Напряжение заряженной батарейки. Что такое батарейка и когда она появилась? Современные виды батареек

Несмотря на широчайшее распространение аккумуляторов всевозможных типов, обычные одноразовые батарейки до сих пор не исчезли из продажи. Более того, многие люди используют их и для питания устройств, потребляющих достаточно большие токи – иногда вынужденно (например, пребывая вдали от розетки, где можно было бы зарядить комплект аккумуляторов), иногда лишь потому, что производители недорогих фотоаппаратов и беспроводных "мышей" до сих пор поставляют в комплекте с ними батарейки...

В нашей сегодняшней статье мы попытаемся не только сравнить различные батарейки между собой, но и выяснить, насколько они пригодны для различных применений.

Методика тестирования

С методикой, согласно которой мы проводим тестирования, можно ознакомиться по ссылке: "". Так как она включает в себя не только описание тестовой установки, но и пояснения относительно различных типов элементов питания и особенностей их эксплуатации, то рекомендуется к прочтению перед ознакомлением с настоящей статьёй.

Ниже для каждой из батареек мы будем приводить фотографию и графики разрядных кривых (зависимость напряжения батарейки от времени при заданной нагрузке). Так как графиков этих много, а интерес они представляют лишь ограниченный и для узкого круга читателей, то мы будем просто ставить на них ссылки, не перегружая статью картинками. В более наглядном же виде результаты тестирования приведены в конце статьи.

Если вас интересует именно сравнение разрядных характеристик, будет удобнее скачать PDF-файл (1 Мбайт) , где они собраны в одну большую таблицу.

Солевые батарейки

Camelion

Несмотря на надпись "Super Heavy Duty", перед нами обычные солевые батарейки малой ёмкости. Маркетинговое обозначение "Heavy Duty" в своё время появилось для разделения двух типов солевых батареек – но "слабый" тип давно уже не выпускают, а название так и осталось.


Батарейки довольно необычно вели себя при разряде током 750 мА: в определённый момент напряжение на них начало расти, хотя ток нагрузки поддерживался постоянным. Такое возможно из-за разогрева батареек (при увеличении температуры увеличивается и скорость протекания химических реакций в них), однако в данном случае это маловероятно – во-первых, в нашей тестовой установке батарейки при разряде обдуваются вентилятором, во-вторых, однотипные батарейки других производителей, в том числе тестировавшиеся одновременно с Camelion, такого эффекта не продемонстрировали. Так что, вероятно, причиной тому стали какие-то особенности химии именно батареек Camelion.

Впрочем, по разрядной кривой видно, что для питания сильноточных устройств солевые батарейки всё равно малопригодны: на токе 750 мА они садятся почти моментально.
GP Greencell

Продукция компании Gold Peak Group (GP) весьма распространена в розничной продаже – трудно встретить магазин, торгующий батарейками, в котором не было бы батареек GP. Серия Greencell – это весьма недорогие солевые батарейки.


Разрядные кривые батареек GP Greencell приведены по следующим ссылкам:
GP Supercell


Хотя по приставке "Super" кажется, что эти батарейки должны превзойти GP Greencell, реальность немного удивляет: Supercell показали худший результат среди солевых батареек, заметно отстав от Greencell.
Panasonic Special Power

Батарейки Panasonic – одни из немногих солевых (цинк-угольных) батареек, для которых это указано прямо на этикетке: как правило, производители указывают тип лишь на щелочных батарейках.


Трудно сказать, в чём заключается "специальная мощность" солевых батареек Panasonic – по результатам тестов среди конкурентов они ничем не выделяются.
Sony New Ultra

Ну ладно исторически сложившееся "Heavy Duty", но всё же набранное огромными буквами "New Ultra" – это, на наш взгляд, избыточно претенциозное название для обычных солевых батареек.


Тем более, что по результатам тестирования они ничуть не выделяются среди конкурентов.
Varta Superlife

А вот компания Varta с названиями перехитрила саму себя: батарейки Longlife – солевые, Lognlife Extra – щелочные, а Superlife – снова солевые.


Разрядные кривые представлены по ссылкам:

Щелочные батарейки

"Auchan"

Эти безымянные "Батарейки алкалиновые" (отдельный минус владельцам марки за издевательское отношение к русскому языку) продаются в магазинах торговой сети "Ашан". Настоящий производитель неизвестен, на упаковке указан адрес самого "Ашана". Кроме того, у батареек необычайно маленький срок годности – всего два года (обычно он составляет пять-семь лет).



Camelion Oxy-Alkaline

Название этих батареек Camelion наводит на мысли о батарейках Oxyride, разработанных компанией Panasonic и предназначенных для использования в устройствах с высоким энергопотреблением. От щелочных они отличаются не только названием, но и составом: в них используется оксид-гидроксид никеля NiOOH.


Мы не знаем, случайно ли совпадение названий, однако нельзя не заметить, что разрядные характеристики отличаются от типичных щелочных батареек: начальное напряжение Oxy-Alkaline превышает 1,6 В, абсолютный рекорд среди протестированных нами батареек.
Duracell

"Полубезымянные" (на них не указано какое-либо имя собственное, только название производителя) батарейки Duracell предназначены для устройств с небольшим и средним энергопотреблением.


Разрядные кривые батареек приведены по следующим ссылкам:
Duracell Turbo

А вот батарейки Duracell Turbo рассчитаны уже на более серьёзную нагрузку: упаковка батареек приводит в качестве примеров таковой фотоаппараты, плееры и розового "зайца Duracell". В ассортименте Duracell также есть батарейки и ещё большей мощности, но они пока на наши тесты не попали.


И действительно, Duracell Turbo ведут весьма уверенно, особенно заметна разница на больших нагрузках.
Energizer

По количеству представленных в нашей сегодняшней статье моделей батареек с Energizer может соперничать только GP – по четыре штуки. Их рыночные сегменты пересекаются лишь частично: GP занимает уровень от нижнего до среднего, а Energizer – от среднего до верхнего.


Впрочем, первая батарейка, не имеющая собственного имени, в линейке Energizer – младшая.
Energizer Maximum

А вот батарейки Energizer Maximum относятся уже к более новой и технически более совершенной серии. Предназначены они для питания устройств с большим энергопотреблением.


Разрядные кривые батареек приведены по следующим ссылкам:
Energizer Ultra+

Хотя по названию определить, что же лучше – Ultra+ или Maximum – проблематично, субъективные предпочтения оказываются скорее на стороне Maximum. Новый дизайн, блестящая зеркальная обёртка...


Что интересно, по результатам тестов первое место нельзя отдать ни Ultra+, ни Maximum: в одном тесте они сравнялись, в другом впереди оказался Maximum, а в третьем – Ultra+.
GP Super Alkaline

Если предыдущие две батарейки GP были солевыми, то тип следующих двух ясен уже по их названию – щелочные.


Разрядные кривые батареек приведены по следующим ссылкам:
GP Ultra Alkaline

И в очередной раз мы замираем перед полкой магазина: что лучше, "Super" или "Ultra"?.. Эх, нет бы просто указывать ёмкость или ещё какой-нибудь однозначный численный параметр, как у аккумуляторов. Разве что указание на упаковке (по крайней мере, на одном из её вариантов) Ultra Alkaline их пригодности для питания цифровой техники может дать подсказку.


Впрочем, тестирование расставляет точки над "i": "Ultra" – это лучше, чем "Super"! По крайней мере, у GP.
IKEA Alkaline

Как нетрудно догадаться, эти батарейки продаются в магазинах "IKEA". Говорят, раньше на них можно было встретить эмблему Varta, но на наших образцах истинный производитель указан не был, так что о происхождении батареек остаётся только гадать.


К счастью, продаются батарейки IKEA в уже собранном виде.
Kodak Max

Не знаем, рекомендует ли компания Kodak использовать со своими фотоаппаратами только эти батарейки, однако нам кажется, что многие другие компании упускают свой шанс немного порекламироваться, не следуя примеру Kodak и не выпуская батареек под своим именем.


Тем более, что и по результатам тестов Kodak Max хоть и не стали лидером, но в первую десятку прошли без проблем.
Samsung Pleomax

Под маркой Pleomax компания Samsung продаёт сразу несколько групп товаров – начиная от несложной компьютерной периферии и заканчивая лампочками и батарейками. На наш взгляд, использование одной торговой марки, к тому же пока малоизвестной покупателям, несколько обезличивает конкретные продукты, однако маркетологам компании виднее.


