстве от детской игрушки до беспроводной гарнитуры сотового телефона.

Смотите также у нас на сайте:

Смотрите также по этой теме обучающие видеокурсы Мaкcима Селиванова:

Кур для тех, кто уже знаком с основами электроники и программирования, кто знает базовые электронные компоненты, собирает простые схемы, умеет держать паяльник и желает перейти на качественно новый уровень, но постоянно откладывает этот переход из-за сложностей в освоении нового материала.

Курс замечательно подойдет и тем, кто только недавно предпринял первые попытки изучить программирование микроконтроллеров, но уже готов все бросить от того, что у него ничего не работает или работает, но не так как ему нужно (знакомо?!).

Курс будет полезен и тем, кто уже собирает простенькие (а может и не очень) схемы на микроконтроллерах, но плохо понимает суть того как микроконтроллер работает и как взаимодействует с внешними устройствами.

Курс посвящен обучению программирования микроконтроллеров на языке Си. Отличительная особенность курса - изучение языка на очень глубоком уровне. Обучение происходит на примере микроконтроллеров AVR. Но, в принципе, подойдет и для тех, кто использует другие микроконтроллеры.

Курс рассчитан на подготовленного слушателя. То есть, в курсе не рассматриваются базовые основы информатики и электроники и микроконтроллеров. Но, что бы освоить курс понадобятся минимальные знания по программированию микроконтроллеров AVR на любом языке. Знания электроники желательны, но не обязательны.

Курс идеально подойдет тем, кто только начал изучать программирование AVR микроконтроллеров на языке С и хочет углубить свои знания. Хорошо подойдет и тем, кто немного умеет программировать микроконтроллеры на других языках. И еще подойдет обычным программистам, которые хотят углубить знания в языке Си.

Этот курс для тех, кто не хочет ограничиваться в своем развитии простыми или готовыми примерами. Курс отлично подойдет тем, кому важно создание интересных устройств с полным пониманием того, как они работают. Курс хорошо подойдет и тем, кто уже знаком с программированием микроконтроллеров на языке Си и тем, кто уже давно программирует их.

Материал курса прежде всего ориентирован на практику использования. Рассматриваются следующие темы: радиочастотная идентификация, воспроизведение звука, беспроводной обмен данными, работа с цветными TFT дисплеями, сенсорным экраном, работа с файловой системой FAT SD-карты.

В 70-е годы XX века ученые выдвинули революционную по тем временам идею создания микропроцессора, "понимающего" только минимально возможное количество команд.

Замысел RISC - процессора (Reduced Instruction Set Computer, компьютер с сокращенным набором команд) родился в результате практических исследований частоты использования команд программистами, проведенных в 70-х годах в США и Англии. Их непосредственный итог - известное "правило 80/20": в 80% кода типичной прикладной программы используется лишь 20% простейших машинных команд из всего доступного набора.

Первый "настоящий" RISC-процессор с 31 командой был создан под руководством Дэвида Паттерсона из Университета Беркли, затем последовал процессор с набором из 39 команд. Они включали в себя 20-50 тыс. транзисторов. Плодами трудов Паттерсона воспользовалась компания Sun Microsystems, разработавшая архитектуру SPARC с 75 командами в конце 70-х годов. В 1981 г. в Станфордском университете стартовал проект MIPS по выпуску RISC-процессора с 39 командами. В итоге была основана корпорация Mips Computer в середине 80-х годов и сконструирован следующий процессор уже с 74 командами.

По данным независимой компании IDC, в 1992 году архитектура SPARC занимала 56% рынка, далее следовали MIPS - 15% и PA-RISC - 12,2%

Примерно в то же время Intel разработала серию 80386, последних "истинных" CISC-процессоров в семействе IA-32. В последний раз повышение производительности было достигнуто только за счет усложнения архитектуры процессора: из 16-разрядной она превратилась в 32-разрядную, дополнительные аппаратные компоненты поддерживали виртуальную память, и добавился целый ряд новых команд.