Разрядные кривые батареек приведены по следующим ссылкам:
Sony Stamina Plus

С определением, какое из названий батареек Sony соответствует их большей мощности и ёмкости, проблем не возникает: лицевая сторона упаковки сообщает нам, что Stamina Plus даст нам дополнительные 10 % энергии (относительно чего именно – указано в другом месте и куда более мелким шрифтом), а задняя сторона – что если и этого мало, то есть ещё Stamina Platinum.


Разрядные кривые батареек приведены по следующим ссылкам:
Sony Stamina Platinum

Итак, как уверяет нас производитель, предыдущую модель эти батарейки должны заметно превзойти...


Интересно, что подтверждается это только на больших токах – в то время как на относительно малых Stamina Plus выходит немного вперёд. Напоминает ситуацию с Energizer Ultra+ и Maximum, не правда ли?
TDK Power Alkaline

Если выше мы жаловались, что продукты и одного-то производителя трудно сравнивать по названию, то что уж говорить о производителях разных. Ну вот что лучше – Power Alkaline или Ultra Alkaline? Или это одно и то же? Господа, введите уже какую-нибудь общую методику и пишите на ваших батарейках понятные обычным людям ампер-часы!


По результатам же наших тестов TDK Power Alkaline оказались в группе середнячков.
Varta High Energy

По причинам административно-технического характера маломощные щелочные батарейки Varta (например, Longlife Extra) в нашу сегодняшнюю статью не вошли – в отличие от батареек мощных, рассчитанных на питание техники с высоким энергопотреблением.


И действительно, в двух тестах из трёх Varta High Energy заняли первую строчку рейтинга.
Varta Max Tech

Батарейки Varta Max Tech позиционируются как элементы питания для техники с очень высоким потреблением. Но что именно это означает? Большую ёмкость?


Как показали измерения – не совсем: при разряде малыми и средними токами Max Tech проигрывают серии High Energy, а вот при разряде очень большим током – напротив, выигрывают. Означает это одно: при сравнимой с High Energy ёмкостью у Max Tech меньше внутреннее сопротивление.
Космос

Завершает же нашу статью продукция отечественного производителя – точнее, продающаяся под отечественной маркой. Увы, его отношения с родным языком сложны и неоднозначны, о чём явственно свидетельствует надпись "Алкалиновая батарейка".


Разрядные кривые батареек "Космос" можно посмотреть по ссылкам:
Космос Максимум

Крупная надпись "Алкалин" ещё отчётливее демонстрирует неоднозначность взаимоотношений между компанией "Космос" и русским языком. Не очень понятно, разве что, почему ниже написано "0 % ртути", а не "0 % меркурия" – ну, просто для поддержания общей стилистики смеси английского с нижегородским.


Также интересно, что батарейки "Космос Максимум" не смогли продемонстрировать ощутимого превосходства над батарейками "Космос" – в двух тестах они почти равны, а в третьем "Максимум" сильно отстали.
Старт Super Alkaline

Если продукция, продающаяся под маркой "Космос", выпускается на мощностях компании Eastpower International, то батарейки "Старт" производятся уже знакомой нам Gold Peak Group.


Судя по результатам измерений, слова "Super Alkaline" в названии не случайны – заметная разница между Старт Super Alkaline и GP Super Alkaline есть лишь в одном тесте из трёх.

Литиевые батарейки

Литиевые батарейки с рабочим напряжением 1,5 В (иначе говоря, взаимозаменяемые с щелочными и солевыми) встречаются достаточно редко, и потому в нашей статье представлена лишь одна их модель...

Energizer Ultimate Lithium

Производитель указывает для этих батареек ёмкость 3 А*ч. Паспортная ёмкость большинства щелочных батареек также равна 3 А*ч, однако есть один нюанс: у щелочных батареек она измеряется при разряде током всего лишь 25 мА и, как мы видели выше, при росте разрядного тока ёмкость быстро падает. У литиевых же эффективная ёмкость от разрядного тока почти не зависит.


И действительно, даже при токе нагрузки 750 мА, когда все без исключения щелочные батарейки изрядно "просели", измеренная ёмкость литиевой осталась равна 3 А*ч! С честью выдержала эта батарейка и жесточайший режим импульсной нагрузки, амплитуда тока в котором достигает 2,5 А – более четырёх часов работы, в то время как лишь немногие из щелочных батареек дотянули хотя бы до одного часа.

Тестирование на токе 250 мА мы решили не проводить по вполне понятным причинам – после такого успеха на больших токах это просто не имеет смысла.

Обобщение результатов

Выше мы приводили для каждой из протестированных батареек разрядные графики – зависимость напряжения на батарейке от времени при заданной нагрузке. Однако сравнивать батарейки по ним трудно, поэтому ради большей наглядности мы рассчитали для каждой из батареек её ёмкость и свели результаты в несколько диаграмм.

Впрочем, перед тем, как переходить к числам, стоит поговорить о самой ёмкости. Традиционно её указывают в ампер-часах: ёмкость 1 А*ч означает, что батарейка может отдавать ток 1 А в течение часа. Вообще говоря, такое определение ёмкости неверно – ведь ёмкость есть количество запасённой в батарейке энергии, энергия измеряется в джоулях, которые, в свою очередь, пересчитываются в "электрические" единицы по формуле 1 Дж = 1 Вт*с. Соответственно, и ёмкость батареек надо измерять в ватт-секундах (или, что удобнее, в ватт-часах), а вовсе не в ампер-часах.

Проиллюстрируем сказанное простым примером. Допустим, мы взяли две батарейки напряжением по 1,5 В и паспортной ёмкостью по 1 А*ч и соединили их последовательно. Мы получили батарею с ёмкостью тот же 1 А*ч – если её нагрузить током 1 А, она сядет через 1 час, ведь в течение этого часа каждая из батареек будет отдавать ток 1 А. Но ведь на самом деле ёмкость такой батареи – вдвое больше, чем у каждой отдельной батарейки. Поэтому правильнее учитывать ёмкость именно в ватт-часах. В приведённом выше примере для одной батарейки она будет равна 1,5 Вт*ч, для двух – 3 Вт*ч независимо от способа их соединения (последовательно или параллельно).

Особенно важно это учитывать при сравнении батареек и аккумуляторов с разными рабочими напряжениями: так, в литий-ионном аккумуляторе с паспортной ёмкостью 1 А*ч и рабочим напряжением 7,4 В энергии запасено много больше, чем в Ni-MH аккумуляторе с паспортной ёмкостью 2,7 А*ч и напряжением 1,2 В – 7,4 Вт*ч против 3,24 Вт*ч.

Для элементов питания с одинаковым паспортным напряжением указание ёмкости в ватт-часах приобретает смысл, если учесть, что при разряде напряжение на них падает по-разному. Скажем, если две батарейки на токе 1 А сели за час, но первая почти всё время держалась на напряжении около 1,2 В, а вторая быстро просела до 0,9 В – очевидно, что первая отдала больше энергии.

Впрочем, если привязываться к реальным нагрузкам, то у них может быть разный характер энергопотребления: как правило, простые устройства (фонари, электромеханические детские игрушки и так далее) потребляют тем больший ток, чем больше напряжение батарейки, а вот электронные устройства (фотоаппараты, плееры и так далее) склонны потреблять постоянную мощность – то есть, чем больше напряжение питания, тем меньший ток им требуется, и тем легче режим работы батарейки в них. Поэтому для вторых ёмкость в ватт-часах имеет наибольшее значение.

Кроме того, важно определиться, что мы считаем окончанием разряда. В своих статьях для батареек мы будем брать две точки: падение напряжения батарейки до 0,9 В и до 0,7 В. Первая выбрана из соображений, что многие устройства могут просто отказаться работать при меньшем напряжении, поэтому в них батарейку, "просевшую" ниже 0,9 В, можно смело считать разряженной. Однако есть и устройства, способные работать при напряжениях вплоть до 0,7 В – это различная электроника, использующая для получения нужного ей питания повышающие импульсные преобразователи. Продолжать тестирование при падении напряжения ниже 0,7 В смысла нет – абсолютное большинство батареек при достижении этой границы уже полностью разряжены, и далее напряжение на них спадает до нуля почти мгновенно. Поэтому в качестве второй точки мы выбираем момент, когда батарейка разрядилась до 0,7 В.

Также, чтобы нашим читателям было проще ориентироваться в цифрах, приведём табличку с результатами измерений энергопотребления различных устройств из предыдущей статьи :


Итак, для каждой батарейки в каждом из тестов будут представлены четыре значения: ёмкость в ампер-часах и в ватт-часах при разряде до 0,9 В и до 0,7 В. Сортируются результаты по значениям для разряда до 0,9 В, как по наиболее жёсткому из критериев.