Основные особенности RISC-процессоров:

Сокращенный набор команд (от 80 до 150 команд).

Большинство команд выполняется за 1 такт.

Большое количество регистров общего назначения.

Наличие жестких многоступенчатых конвейеров.

Все команды имеют простой формат, и используются немногие способы адресации.

Наличие вместительной раздельной кэш-памяти.

Применение оптимизирующих компиляторов, которые анализируют исходный код и частично меняют порядок следования команд.

RISC-процессоры 3-го поколения

Самыми крупными разработчиками RISC-процессоров считаются Sun Microsystems (архитектура SPARC - Ultra SPARC), IBM (многокристальные процессоры Power, однокристальные PowerPC - PowerPC 620), Digital Equipment (Alpha - Alpha 21164), Mips Technologies (семейство Rxx00 - R 10000), а также Hewlett-Packard (архитектура PA-RISC - PA-8000).

Все RISC-процессоры третьего поколения:

являются 64-х разрядными и суперскалярными (запускаются не менее 4-х команд за такт);

имеют встроенные конвейерные блоки арифметики с плавающей точкой;

имеют многоуровневую кэш-память. Большинство RISC-процессоров кэшируют предварительно дешифрованные команды;

изготавливаются по КМОП-технологии с 4 слоями металлизации.

Для обработки данных применяется алгоритм динамического прогнозирования ветвлений и метод переназначения регистров, что позволяет реализовать внеочередное выполнение команд.

Повышение производительности RISC-процессоров достигается за счет повышения тактовой частоты и усложнения схемы кристалла. Представителями первого направления являются процессоры Alpha фирмы DEC, наиболее сложными остаются процессоры компании Hewlett-Packard.

Уменьшение набора машинных команд в RISC-архитектуре позволило разместить на кристалле вычислительного ядра большое количество регистров общего назначения. Увеличение количества регистров общего назначения позволило минимизировать обращения к медленной оперативной памяти, оставив для работы с RAM только операции чтения данных из оперативной памяти в регистр и запись данных из регистра в оперативную память, все остальные машинные команды используют в качестве операндов регистры общего назначения.

Основными преимуществами RISC-архитектуры является наличие следующих свойств:

Большое число регистров общего назначения.

Универсальный формат всех микроопераций.

Равное время выполнения всех машинных команд.

Практически все операции пересылки данных осуществляются по маршруту регистр - регистр.

Равное время выполнения всех машинных команд позволяют обрабатывать поток командных инструкций по конвейерному принципу, т.е. выполняется синхронизация аппаратных частей с учетом последовательной передачи управления от одного аппаратного блока к другому.

Аппаратные блоки в RISC-архитектуре:

Блок загрузки инструкций включает в себя следующие составные части: блок выборки инструкций из памяти инструкций, регистр инструкций, куда помещается инструкция после ее выборки и блок декодирования инструкций. Эта ступень называется ступенью выборки инструкций.

Регистры общего назначения совместно с блоками управления регистрами образуют вторую ступень конвейера, отвечающую за чтение операндов инструкций. Операнды могут храниться в самой инструкции или в одном из регистров общего назначения. Эта ступень называется ступенью выборки операндов.

Арифметико-логическое устройство и, если в данной архитектуре реализован, аккумулятор, вместе с логикой управления, которая, исходя из содержимого регистра инструкций, определяет тип выполняемой микрооперации. Источником данных помимо регистра инструкций может быть счетчик команд, при выполнении микроопераций условного или безусловного перехода. Данная ступень называется исполнительной ступенью конвейера.

Набор состоящий из регистров общего назначения, логики записи и иногда из RAM образуют ступень сохранения данных. На этой ступени результат выполнения инструкций записываются в регистры общего назначения или в основную память.