Среди солевых батареек на малом токе победила продукция Camelion, в аутсайдеры попали батарейки GP Supercell, продемонстрировав изрядное отставание от серии Greencell того же производителя. При этом в целом все батарейки показали очень скромный результат, лишь одна смогла дотянуть до 0,5 А*ч, да и то – при глубоком разряде до 0,7 В.


При пересчёте в ватт-часы картина не меняется. В средней группе поменялись местами две пары батареек, но разрыв между ними и в предыдущем тесте был на уровне погрешности измерений.


На токе 750 мА результат крайне печален: до границы 0,9 В все батарейки "просели" почти мгновенно. Использовать солевые батарейки в фонаре, фотоаппарате и тому подобной аппаратуре по этой причине совершенно бессмысленно: в лучшем случае, время их работы исчисляется минутами, в худшем – устройство вообще не включится.

При разряде до 0,7 В вперёд вышла батарейка Camelion – выше мы уже обсуждали её странное поведение при разряде большими токами. Впрочем, погоды это не сделает, результат всё равно крайне скромен.


При переходе к измерению ёмкости в ватт-часах позиции в рейтинге сохраняются.


А вот щелочные батарейки при разряде малым током показывают совсем другие значения! Более того, для них довольно невелика разница между ёмкостями, измеренными по падению напряжения до 0,9 В и до 0,7 В – а значит, батарейка эффективно отдаёт большую часть накопленной в ней энергии до того, как её напряжение серьёзно "просядет".


Лидируют батарейки Varta High Energy, вплотную за ними идут Sony, "Космос" и другие. Хуже всех выглядят батарейки IKEA Alkaline и GP Super Alkaline (в том числе и продающиеся под маркой "Старт"). Интересны в этом графике два момента: во-первых, "высокомощные" батарейки, такие как Energizer Maximum, Sony Stamina Platinum и Varta Max Tech не только не заняли первых позиций, а и проиграли менее мощным моделям тех же производителей. Во-вторых, батарейки Camelion Oxy-Alkaline, по ёмкости в ампер-часах занявшие последнюю позицию в рейтинге, при пересчёте в ватт-часы заметно продвинулись к его середине – связано это с их высоким рабочим напряжением. Впрочем, соперничать с Varta High Energy они всё равно не могут.


При разряде током 750 мА лидер остался тот же – Varta High Energy – но "высокомощные" батарейки заметно подтянулись к верхней части списка, а часть "маломощных", наоборот, резко провалилась вниз. Скажем, Energizer Maximum и Ultra+, Sony Stamina Platinum и Stamina Plus, по сути, поменялись местами.


При переходе к ватт-часам порядок в общем и целом сохраняется, за тем исключением, что батарейки Camelion Oxy-Alkaline благодаря своему высокому рабочему напряжению снова совершают прыжок вверх по рейтингу. В целом же можно с некоторой печалью отметить, что ёмкость всех батареек с ростом тока нагрузки сильно упала: ни один из участников не добрался даже до полутора ватт-часов.

Из сравнения диаграмм для разных нагрузок становится очевидно, что однозначно лучших батареек не бывает: разные их типы действительно приспособлены под разные задачи. Скажем, для светодиодного фонарика, потребляющего 100 мА, нет смысла переплачивать за дорогие батарейки максимальной мощности – это именно мощность, а не ёмкость, поэтому в устройстве, потребляющем небольшой ток, служат они ничуть не дольше более дешёвых собратьев.


Импульсный разряд с амплитудой тока 2,5 А – самый жестокий из наших тестов, зато именно в нём и проявляются преимущества "высокотехнологичных" мощных батареек. На первое место выходит Varta Max Tech, следом за ней идут Camelion Oxy-Alkaline, Sony Stamina Platinum и Energizer Maximum – то есть модели, изначально предназначенные для устройств с очень большим энергопотреблением.


При переходе к ватт-часам лидером становится Camelion Oxy-Alkaline – благодаря своему большому рабочему напряжению. В остальном картина не меняется.

В целом же надо отметить, что импульсная нагрузка с амплитудой 2,5 А – очень тяжёлая задача даже для щелочных батареек.


И, наконец, литиевые батарейки. Так как из представителей этого типа гальванических элементов в нашей статье присутствует только Energizer Ultimate Lithium, то сравнивать мы его будем с лидерами среди щелочных и солевых батареек – это позволит оценить, на что же способны литиевые батарейки и стоят ли они своих денег.


Впрочем, из этих двух диаграмм уже всё очевидно: на токе 750 мА литиевые батарейки в разы превосходят щелочные, результаты же солевых можно и вовсе не учитывать. Более того, при переходе к ватт-часам разрыв только увеличивается – литиевая батарейка лучше держит напряжение по мере разряда.


В тесте на импульсный разряд с амплитудой тока 2,5 А солевые батарейки сдаются сразу: первый же импульс просаживает напряжение на них почти до нуля.


Литиевая батарейка не просто сохраняет позиции, а и ещё более увеличивает отрыв от щелочной: при пересчёте в ватт-часы разница достигает пяти раз! И это, заметьте, по сравнению не с абстрактной "обычной батарейкой", а с лидером наших предыдущих тестов.

И, наконец, последняя таблица: внутреннее сопротивление батареек. Оно рассчитывалось по падению напряжения в тесте с импульсной нагрузкой, для расчёта брался участок графика, на котором напряжение с приходом импульса проседало до 1,0 В. Скажем, если при приходе очередного импульса напряжение просело с 1,32 до 1,0 В, то сопротивление равно (1,32В - 1,0В)/2,5А = 0,128 Ом.


Мощные батарейки, во главе которых Varta Max Tech, расположились в верхней части рейтинга. Camelion Oxy-Alkaline занял среди щелочных последнее место, но выше мы неоднократно отмечали, что выйти на первые места по реальной ёмкости ему помогает относительно высокое рабочее напряжение. Оно же помогло и литиевой Energizer Ultimate Lithium, чьё внутреннее сопротивление также оказалось относительно высоко.

В остальном же наибольшее сопротивление ожидаемо оказалось у батареек GP, IKEA и "Космос" – аутсайдеров нашего тестирования. Ну и, разумеется, все солевые батарейки показали очень большое внутреннее сопротивление – как уже отмечалось выше, тест импульсного разряда для них чрезмерно жесток.

Вместо заключения: батарейки против аккумулятора

Из полученных данных можно сделать много интересных выводов, основные из которых удобно собрать компактным списком:

солевые батарейки принципиально непригодны для устройств с большим потреблением;
разные щелочные батарейки оптимальны с точки зрения соотношения ёмкости и цены для разных применений: мощные и дорогие батарейки не обеспечат большей ёмкости при разряде малым током, нежели более дешёвые собратья, но выиграют на разряде очень большими токами;
ёмкость и солевых, и щелочных батареек сильно зависит от разрядного тока: чем он больше, тем меньше ёмкость;
ёмкость литиевых батареек от разрядного тока почти не зависит, поэтому на больших токах они обеспечивают в разы большую ёмкость, чем лучшие из щелочных.

Тем не менее, возникает ещё один вопрос – а насколько хорошо батарейки конкурируют с аккумуляторами? Особенно он важен в том свете, что стоимость литиевых батареек приближается к стоимости хороших Ni-MH аккумуляторов с ёмкостью 2700 мА*ч.

О работе аккумуляторов с малыми нагрузками мы поговорим в следующей статье, а сейчас я позволю себе привести три диаграммы с одним и тем же масштабом оси времени, на которых показана работа разных элементов питания с нашей импульсной нагрузкой:



Щелочная батарейка




Литиевая батарейка




Ni-MH аккумулятор


Проигрыш щелочной батарейки очевиден, а вот между литиевой и аккумулятором наблюдается паритет – с одной стороны, литиевая батарейка имеет немного большую ёмкость и большее рабочее напряжение, с другой стороны, по ширине линии отлично видно, что внутреннее сопротивление аккумулятора втрое меньше.

Вывод из этого можно сделать простой: щелочные батарейки при работе с большими токами в принципе не способны достичь характеристик современных Ni-MH аккумуляторов. Литиевые батарейки в целом способны конкурировать с аккумуляторами, но ярко выраженного превосходства не демонстрируют – поэтому их использование оправдано в случаях, когда аккумуляторы недоступны. Если своевременная зарядка комплекта Ni-MH аккумуляторов не является для вас проблемой, то они будут лучшим способом питания любых устройств с большим энергопотреблением – фонарей, фотоаппаратов, плееров, игрушек...

О том же, какие именно аккумуляторы выбрать, мы поговорим в нашей следующей статье.

Другие материалы по данной теме


Методика тестирования аккумуляторов и батареек

Каждый человек хотя бы раз в жизни сталкивался с вопросом замены батарейки. В часах, в калькуляторе, фотоаппарате, фонарике, детской игрушке, и мало ли в чем еще. Чем же обычно руководствуетесь вы как потребитель, подбирая батарейку для замены. Первое, естественно, подбираете источник тока подходящего размера и требуемой мощности.

С этим легко определиться, внимательно изучив использованную батарейку. Идете покупать, а именно такой нет. Продавец предложит вам сразу несколько вариантов, но выбор за вами. Чаще всего этот выбор формируется на соотношении срок службы/цена. Иногда возникает вопрос выбора между батарейками и аккумуляторами, редко кто подбирает батарейки под температурные условия и всерьез задумывается над всеми электрическими характеристиками источника. Так или иначе, в быту чаще всего мы имеем дело с "пальчиковыми" батарейками.

В основе любого источника тока, а батарейка не что иное, как источник тока, лежит простая схема: анод-катод, а между ними электролит. За счет различной природы материала анода и катода, при их погружении в электролит возникает разность потенциалов - напряжение, из-за чего и возникает электрический ток. Химические источники тока носят свое название из-за природы возникновения тока: химическая энергия активных веществ непосредственно превращается в электрическую энергию. Они делятся на две группы - первичные и вторичные. В первичных источниках тока (батарейках) процесс протекает необратимо. К вторичным источникам тока относят аккумуляторы, их можно заряжать, после того как они себя исчерпают. В различных литературных источниках встречается информация о том, что батарейки тоже можно перезаряжать. Не пытайтесь это делать во избежание взрыва и разбрызгивания химических веществ.

Форма и размер.

"Пальчиковая форма" батареек выбрана не случайно. При одинаковой емкости высокий и узкий цилиндр - пальчик - имеет меньшее внутреннее сопротивление и лучше рассеивает тепло. Требования Международной электрической комиссии относительно унификации размеров источников тока позволяют заменять батарейки одного производителя на батарейки другого, тем самым, создавая возможности для вольного потребительского выбора. На батарейке можно увидеть сразу несколько обозначений ее размеров. По российскому законодательству цилиндрические батарейки в зависимости от диаметра и высоты обозначают от R06 до R27, американские нормы диктуют буквенную маркировку. Для бытовой техники могут быть нанесены дополнительные надписи. Например, наиболее распространенная "пальчиковая" батарейка R6 имеет диаметр 14,5 мм и высоту 50,5 мм, она же имеет обозначение АА и MIGNON.

Батарейка (первичный элемент питания) - один из самых распространенных источников питания для мелкой техники и электроники.

Что находится внутри батарейки?

Батарейки зачастую малы, но довольно сложно устроены. Это высокотехнологичные элементы, в которых в результате химических реакций выделяется электрическая энергия. Данный процесс происходит между тремя главными элементами батарейки: анодом, катодом и электролитом. В зависимости от типа батарейки для перечисленных элементов используются различные материалы. Материал выбирается по принципу максимизации эффекта при их взаимодействии. Анод часто делают из металла, катод — из оксида различных металлов. В качестве электролита используется соль, в щелочных батарейках — двуокись марганца.

То, что внутри батарейки, иными словами ее электрохимическая система - стартовые условия. Первыми химическими источниками тока были гальванические элементы с металлическими электродами, погруженными в водный электролит. Что-то похожее показывают на уроках химии в школе, когда электроды опускают в раствор и при этом загорается лампочка.

Батарейки имеют различное напряжение и ёмкость.

Различные устройства работают с различным напряжением, поэтому и у батареек оно должно быть разным. Кроме того, напряжения разных типов батареек зависит от используемого электролита. К примеру, литиевые батарейки имеют номинальное напряжение 3 V, щелочные — 1,5 V. Ёмкость батареек рассчитывается из объёма активных элементов, помещаемых в корпус батарейки. Однако расчитанная подобным образом ёмкость не может быть использована для определения работоспособности батареек и имеет название «расчетная ёмкость».

Фактическая же ёмкость зависит от множества факторов:

Уровень зарядки;
. режим использования;
. температура окружающей среды;
. ток отсечки (Напряжение, при котором устройство не работает даже при сохранённом заряде батарейки. Например, батарейка, которая уже не работает в фотоаппарате, зачастую продолжает работать в часах или пультах управления).

Каждая ячейка электрической батарейки вырабатывает токк 1.5 вольта, что немного по сравнению с 220-вольтовым напряжением в бытовой" электросети. Поэтому батарейки не опасны для потребителя. Любая батарейка, напряжение которой превышает 1,5 вольта (например, 6 вольт) - это, в сущности, комплект соединенных последовательно батареек по 1,5 вольта. Исключением являются перезаряжаемые никелево-кадмиевые батарейки, напряжение которых в заряженном состоянии только 1,2 вольта.

Электрический заряд батареек. Количество электричества в батарейках измеряется в ампер - или миллиампер-часах. Если к примеру, заряд батарейки равен 1,0 ампер-часу, а электрический прибор, в котором она работает, требует тока в 200 миллиампер (т.е. в 0,2 ампера), срок действия батарейки вычисляется по следующей формуле:

в приведенном при мере этот срок составит пять часов (1,0: 0,2 = 5).

Саморазряд - это следствие нерабочего состояния батарейки, который ведет к потере емкости. Режим хранения может возникать по двум причинам. Во-первых, это касается новой продукции с момента выпуска и до начала использования. Во-вторых, если использовать ресурс батарейки с достаточно длинными промежутками-перерывами.

Причина саморазряда кроется в самой батарейке - неустойчивости электродов, загрязнении электролита. Обычно за нормированный срок хранения батарейка теряет порядка 30% своей начальной емкости. Наиболее сильно разряжается батарейка в начале хранения. Также саморазряд возрастает при повышении температуры.

Типы батареек:

Достоинства

Недостатки

Сухие («солевые», LeClanche, угольно-цинковые)

Самый дешёвый, массово производится.

Наименьшая ёмкость; плох в работе с мощными нагрузками (большим током); плох при низких температурах.

Heavy Duty («мощный» сухой элемент, хлорид цинка)

Менее дорогой, чем щелочной. Лучше LeClanche при высоком токе и низких температурах.

Низкая ёмкость.

Щелочные («алкалиновые», щелочно-марганцевые)

Средняя стоимость. Лучше предыдущих при большом токе и низких температурах. При разряде сохраняет низкое значение полного сопротивления. Широко выпускается.

Спадающая кривая разряда.

Постоянство напряжения, высокая энергоемкость и энергоплотность.

Высокая цена. Из-за вредности ртути уже почти не производятся.

Серебряные

Высокая ёмкость. Плоская кривая разряда. Хорош при высоких и низких температурах. Превосходная длительность хранения.

Литиевые

Наивысшая ёмкость на единицу массы. Плоская кривая разряда. Превосходен при низких и высоких температурах. Чрезвычайно длительное время хранения. Высокое напряжение на элемент (3В). Лёгкий.

Описание

Достоинства

Недостатки

Первичные

Гальванические элементы. Реакции, происходящие в них, необратимы, поэтому их нельзя перезарядить. Обычно именно их и называют словом «батарейка». Попытка зарядить батарейку может привести к порче батарейки и утечке щелочи или других веществ находящихся в батарейке.

Выше ёмкость и/или дешевле.

Одноразовость применения.

Вторичные

Аккумуляторы. В отличие от первичных, реакции в них обратимы, поэтому они способны преобразовывать электрическую энергию в химическую, накапливая её (заряд), и выполнять обратное преобразование, отдавая электрическую энергию потребителю (разряд). Для распространённых аккумуляторов число циклов заряд-разряд обычно равно примерно 1000 и заметно зависит от условий эксплуатации.

Многократность применения, перезаряжаемые.

Ниже ёмкость и/или дороже.

Что такое щелочная батарейка?

Около 40 лет назад компания Duracell первой разработала щелочную химическую систему с использованием двуокиси марганца. В 1960-1970-ые годы данные батарейки стали очень популярны среди разработчиков электронных устройств. Щелочные батарейки имеют множество преимуществ перед солевыми: большая емкость, более широкий температурный режим, меньшая вероятность протечки, дольший срок хранения. Все это позволило им завоевать популярность во всем мире.