Однако к моменту разработки RISC-архитектуры, промышленным стандартом микропроцессоров де-факто стала архитектура Intel x86, выполненная по принципу CISC-архитектуры. Наличие большого числа программ, написанных под архитектуру Intel x86, сделала невозможным массовый переход ЭВМ на RISC-архитектуру. По этой причине основной сферой использования RISC-архитектуры явились микроконтроллеры, благодаря тому, что они не были привязаны к существующему программному обеспечению. Кроме того некоторые производители ЭВМ во главе с IBM так же начали выпускать ЭВМ, построенные по RISC-архитектуре, однако несовместимость программного обеспечения между Intel x86 и RISC-архитектурой в значительной степени ограничивала распространение последних.

Однако, преимущества RISC-архитектуры были столь существенны, что инженеры нашли способ перейти на вычислители, выполненные по RISC-архитектуре, при этом не отказываясь от существующего программного обеспечения. Ядра большинство современных микропроцессоров, поддерживающих архитектуру Intel x86, выполнены по RISC-архитектуре с поддержкой мультискалярной конвейерной обработки. Микропроцессор получает на вход инструкцию в формате Intel x86, заменяем ее несколькими (до 4-х) RISC-инструкциями.

Таким образом, ядра большинства современных микропроцессоров, начиная с Intel 486DX, выполнены по RISC-архитектуре с поддержкой внешнего Intel x86 интерфейса. Кроме того, подавляющее большинство микроконтроллеров, а так же некоторые микропроцессоры выпускаются по RISC-архитектуре.

В современном RISC-процессоре используется не менее 32 регистров, часто

более 100, в то время, как в классических ЦВМ обычно 8-16 регистров общего

назначения. В результате процессор на 20% -30% реже обращается к

оперативной памяти, что также повысило скорость обработки данных. Кроме

того, наличие большого количества регистров упрощает работу компилятора по распределению регистров под переменные. Упростилась топология процессора, выполняемого в виде одной интегральной схемы, сократились сроки ее разработки, она стала дешевле.

После появления RISC-процессоров традиционные процессоры получили

обозначение CISC - то есть с полным набором команд (Complete Instruction Set Computer).

В настоящее время RISC-процессоры получили широкое распространение. Современные RISC-процессоры характеризуются

следующим:

упрощенным набором команд;

используются команды фиксированной длины и фиксированного формата,

простые способы адресации, что позволяет упростить логику декодирования команд;

большинство команд выполняются за один цикл процессора;

логика выполнения команд с целью повышения производительности

ориентирована на аппаратную, а не на микропрограммную реализацию,

отсутствуют макрокоманды, усложняющие структуру процессора и

уменьшающие скорость его работы;

взаимодействие с оперативной памятью ограничивается операциями

пересылки данных;

для обработки, как правило, используются трехадресные команды, что

помимо упрощения дешифрации дает возможность сохранять большее

число переменных в регистрах без их последующей перезагрузки;

создан конвейер команд, позволяющий обрабатывать несколько из них

одновременно;

наличие большого количества регистров;

используется высокоскоростная память.

В RISC-процессорах обработка машинной команды разделена на

несколько ступеней, каждую ступень обслуживают отдельные аппаратные

средства и организована передача данных от одной ступени к следующей.

Производительность при этом возрастает благодаря тому, что одновременно на различных ступенях конвейера выполняются несколько команд.

Выполнение типичной команды можно разделить на следующие этапы:

выборка команды IF - по адресу, заданному счетчиком команд, из памяти извлекается команда;

3) выполнение операции EX, при необходимости обращения к памяти - вычисление физического адреса;

4) обращение к памяти ME;

5) запоминание результата WB

В процессорах с RISC-архитектурой набор исполняемых команд сокращен до минимума. Для реализации более сложных операций приходится комбинировать команды. При этом все команды имеют формат фиксированной длины (например, 12, 14 или 16 бит), выборка команды из памяти и ее исполнение осуществляется за один цикл (такт) синхронизации. Система команд RISC-процессора предполагает возможность равноправного использования всех регистров процессора. Это обеспечивает дополнительную гибкость при выполнении ряда операций. К МК с RISC-процессором относятся МК AVR фирмы Atmel, МК PIC16 и PIC17 фирмы Microchip и другие.

На первый взгляд, МК с RISC-процессором должны иметь более высокую производительность по сравнению с CISC МК при одной и той же тактовой частоте внутренней магистрали. Однако на практике вопрос о производительности более сложен и неоднозначен.

Рис.2

Гарвардская архитектура почти не использовалась до конца 70-х годов, пока производители МК не поняли, что она дает определенные преимущества разработчикам автономных систем управления.

Дело в том, что, судя по опыту использования МПС для управления различными объектами, для реализации большинства алгоритмов управления такие преимущества фон-неймановской архитектуры как гибкость и универсальность не имеют большого значения. Анализ реальных программ управления показал, что необходимый объем памяти данных МК, используемый для хранения промежуточных результатов, как правило, на порядок меньше требуемого объема памяти программ. В этих условиях использование единого адресного пространства приводило к увеличению формата команд за счет увеличения числа разрядов для адресации оперрандов. Применение отдельной небольшой по объему памяти данных способствовало сокращению длины команд и ускорению поиска информации в памяти данных.

Кроме того, гарвардская архитектура обеспечивает потенциально более высокую скорость выполнения программы по сравнению с фон-неймановской за счет возможности реализации параллельных операций. Выборка следующей команды может происходить одновременно с выполнением предыдущей, и нет необходимости останавливать процессор на время выборки команды. Этот метод реализации операций позволяет обеспечивать выполнение различных команд за одинаковое число тактов, что дает возможность более просто определить время выполнения циклов и критичных участков программы.

Большинство производителей современных 8-разрядных МК используют гарвардскую архитектуру. Однако гарвардская архитектура является недостаточно гибкой для реализации некоторых программных процедур. Поэтому сравнение МК, выполненных по разным архитектурам, следует проводить применительно к конкретному приложению.

Микроконтроллер - это целая микропроцессорная система в одной микросхеме(на одном кристалле). Данная микросхема предназначена для управления всевозможными электронными устройствами и выполнения множества функций. Взаимодействие между электронными устройствами совершается в соответствии с заложенной в микроконтроллер программой.

На нашем сайте наиболее часто будет разговор об микроконтролере Arduino и её наиболее продвинутом варианте в виде Arduino Due .
Микроконтроллеры дают возможность управлять разнообразными электронными и электрическими блоками. Как правило, микроконтроллеры, не работают в одиночку, а интегрируются(процесс объединение части в целое) в схему, где подключены различные периферийные устройства(мониторы, клавиатуры, различные датчики и т.п).

Миросхемы изобрели практически одновременно Джек Килби (Тексас Инструментс) и Роберт Нойс (Файрчайлд Семикондакторс) примерно в 1958 году. Производить промышленно начали только в начале 70-х годов. Первый процессор (8080) был выпущен в 1974 году. Придуман он был под названием Intel 4040, ещё в 1969 году, но в коммерческое производство пошел только в 1974.

С появлением однокристальных микро-ЭВМ связывают начало эры массового применения компьютерной автоматизации в области управления. Скорее всего, это обстоятельство и определило термин «контроллер» (англ. controller - регулятор, управляющее устройство). В связи с резким спадом отечественного производства и увеличением импорта техники, в том числе вычислительной, термин «микроконтроллер» (МК) вытеснил из употребления термин «однокристальная микро-ЭВМ». Первый патент на однокристальную микро-ЭВМ был выдан в 1971 году инженерам Майклу Кочрену и Гари Буну , сотрудникам американской Texas Instruments. Именно они родоночальники идеи размещения на одном кристалле не только процессор, но и память с устройствами ввода-вывода. В 1976 году американская фирма Intel выпускает микроконтроллер i8048. Через 4 года, в 1980 году, Intel выпускает следующий микроконтроллер: i8051. Удачный набор периферийных устройств, возможность гибкого выбора внешней или внутренней программной памяти и приемлемая цена обеспечили этому микроконтроллеру успех на рынке. С точки зрения технологии микроконтроллер i8051 являлся для своего времени крайне сложным изделием - в кристалле было использовано 128 тысяч транзисторов, что в 4 раза превышало количество транзисторов в 16-разрядном микропроцессоре i8086.