Надпись на батарейке "Alkaline" свидетельствует о том, что это щелочная батарейка. Они хранятся дольше солевых элементов. Название они получили по природе электролита: обычно используют КОН, истинную щелочь. При непрерывном разряде щелочные батарейки обеспечивают большую (в 7-10 раз) емкость по сравнению с аналогичными солевыми элементами. Они лучше работают при низких температурах, но приблизительно на 30% тяжелее. Скорость саморазряда ниже, после года хранения при комнатной температуре потери емкости не превышают 10%. Однако все эти преимущества накладывают отпечаток на цену продукции.

Что такое литиевая батарейка?

Хим.состав - литий-диоксид марганца.

Последние несколько деситилетий технический прогресс привёл к увеличению разнообразия и миниатюризации устройств, работающих от батареек. Для многих из этих устройств потребовались более мощные элементы питания, при этом достаточно компактные. Литиевые батарейки стали ответом на такую потребность. Литиевые батарейки демонстрируют великолепные результаты и обладают целым рядом положительных характеристик: долгий срок хранения, высокая надёжность и отличная работоспособность в широком диапазоне температур.

Аккумуляторные элементы питания.

Особый вариант представляют собой никелево-кадмиевые батарейки (вторичный элемент питания), которые можно многократно перезаряжать.

Аккумуляторная батарея - автономный источник тока, работает сам по себе без помощи генератора. Он преобразовывает один вид энергии в другой. Она из химической энергии получает электрическую.

Аккумулятор - очень удобный источник постоянного тока, так как она компактна и легко переносима. Благодаря этому, сфера применения этих батарей очень широка. Аккумуляторные батареи используются в автомобилях, электропоездах, электропогрузчиках, в компьютерах, радиотелефонах, сотовых телефонах, фотоаппаратах, видеокамерах, ноутбуках, калькуляторах.

Основными характеристиками аккумулятора являются емкость и предельная сила тока. Чтобы получить более высокое напряжение (до нескольких сот вольт), нужное число элементов соединяют последовательно. Емкость батареи электропитания в ампер-часах равна произведению предельного тока на продолжительность разрядки. Например, если батарея может давать ток силой 3 А в течение 20 ч, то ее емкость равна 60 АЧч.

Никелево-кадмиевые батарейки можно многократно перезаряжать, и это - их главное преимущество перед другими батарейками. Их недостаток - невысокое напряжение - 1,2 вольта.

Саморазрядка у этих батареек - если они не присоединены к зарядному устройству - составляет около 30% в месяц. Это значит, что если они долго лежали, ими нельзя пользоваться без подзарядки. Величина заряда у никелево-кадмиевых батареек приблизительно соответствует величине заряда батареек группы С, а стоят они дороже.Но расходы на приобретение этих батареек и зарядного устройства окупаются достаточно быстро, если батарейки используются в приборах, потребляющих высокочастотный ток небольшой силы.

Во всякой аккумуляторной батареи есть положительный и отрицательный электроды, а также электролит, в котором эти электроды находятся. Бывают электролиты жидкие и пастообразные. Батареи заряжаются путем пропускания тока в противоположном направлении. В этом случае емкость восстанавливается благодаря обратной химической реакции.

Аккумуляторные батареи бывают свинцовыми, железно-никиелевыми, никель-кадмиевыми. Это зависит от материала из которого делаются электроды. Также есть высокотемпературные и топливные аккумулятор.

Миниатюрные элементы питания (батарейки - таблетки).

В обиходе имеют несколько названий - (дисковые, кнопочные, пуговичные). Предназначены для эксплуатации в часах, калькуляторах, видео- и фотоаппаратуре, в портативных электронных устройствах. Современные тенденции развития электронных технологий предполагают минимизацию габаритов и увеличение времени автономной работы электронной аппаратуры, что в свою очередь расширяет сферу применения данных батареек — компьютерная техника, медицина, телекоммуникации.

Диапазон использования широкий - от простейших пультов управления автомобильной сигнализацией до высокотехнологичных смартфонов и персональных электронных помощников.

Наиболее распространенные типы дисковых батареек: марганцево-цинковые, серебрянно-оксидные (серебрянно-цинковые), литиевые.

1. Марганцево-цинковые ЭП (Alkaline)

Применяются в калькуляторах, электронных часах, фотооборудовании, карманных фонарях. По техническим характеристикам (начальное напряжение и номинальная емкость) уступают серебрянно-оксидным, но имеют одно неоспоримое преимущество перед ними — низкую стоимость. Срок хранения — до 2 лет.

2. Серебряно-оксидные дисковые ЭП

Широко применяются в кварцевых электронных часах, калькуляторах, слуховых аппаратах, медицинской аппаратуре, электронных игрушках, сенсорных зажигалках. Представлены широким ассортиментом типо-размеров и обладают высокими энергетическими характеристиками. Характеризуются стабильным и постоянным разрядным напряжением до конца разряда. Гарантийный срок хранения — до 3 лет.

3. Литиевые дисковые ЭП

Применяются в многофункциональных наручных часах, домашних метеостанциях, авто-сигнализациях, электронных базах данных, измерительной аппаратуре, высокотехнологичных системах. Литиевые источники характеризуются высокими плотностями энергии и работоспособны в широком диапазоне температур (от —20°С до +55°С), поскольку не содержат воды. Они герметичны и имеют довольно стабильное напряжение. Батарейки этой электрохимической системы обладают исключительно малым саморазрядом (сохраняют более 85% емкости после 10 лет хранения). В микромощных устройствах, где важна надежность контактов, используют литиевые источники с выводами под пайку (горизонтальные и вертикальные). Гарантийный срок хранения - до 10 лет.

Как заставить работать батарейку дольше?

Знаете ли вы, что обычную батарейку, пальчиковую, например "AA", можно использовать и после того, как она впервые "села"? Да, она "села", но есть у неё ресурс, который можно использовать. Особенно это касается батареек на всяких пультах. Не спешите выбрасывать батарейку!!!

Просто выньте её и сделайте несколько вмятин на батарейке (плоскогубцами или ещё чем-нибудь, только не зубами). Главное не согните её, чтобы она обратно могла влезть на своё место в пульте. Вставляйте И пользуйтесь.

Многие знают секрет, что "севшую" батарейку можно ненадолго привести в "чувство", постучав ею о твердую поверхность. При этом гранулы диоксида марганца раскалываются контакт восстанавливается. А есть еще более варварский способ - пробить корпус батарейки гвоздем и погрузить корпус (не полностью) ненадолго в воду. В результате вода несколько разбавит электролит, и ему будет проще проникнуть к гранулам марганца.

ВНИМАНИЕ! НЕ ПРОБУЙТЕ ДЕЛАТЬ ЭТО С ПЕРЕЗАРЯЖАЮЩИМИСЯ БАТАРЕЙКАМИ!!!

Как правильно выбирать батарейки?

Театр, как известно, начинается с вешалки. Качество батарейки начинается с ее упаковки.

Батарейки типоразмеров R20 (LR20), R14 (LR14), R6 (LR6), RОЗ (LR03), R1 (LR1) и 6F22 (6LF22, 6LR61) в блистерной упаковке, как правило, отличаются высоким качеством в своей подгруппе.

Блистер - это прозрачная пластмассовая коробочка, в которой лежит от одной до четырех батареек. Коробочка приклеена к цветной картонной открытке, на которой (фото 1) мы видим: название фирмы с символом ее регистрации (DURACELL R, EVEREADY), самую важную, по мнению фирмы, информацию (EXTRA POWER, Nothing lasts longer; Heavy Duty), обозначение типоразмера по разным стандартам (С, А-343, LR14, LR20, D) и обязательно срок годности (INSTALL BY JAN 2000; Best before MAR 2000).

На обороте открытки на нескольких языках (включая русский!) сообщаются сведения о гарантиях, режиме работы, развернутая информация по типоразмерам, штриховой код (который можно вырезать и отправить на фирму с претензией по качеству), название страны, где изготовлены батарейки. Самое важное дополнительно сообщается и на этикетке батарейки: Sunwatt (знак R, три разновидности обозначения типоразмеров, указана страна), HIPOWER (знака R нет, две разновидности обозначения типоразмеров, страна не указана), Vnn (знака R нет, три разновидности обозначения типоразмеров, страна указана).