Виды микроконтроллеров

Условно микроконтроллеры можно разделить на три группы: простейшие, встраиваемые и универсальные.

Простейшие микроконтроллеры используются в тех случаях, когда не требуется высокая производительность, но важна низкая стоимость.

Встраиваемые в приборы и аппаратуру микроконтроллеры запрограммированы на реализацию узкоспецилизированных задач.

Универсальные микроконтроллеры ориентированы на решение многочисленных задач в системах управления, регулирования, и контроля.

Если представить все типы современных микроконтроллеров, то можно поразиться огромным количеством разнообразных приборов этого класса, доступных потребителю. Однако все эти приборы можно разделить на следующие основные типы:

встраиваемые (embedded) 8-разрядные МК,

16- и 32-разрядные МК,

цифровые сигнальные процессоры(специализированный микропроцессор, предназначенный для цифровой обработки сигналов).

Типы корпусов микроконтроллеров

DIP(Dual Inline Package) - корпус с двумя рядами контактов. Количество ножек в корпусе от 8 до 56.

SOIC(Small Outline Integrated Circuit) - планарная микросхема - ножки припаиваются с той же стороны, где находится корпус. При этом, микросхема лежит корпусом на плате. Количество ножек и их нумерация - такие же, как у DIP.

PLCC(Plastic Leader Chip Carrier) - квадратный корпус. Ножки расположены по всем четырем сторонам, и имеют J - образную форму.

TQFP(Thin Profile Quad Flat Package) - среднее между SOIC и PLCC. Квадратный корпус толщиной около 1 мм, выводы расположены по всем сторонам. Количество ножек - от 32 до 144.

Перечислим основные составные части любого микроконтроллера:

Вычислительный блок (арифметико-логическое устройство) -> этот миниатюрный компьютер является сердцем каждого микроконтроллера. Конечно, встроенный в небольшой кристалл вычислительно-логический модуль далеко не столь мощный, как его настольный собрат, но ему и не нужны все эти лошадиные силы. В то время как настольный компьютер должен одновременно выполнять сразу несколько задач - искать информацию в Интернете, рассчитывать электронные таблицы и вылавливать вирусы, типичный микроконтроллер обычно предназначен для решения какой-то одной задачи.

Энергонезависимая память -> в микроконтроллере всегда есть энергонезависимая память, в которой хранятся программы. Эта память продолжает хранить данные даже после выключения питания. В момент включения батареи или другого источника данные, хранящиеся в микроконтроллере, снова становятся доступными.

Порты ввода-вывода -> позволяют микроконтроллеру связываться с окружающим миром.

Для достижения более высокого уровня интеграции(процесс объединения частей в целое) и надежности, все микроконтроллеры имеют встроенные дополнительные устройства. Встроенные устройства повышают надежность системы, потому что они не требуют никаких внешних электрических цепей. Они предварительно тестируются производителем и освобождают место на плате, так как все соединительные электрические цепи выполнены на кристале в микроконтроллере. К наиболее распространенным встроенным устройствам относятся устройства памяти и порты ввода/вывода (I/O), интерфейсы связи, таймеры, системные часы. Устройства памяти включают оперативную память (RAM), постоянные запоминающие устройства (ROM), перепрограммируемую ROM (EPROM), электрически перепрограммируемую ROM (EEPROM). Таймеры включают и часы реального времени, и таймеры прерываний. Средства I/O включают последовательные порты связи, параллельные порты (I/O линии), аналого-цифровые преобразователи (A/D), цифроаналоговые преобразователи (D/A), драйверы жидкокристаллического дисплея (LCD) или драйверы вакуумного флуоресцентного дисплея (VFD). Встроенные устройства обладают повышенной надежностью, поскольку они не требуют никаких внешних электрических цепей.

АЛУ производит операции над числами и возвращает результат операции в виде числа. Данные числа помещаются в регистры общего назначения – своеобразную временную память. У каждого микроконтроллера количество регистров может быть разным. Однако, для нормальной работы микроконтроллера регистров общего назначения недостаточно, т.к., например, 32 байта – очень маленький объем памяти. Для того, чтобы можно было хранить больше информации, используется оперативно-запоминающее устройство (ОЗУ) . Регистры общего назначения содержат данные, с которыми АЛУ работает в данный момент, а ОЗУ – остальные. Команды, а точнее последовательность команд, которые выполняет АЛУ, хранятся в постоянно-запоминающем устройстве (ПЗУ) . Обычно это Flash-память. Данная последовательность команд является ничем иным, как программой микроконтроллера, которую создает программист. Все команды находятся в ПЗУ по определенным адресам. Для того, чтобы достать какую-то команду из ПЗУ, необходимо обратиться к ее адресу, чем занимается программный счетчик или счетчик команд. Данные из ПЗУ попадают в регистр команд. АЛУ постоянно «смотрит» содержимое регистра команд и если в нем появляется команда, то АЛУ сразу же начинает ее выполнять. Все эти устройства микроконтроллера были бы бесполезны без портов ввода-вывода, с помощью которых микроконтроллер взаимодействует с внешним миром. Порты ввода-вывода можно настраивать таким образом, чтобы они работали как в качестве входов, так и в качестве выходов. Управления портами осуществляется через специальные регистры. По умолчанию все порты микроконтроллера настроены на выход.

Необходимо также заметить, что вся работа микроконтроллера синхронизируется генератором тактовой частоты, который может быть внутренним или внешним. Тактовая частота, или, более точно, скорость шины, определяет, сколько вычислений может быть выполнено за единицу времени.

Благодаря тому, что микроконтроллер, по сути дела, считается маленьким компьютером его возможности невероятно широки. К примеру, микроконтроллеру можно поручить измерение разнообразных величин, обработку различных сигналов и управление широким спектром разных девайсов. Во многом возможности микроконтроллеров ограничены только воображением и умениями работать с ними, но и тому и другому можно научиться.

Для того чтобы запрограммировать микроконтроллер его необходимо подключить к компьютеру, для чего используется специальное устройство, называемое программатором. С помощью него и осуществляется взаимосвязь между микроконтроллером и компьютером. Можно даже сказать, что программатор - это своеобразный мостик. Программу для микроконтроллера вы, к примеру, пишите на языке программирования Си, после чего создаёте файл прошивки и с помощью программы на компьютере прошиваете ваш микроконтроллер данной прошивкой. На самом деле всё довольно просто и, при желании, достаточно легко осваивается!

Собирать устройство на основе микроконтроллера можно как на собственной плате, так и на макетной или даже методом навесного монтажа, в зависимости от того, как вам удобней и от сложности предполагаемого устройства.

Если вы заинтересовались микроконтроллерами, то не пугайтесь трудностей, в лице изучения языка программирования Си для микроконтроллеров.

Микропроцессорная система (МПС) представляет собой функционально законченное изделие, состоящее из одного или нескольких устройств, главным образом микропроцессорных: микропроцессора или микроконтроллера.

Микропроцессором (МП) называется программно-управляемое устройство («обработчик»), осуществляющее выполнение арифметических, логических операций, процесс цифровой обработки информации и управления им, на одной большой интегральной схеме (БИС) или комплекта из нескольких специализированных микросхем.

Микроконтроллер (МК)– это микросхема, предназначенная для управления электронными устройствами. сочетает на одном кристалле функции процессора и различных периферийных устройств, содержит ОЗУ или ПЗУ. По сути, это однокристальный компьютер, способный выполнять простые задачи.