Кроме блистеров используют еще два вида упаковок - прозрачную термоусаживаемую пленочную или в виде мешочка (у 9-вольтовых батареек) и коробки - обычно на 24 штуки. В такой картонной коробке батарейки могут размещаться в блистерах, в пленке или без индивидуальной упаковки. На коробке обязательна информация, о которой говорилось выше.

Срок службы любой батарейки определяется несколькими факторами, такими, как уровень потребления энергии данного прибора или устройства, количество часов его непрерывного использования, возраст батареек и мощность, на которой данный прибор работает.

Как утилизовать. Щелочные батарейки можно выкидывать вместе с любым бытовым мусором без какой-либо опасности для окружающей среды.

Батарейки необходимо извлекать из любого прибора в том случае, если вы его не используете в течение нескольких месяцев. Кроме того, их нельзя оставлять в приборе, когда он включен в бытовую электросеть.

Батарейки, которые носят в открытом виде в кармане или сумке, при контакте с другими металлическими предметами могут подвергнуться замыканию, что в свою очередь может вызвать их протекание или неисправность.

Батарейки всегда должны заменяться одновременно. Смешивание старых и новых батареек, а также типов батареек (таких, как солевые и щелочные) приводит к снижению качества работы устройства и может вызвать протекание.

Наиболее распространённые форматы элементов питания:

Формат

Номенклатура/МЭК

Форма

Размеры,мм

Напряжение

Обиход. название

LR8 / D425 / 25A

"мизинчиковая"

"мизинчиковая"

"пальчиковая"

R14 / LR14 / UM2

"средняя"

"большая"

MN27 / A27 / BL1

"для сигнализаций"

MN21 / A23 / K23A / LRV08

"для сигнализаций"

R1 / LR1 / UM5 / 910

"бочёнок"

"бочёнок"

"бочёнок"

вышел из обихода

A476 / 4LR44 / V4034PX

"боченок"

"боченок"

Параллелепипед

"квадратная"

6F22/6LR61/6F22UT

Параллелепипед

48,5 * 26,5 * 17,5 9

LR521/(SR)521W/379

таблетка

"часовая"

LR60 / LR621 / SR621W / 164 / 364 / GP64A

таблетка

"часовая"

LR726 / LR59 / 196 / 396 / GP96A / (SR)726

таблетка

"часовая"

LR41 / 192 / 392 / GP92A / 392 / SR41W

таблетка

"часовая"

LR626 / LR66 / 177 / GP77A / 377 / SR626W

таблетка

"часовая"

LR754 / LR48 / 193 / GP93A / 393 / SR754W

таблетка

"часовая"

LR921 / LR69 / LR40 / 171 / GP71A / 371 / SR920W

таблетка

"часовая"

LR926 / LR57 / 195 / GP95A / 395 / SR927W

таблетка

"часовая"

LR1120 / LR55 /191 / GP91A / 391 / SR1120W

таблетка

"часовая"

LR936 / LR45 / 194 / GP94A / 394 / SR936W

таблетка

"часовая"

LR1130 / LR54 / 189 / GP89A / 389 / SR1130W

таблетка

"часовая"

LR721 / LR58 / 162 / GP62A / 362 / SR721W

таблетка

"часовая"

LR43 / 186 / GP86A /386 / SR43W

таблетка

"часовая"

LR44 / A76 / GP76A / 357 / SR44W

таблетка

"часовая"

LR9 / 625A / KA625 / V625U

"плоская"

"плоская"

"плоская"

"плоская"

"плоская"

"плоская"

"плоская"

"плоская"

http://www.patlah.ru

"Энциклопедия Технологий и Методик" Патлах В.В. 1993-2007 гг.

В наше время батарейки являются самыми распространёнными источниками питания для электроники и мелкой техники. Необходимость их замены возникает довольно часто. Для того чтобы сделать оптимальный выбор при покупке нового гальванического элемента, следует обращать внимание не только на размеры батареек и наименование производителя. В этой статье найдутся ответы на следующие вопросы: какой формы бывают эти источники питания? Какими бывают по размеру? Как маркируются гальванические элементы и на что нужно обратить внимание при покупке, чтобы источник питания прослужил долго?

Виды батареек

Классификация батареек осуществляется в зависимости от материалов, из которых изготовлены их активные компоненты: анод, катод и электролит.

Существует пять видов современных источников питания:

  • солевые,
  • щелочные,
  • ртутные,
  • серебряные,
  • литиевые.

Типы батареек по размеру будут перечислены ниже. А сейчас подробно рассмотрим каждый из указанных классов гальванических элементов.

Солевые батарейки

Солевые батарейки были созданы во второй половине двадцатого столетия. Они пришли на смену существовавшим ранее марганцево-цинковым источникам питания. Размеры батареек не изменились, а вот технология изготовления этих гальванических элементов стала другой. В солевых источниках питания в качестве электролита используется раствор хлорида аммония. В нём размещены электроды, изготовленные из цинка и оксида марганца. Соединение между отдельными электролитами осуществляется при помощи солевого моста.

Основным достоинством таких батареек является их низкая стоимость. Эти гальванические элементы питания самые дешёвые среди всех существующих.

Недостатки солевых батареек:

  • в период разряда существенно снижается напряжение;
  • срок хранения мал и составляет всего 2 года;
  • к концу гарантированного срока хранения ёмкость снижается на 30-40 процентов;
  • при низкой температуре ёмкость уменьшается практически до нуля.

Щелочные батарейки

Такие батарейки были изобретены в 1964 году. Ещё одно название этих источников питания - алкалайновые (от английского слова alkaline, что в переводе означает именно «щелочной»).

Электроды такой батарейки изготовлены из цинка и двуокиси марганца. В качестве электролита выступает щёлочь гидроксид калия.

На сегодняшний день именно эти батарейки являются самыми распространёнными, ведь они отлично подходят большинству электронных устройств.

Достоинства алкалайновых источников питания:

  • обладают большей ёмкостью в сравнении с солевыми и, как следствие, более длительным сроком службы;
  • могут работать при низкой температуре окружающей среды;
  • обладают улучшенной герметичностью, то есть вероятность протечки снижена;
  • имеют более длительный срок хранения, который составляет 5 лет;
  • обладают сниженной скоростью саморазряда по сравнению с солевыми батарейками.

Недостатки щелочных источников питания:

  • период разряда характеризуется постепенным снижением выходного напряжения;
  • размеры батареек алкалайновых аналогичны параметрам солевых, а вот стоимость и масса щелочных источников питания выше.

Ртутные батарейки

В такой батарейке анод изготавливается из цинка, катод - из оксида ртути. Электроды разделены при помощи сепаратора и диафрагмы, которая пропитана 40% раствором гидроксида калия. Щёлочь здесь используется как электролит. Благодаря именно такому составу этот источник питания может работать как аккумулятор. Но при цикличной работе гальванический элемент деградирует, ёмкость его снижается.

Достоинства ртутных батареек:

  • стабильное напряжение;
  • высокие показатели ёмкости и плотности энергии;
  • возможность работы как при высокой, так и при низкой температуре окружающей среды;
  • длительный срок хранения, который составляет 10 лет.

Недостатки ртутных источников питания:

  • высокая цена;
  • возможность опасного воздействия паров ртути в случае разгерметизации;
  • необходимость налаживания процесса сбора и утилизации.

Серебряные батарейки

В серебряной батарейке для производства анода используется цинк, для катода - оксид серебра. Электролитом выступает гидроксид натрия или калия.

  • стабильность напряжения;
  • наличие высоких показателей ёмкости и плотности энергии;
  • невосприимчивость к температуре окружающей среды;
  • длительный срок службы и хранения.

Недостатком таких батареек является их высокая стоимость.

Литиевые батарейки

В такой батарейке катод изготовлен из лития. Он отделён от анода с помощью сепаратора и диафрагмы, которая пропитана органическим электролитом.

Достоинства литиевых батареек:

  • постоянное напряжение;
  • высокая ёмкость и плотность энергии;
  • независимость энергоёмкости от тока нагрузки;
  • небольшая масса;
  • длительный срок хранения, который составляет до 12 лет;
  • невосприимчивость к перепадам температур.

К недостаткам литиевых батареек можно отнести лишь их дороговизну.

Как указано выше, источники питания имеют разный химический состав. Также существенно отличаются друг от друга формы и размеры батареек. Гальванические элементы имеют разную высоту, диаметр и напряжение. Рассмотрим классификацию батареек в соответствии с этими параметрами.

В зависимости от напряжения, высоты, диаметра и формы, источники питания можно определённым образом систематизировать. Одной из самых популярных систем классификации является американская. Она представлена на рисунке ниже. Такая стандартизация отличается удобством, её применяют во многих странах.