микропроцессорное устройство (МПУ), представляет собой функционально и конструктивно законченное изделие, состоящее из нескольких микросхем, в состав которых входит микропроцессор; оно предназначено для выполнения определенного набора функций: получение, обработка, передача, преобразование информации и управление.

По функциональному признаку микропроцессоры делятся на МП общего назначения и специализированные МП. Последние, подразделяются на микроконтроллеры и цифровые процессоры сигналов (ЦПС, англ. Digital Signal Processor – DSP). МК бывают 8-, 16- и 32-разрядными, а ЦПС – с фиксированной точкой (16- и 24-разрядные) и с плавающей точкой (32-разрядные). Характерной особенностью структуры микроконтроллеров является размещение на одном кристалле с центральным процессором внутренней памяти и большого набора периферийных устройств.

Архитектурой процессора называется комплекс его аппаратных и программных средств, предоставляемых пользователю. В это общее понятие входит набор программно-доступных регистров и исполнительных (операционных) устройств, система основных команд и способов адресации, объем и структура адресуемой памяти, виды и способы обработки прерываний.

CISC – архитектура реализована во многих типах микропроцессоров, выполняющих большой набор разноформатных команд с использованием многочисленных способов адресации. RISC – архитектура отличается использованием ограниченного набора команд фиксированного формата. VLIW – эта архитектура появилась в 1990-х годах. Ее особенностью является использование очень длинных команд (до 128 бит и более), отдельные поля которых содержат коды, обеспечивающие выполнение различных операций.

Принстонская архитектура (Фон-Неймана), характеризуется использованием общей оперативной памяти для хранения программ, данных, а также для организации стека. Для обращения к этой памяти используется общая системная шина, по которой в процессор поступают и команды, и данные. Наличие общей памяти позволяет оперативно перераспределять ее объем для хранения отдельных массивов команд, данных и реализации стека в зависимости от решаемых задач. Гарвардская - физическое разделением памяти команд (программ) и памяти данных. В ее оригинальном варианте использовался также отдельный стек. Каждая память соединяется с процессором отдельной шиной, что позволяет одновременно с чтением-записью данных при выполнении текущей команды производить выборку и декодирование следующей команды. более высокая производительность, чем при использовании Принстонской архитектуры.

Конструирование программ. проектируется программа удовлетворяющая требованиям постановки задачи. После того, как задача в целом поставлена, выполняется этап конструирования программы который традиционно связывается с составлением блок схемы программы, однако на этапе разработки программы полезно применять и следующие методы проектирования:

Модульным программированием называется метод, при котором длинные программы разбиваются на более короткие программы (модули).

Нисходящим программированием называется метод, при котором разрабатываемая задача расчленяется на несколько обобщенных задач, которые затем детализируются далее. Этот процесс продолжается сверху вниз до тех пор, пока получаемые подзадачи не оказываются поставленными в таком виде, что их можно просто реализовать на ЭВМ. Структурным программированием называется метод, при котором программы пишут по специально разработанным правилам (в них используются только определенные типы программных операторов) и каждый блок программы имеет только один вход и один выход.

Организация памяти микроконтроллера
Порты ввода-вывода
Таймеры-счетчики
Прерывания
Аналого-цифровой преобразователь
Интерфейсы связи
  • Универсальный синхронно-асинхронный приемопередатчик USART

Видеокурс по программированию микроконтроллеров STM32

Микропроцессором называется программно-управляемое устройство, осуществляющее процесс обработки цифровой информации и управление им. Микропроцессор реализуется в виде большой (БИС) или сверхбольшой (СБИС) интегральной микросхемы. Микропроцессор выполняет роль процессора в цифровых системах различного назначения.

Главной особенностью микропроцессора является возможность программирования логики работы.

Микроконтроллер (MCU) – микросхема, предназначенная для управления электронными устройствами. Типичный микроконтроллер сочетает в себе функции процессора и периферийных устройств, может содержать ОЗУ и ПЗУ. По сути, это однокристальный компьютер, способный выполнять простые задачи. Использование одной микросхемы, вместо целого набора, как в случае обычных процессоров, применяемых в персональных компьютерах, значительно снижает размеры, энергопотребление и стоимость устройств, построенных на базе микроконтроллеров.

Микропроцессорная система (МПС) представляет собой функционально законченное изделие, состоящее из одного или нескольких устройств, главным образом микропроцессорных: микропроцессора и/или микроконтроллера.

Микропроцессорное устройство (МПУ) представляет собой функционально и конструктивно законченное изделие, состоящее из нескольких микросхем, в состав которых входит микропроцессор; оно предназначено для выполнения определенного набора функций: получение, обработка, передача, преобразование информации и управление.

Основные преимущества микропроцессорных систем по сравнению с цифровыми системами на «жесткой логике».

  • Многофункциональность: большее количество функций может быть реализовано на одной элементной базе.
  • Гибкость: возможность исправления и модификации программы микропроцессора для реализации различных режимов работы системы.
  • Компактность: миниатюрные габариты микросхем и уменьшения их количества по сравнению с реализацией на «жесткой логике» позволяют уменьшить габариты устройств.
  • Повышение помехоустойчивости: меньшее количество соединительных проводников способствует повышению надежности устройств.
  • Производительность: возможность применения больших рабочих частот и более сложных алгоритмов обработки информации.
  • Защита информации: возможность защитить программу микропроцессора от считывания позволяет защитить авторские права разработчиков.

Хотя микропроцессор является универсальным средством для цифровой обработки информации, однако отдельные области применения требуют реализации определенных специфических вариантов их структуры и архитектуры. Поэтому по функциональному признаку выделяются два класса: микропроцессоры общего назначения и специализированные микропроцессоры. Среди специализированных микропроцессоров наиболее широкое распространение получили микроконтроллеры, предназначенные для выполнения функций управления различными объектами, и цифровые сигнальные процессоры (DSP – Digital Signal Processor), которые ориентированы на реализацию процедур, обеспечивающих необходимое преобразование аналоговых сигналов, представленных в цифровой форме.

Неполный список периферии, которая может присутствовать в микроконтроллерах, включает в себя:

  • различные интерфейсы ввода-вывода, такие как UART, I²C, SPI, CAN, USB, ETHERNET;
  • аналого-цифровые и цифро-аналоговые преобразователи;
  • компараторы;
  • широтно-импульсные модуляторы;
  • таймеры-счетчики;
  • генератор тактовой частоты;
  • контроллеры дисплеев и клавиатур;
  • массивы встроенной флэш-памяти.

Идея размещения на одном кристалле микропроцессора и периферийных устройств принадлежит инженерам М. Кочрену и Г. Буну, сотрудникам Texas Instruments. Первым микроконтроллером был 4-х разрядный TMS1000 от Texas Instruments, который содержал ОЗУ (32 байта), ПЗУ (1 кбайт), часы и поддержку ввода-вывода. Выпущенный в 1972 году, он имел новую по тем временам возможность – добавление новых инструкций.

В 1976 году (через 5 лет после создания первого микропроцессора) на свет появился первый микроконтроллер фирмы Intel, получивший имя 8048. Помимо центрального процессора, на кристалле находились 1 килобайт памяти программ, 64 байта памяти данных, два восьмибитных таймера, генератор часов и 27 линий портов ввода-вывода. Микроконтроллеры семейства 8048 использовались в игровых консольных приставках Magnavox Odyssey, в клавиатурах первых IBM PC и в ряде других устройств.

На сегодняшний день среди крупных производителей микроконтроллеров следовало бы упомянуть Atmel, Microchip, ST Microelectronics, Texas Instruments, Freescale Semiconductor, NXP и др.