Согласно американской системе источники питания классифицируются следующим образом:

Название

Высота, мм

Диаметр, мм

Напряжение, В

Кроме класса, указанного в таблице, источники питания имеют и обиходное название, которое используется в народе. К примеру, размер сопоставим с размером человеческого пальца, поэтому «народное» название этого гальванического элемента - «пальчиковая» батарейка, или «два А». А вот источник питания C именуется в обиходе «дюймовочкой». Гальванический элемент D называют «бочкой». А размеры которой схожи с параметрами самого маленького пальца человека, не зря именуется «мизинчиковой», или «три А». Источник получил название «крона».

Также в электронике широко используются миниатюрные круглые батарейки, размеры и названия которых отличаются многообразием. Более подробная информация о серебристых «пилюлях» и классификация таких источников питания приведена ниже.

Батарейки «таблетки»: размеры и названия

Ещё одно название миниатюрной круглой батарейки - сухой элемент. Такие источники питания состоят из анода, выполненного из оксида серебра, цинкового катода и электролита. В качестве последнего выступает смесь солей, которая имеет пастообразную консистенцию.

Разные производители нередко присваивают таким источникам питания обозначения, которые отличаются от стандартных. Ниже приведена классификационная таблица, в которой указаны альтернативные названия и размеры часовых батареек.

Именно эти миниатюрные серебристые «таблетки» заставляют работать механизмы современных наручных часов. Когда приходит время заменить батарейку, можно столкнуться с вопросом, какой же источник питания подойдёт в этой ситуации? К примеру, если в часах использовался элемент 399, можно вместо него ставить миниатюрную батарейку, которая в зависимости от производителя может иметь названия V399, D399, LR57, LR57SW, LR927, LR927SW или L927E. Под такими наименованиями будет производиться «таблетка», высота которой составляет 2,6 миллиметров, а диаметр - 9,5.

Размер батареек - это не единственный параметр, на который следует обращать внимание при покупке источников питания. Для того чтобы научиться расшифровывать информацию, которая располагается на гальванических элементах, нужно ознакомиться с основными принципами их маркировки.

Маркировка батареек

Международной электротехнической комиссией (IEC) создана определённая система обозначений, согласно которой следует маркировать все батарейки. На корпусе источника питания должна быть указана информация о его энергоёмкости, составе, размере, классе и величине напряжения. На примере батарейки, изображённой ниже, рассмотрим подробнее все элементы маркировки.

Информация, указанная на источнике питания, свидетельствует о следующем:

  • электрический заряд гальванического элемента составляет 15 А*ч;
  • класс источника питания - AA, то есть это «пальчиковая» батарейка;
  • напряжение составляет 1,5 Вольта.

А что означает надпись "LR6"? Это, собственно, и есть маркировка, которая даёт информацию о химическом составе и классе источника питания. Виды батареек имеют следующие буквенные обозначения:

  • солевая - R;
  • щелочная - LR;
  • серебряная - SR;
  • литиевая - CR.

Классы батареек обозначаются такими цифрами:

  • D - 20;
  • C - 14;
  • AA - 6;
  • AAA - 03;
  • PP3 - 6/22.

Теперь можно расшифровать маркировку LR6 на приведённом рисунке. Буквы здесь обозначают, что это щелочной гальванический элемент, а цифра указывает размер «пальчиковой» батарейки, то есть указывает принадлежность источника питания к классу AA.

Сфера применения и особенности выбора батареек

В первую очередь следует отметить, что все гальванические элементы отвечают требованиям унификации, то есть потребитель без проблем может заменить источник питания одного производителя аналогичной батарейкой другого. Есть лишь одно предостережение: не следует использовать в одном устройстве источники тока, изготовленные разными фирмами или тем более относящиеся к разным видам. Это существенно снизит срок службы батареек.

При выборе источников питания нужно обратить внимание на упаковку. Нередко производитель указывает на ней устройства, в которых рекомендуется использовать именно эти батарейки. Если такая информация не предоставлена, советы, размещённые ниже, помогут сделать правильный выбор.

Солевые батарейки обладают малой ёмкостью в 0,6-0,8 А*ч и используются в устройствах с малым энергопотреблением. Это могут быть пульты дистанционного управления, термометры электронные, тестеры, весы напольные или кухонные. Также солевые элементы могут быть использованы как Размеры таких источников тока аналогичны соответствующим параметрам алкалайновых, однако области их применения существенно разнятся. Ведь если использовать солевые батарейки в устройствах с электродвигателем, фонариках или фотоаппаратах, то срок их службы может составить всего 20-30 минут. Такие гальванические элементы не рассчитаны на большие нагрузки.

Щелочные батарейки обладают достаточно большой ёмкостью в 1,5-3,2 А*ч. Это позволяет успешно использовать их в устройствах, которые имеют повышенное энергопотребление. К таким приспособлениям относятся цифровые фотоаппараты со вспышкой, фонарики, детские игрушки, офисные телефоны, компьютерные мышки и т. п. Батарейки, разработанные специально для фотоаппаратов, быстрее отдают энергию. Это положительно отражается на скорости работы камер. Если использовать алкалайновый источник питания в устройствах с небольшим энергопотреблением, то батарейки покажут отличный результат, их срок службы составит несколько лет.

Двадцать - тридцать лет назад ртутные батарейки широко использовались в таких устройствах, как кардиостимуляторы, слуховые аппараты, приспособления военного назначения. На сегодняшний день использование этих источников питания является ограниченным. Во многих странах запрещено производить и эксплуатировать такие гальванические элементы из-за того, что ртуть является токсичным веществом. В случае использования этих источников тока необходима организация их отдельного сбора и утилизация согласно требованиям безопасности.

Серебряные батарейки не получили массового распространения из-за высокой стоимости металла. Однако миниатюрные источники питания этого вида широко используются в наручных часах, материнских платах ноутбуков и компьютеров, слуховых аппаратах, музыкальных открытках, брелоках и прочих устройствах, где невозможно использовать батарейки большего размера.

Литиевые батарейки имеют более длительный срок службы в сравнении даже с лучшими алкалайновыми. Поэтому такие источники питания применяются в устройствах, которые обладают высоким энергопотреблением. Это может быть компьютерная и фототехника, медицинская аппаратура.

Заключение

Батарейка - изделие, которое, несмотря на свои небольшие размеры, может быть опасным. Нельзя разбирать источник питания, бросать его в огонь и, конечно, пытаться перезарядить. В сети можно отыскать советы о том, как подарить батарейке вторую жизнь. Не пытайтесь проводить такие эксперименты, ведь это может быть опасно.

При покупке новых батареек следует обращать внимание не только на производителя и подходящие размеры, но и на химический состав источников питания. Для этого нужно уметь читать маркировку. Правильно подобранные батарейки будут служить долго и качественно.

Определение внутреннего омического сопротивления (постоянному току) у батарейки или аккумулятора

Существует множество методик и практических способов, чтобы определить внутреннее сопротивление источников питания, на постоянном или на переменном токе. В данной статье рассмотрены несложные приёмы измерений и расчётов, когда из всей аппаратуры в наличии имеется только простейший китайский тестер.

По описанным в руководствах методикам, производятся измерения и вычисления, результаты которых записываются с точностью до второго знака после запятой. Искомый параметр зависит от типа и величины нагрузки, текущей температуры и состава электролита, степени разряда батарейки и заряженности аккумулятора, и от множества других факторов. Поэтому, всегда будет присутствовать определённая, большая или маленькая, ошибка измерений.

Формула для упрощённого расчёта внутреннего электрического сопротивления:

Rвн = (R * (Е – U)) / U

Е – напряжение без нагрузки. ЭДС покоя – примерно равняется напряжению Е (при высоком входном сопротивлении присоединённого вольтметра), когда химический источник электропитания находился без нагрузки достаточно длительное время (более 2-3 часов).

U – кратковременно (не более 10 секунд), под нагрузкой (2-12 Ом),
с номинальной мощностью рассеяния - не менее 2 Вт. Лампочка для этого не годится , т.к. при нагревании спирали накала, её электросопротивление значительно меняется, существенно увеличивается. Для этих целей хорошо подходит толстая нихромовая ( – в несколько десятков раз меньше, чем у стали, меди и вольфрама) проволока от старой открытой электроплиты, откалиброванная отдельными отрезками по нужным номиналам R и закреплённая на негорючем диэлектрическом основании.

Формула для более точных измерений с двумя различными резисторами (обеспечивающими приблизительно, 20-30 и 70 процентов от допустимого, например, 3 и 9 Ом), то есть, только под нагрузкой:

Rвн = (R1 * R2 *(U2 – U1)) / (U1*R2 – U2*R1)

При измерениях электрического тока (на верхнем, амперном пределе), с использованием обычных китайских мультиметров – возможна существенная систематическая ошибка из-за внутреннего сопротивления самого прибора. Поэтому, стандартные формулы со значением тока в уравнении – обеспечат максимально точный результат, только когда применяются с промышленной, специальной аппаратурой, при строгом соблюдении правил и методик лабораторных измерений по ГОСТ (заданные интервалы времени, порядок и последовательность стендовых испытаний). По результатам измерений с двумя резисторами, вычисляется дельта (разница) напряжений и токов:

Rвн = dU/dI

На практике, применяют и упрощённый способ с одним резистором, где дельта считается от напряжения без нагрузки (как в первом варианте), а ток вычисляется по закону Ома. Как первая формула:

Rвн = (Е – U) / (U/R) =

Или вариант с реальным измерением тока: (Е – U) / I

Так же, зная ток при двух различных нагрузках, математически рассчитывается ток короткого замыкания (теоретически возможный) – по формуле из задачи с уравнениями для школьного курса физики старших классов. Данная формула не учитывает всех химических процессов в элементах электропитания, на предельных нагрузках, и конструктивных особенностей. Поэтому, вычисленное значение будет отличаться от фактически возможного:

Iкз = (I1*I2*(R2 – R1)) / (I2*R2 – I1R1) при R1 < R2

При непосредственном измерении Iкз ("коротыша") тестером, тоже, получатся заниженные показатели – из-за внутреннего сопротивления самого прибора.

// Быстрый и объективный способ проверки работоспособности – стрелочным тестером, имеющим автоматическую защиту от перегрузки, тестируется аккумулятор или обычная батарейка на "ток короткого замыкания", включая на 2-3 секунды. Должно быть - не меньше 2 ампер. Норма – если будет больше 3 А. Метод суровый, но объективный. При таком тестировании – сразу видно "переходную характеристику" во время разряда (по стрелочному индикатору тестера), насколько хорошо аккумулятор держит большую нагрузку. Цифровые показатели – максимальный ток (для вычислений, в качестве Iкз - это не годится, т.к общее сопротивление цепи - ненулевое) и скорость спада. Чтобы не испортить, какой-нибудь, особо ценный элемент питания, в цепь последовательно подключается достаточно мощное нагрузочное сопротивление, до нескольких сотен миллиом.

Если электросопротивление самодельной низкоомной нагрузки измеряется цифровым тестером, на малом пределе (200), то нужно учитывать внутреннее сопротивление самого мультиметра, проводов и контактов. Цифры на табло, при замкнутых накоротко щупах прибора, могут иметь значения, например – 00.3 или 004 Ом, то есть – 300 или 400 миллиом, соответственно, которые нужно будет вычитать. Это уменьшит ошибку измерений, но в конечном результате - останется ещё внутренняя погрешность тестера (указывается в тех.паспорте устройства). Поэтому, низкоомные резисторы – лучше мерить по схеме резистивного делителя, на основе точного измерения падения напряжения (в приборе наивысшая точность – именно для DCV) на участке последовательной цепи с эталонным прецизионным резистором (образцовое высокоточное постоянное электросопротивление с точностью 0.05-1%, имеющее на корпусе серую полоску цветной маркировки). Из пропорции Rx/Rэталон=Ux/Uэталон считается искомое электрическое сопротивление Rx.

// Узнать внутреннее сопротивление любого мультометра, включённого в режиме омметра, можно с помощью низкоомного прецизионного резистора. Померенное значение R будет отличаться от номинала на искомую величину.

Примерные величины внутреннего электро-сопротивления (току) для исправных-свежих источников питания повышенной ёмкости, при нормальной температуре:
- литиевый элемент (типоразмер АА) – < 200 мОм (миллиом).
- щелочная батарейка (размер АА) – до 200 мОм.
- никель-металл-гидридные аккумуляторы (АА, NiMH) – до 150 мОм.
- заряженный свинцовый акк. – первые десятки мОм.
- Li-ion, Li-po аккумулятор – от единиц до первых десятков миллиом.
- LiFePO4 литий-железо-фосфатный акк. – единицы миллиом.
- Li4Ti5O12 литий-титанат. акк. – до 1 мОм

Статьи с тестом батареек и их восхвалением. В душе у меня он вызвал небольшое негодование, особенно когда многие стали писать что используют их в пультах РУ. Сразу вспомнив что в моем пульте используется 8 аккумуляторов и представив что многие часто выкидывают 8 батареек на помойку стало не по себе.

Сразу скажу что для статьи я использовал сугубо данные из чужих тестов. Сам тесты не проводил т.к. часто сталкивался с практическим подтверждением этих тестов лично и не вижу смысла в их повторении в сотый раз.

Важная информация которую полезно знать:

1. Ни в одном более менее нормальном и сложном устройстве, например таком как пульт управления не используется питание напрямую от батареи, обычно ставят в зависимости от качества аппаратуры и требованиям к питанию импульсный стабилизатор с хорошей фильтрацией (качественная дорогая аппаратура), линейный стабилизатор/импульсный стабилизатор (обычная аппа), например в моей 7ми канальной футабе несколько линейных стабилизаторов, ВЧ блок передачи питается от стабилизатора на... внимание... на 5 вольт! при том что аппаратура питается от сборки 8-ми никель металлгидридных аккамуляторов напряжением 9.6 вольт. (для справки импульсные стабилизаторы обладают очень высоким КПД, линейные стабилизаторы всю лишнюю энергию превращают в тепло, так, например, при токе в 1А и понижении напряжения с 10 вольт до 5 на них выделяется 5Вт и кпд составляет ~50% так что например ставить в мою аппаратуру батарейки АА смысла никакого нет, при большем напряжении большая часть энергии просто уйдет в тепло).

2. Среднее напряжение до которого заряжаются аккумуляторы это 1.4-1.6 В. Напряжение под нагрузкой в процессе их разряда изменяется от 1.4В до 0.9В. Без нагрузки напряжение на разряженных аккумуляторах 1.0-1.1 В. Если разрядить сильнее то аккумулятору с большой вероятностью будут нанесены необратимые повреждения. В зависимости от степени и количества разрядов аккумулятор в последствии выйдет из строя.

3. Не смотря на, вроде как, меньшее номинальное напряжение аккумуляторов, обычно заявляется как 1.2В, в то время как у батареек оно заявляется равным 1.5В, график разряда аккумуляторов более пологий по сравнению с обычными батарейками АА и при начале разряда они сохраняют свое напряжение в отличии от батареек у которых оно сразу начинает падать до 1.3-1.2В.
Пример можно посмотреть на картинке:
при 23 градусах


при -15 градусах

Обращаю внимание что любое устройство перестают функционировать когда напряжение достигает какого-то определенного для этого устройства порогового значения. На графике при обычной температуре очень хорошо видно что например аккумуляторы практически все время разряда держат напряжение выше 1 вольта, если быть точнее то модель приведенная на графике держала напряжение выше 1 вольта примерно 95-98% времени разряда в ноль. Обычные же батарейки имеют более наклонный график и в данном примере например батарейка держалась выше 1 вольта примерно 80% времени разряда в ноль. И это батарейка которая в данной статье набрала максимальную емкость!
Если же верхним порогом поставить напряжение в 1.1В то у аккумулятора оно держится примерно 90-92% времени! А у батарейки 53% ! Разница на лицо!!

На морозе ситуация с батарейками только усугубляется, причем значительно! В данном тесте время работы батарейки при -15 по по сравнению с временем работы при +23 изменилось следующим образом:
при разряде до 1 В время работы уменьшилось примерно в 8 раз!
при разряде до 1.1 В время работы уменьшилось примерно в 7 раз!

Для аккумулятора падение времени разряда составило примерно 1.5 раза.

А если еще вспомнить про линейные регуляторы напряжения которые на самом деле используются очень часто так только они могут выдать ток без пульсации при копеечной цене, про зависимость напряжения от температуры, то в итоге львиная доля батарейки не будет использована.

Вывод из этого может быть только один - максимум где можно использовать батарейки это сверхнизкоточные устройства, такие как пульт от телевизора, часы, ароматизатор воздуха. И то если не брать в расчет аккумуляторы со сверх низким током саморазряда, такие как eneloop.

P.S. Хотелось бы узнать статистику использования батареек, кто, как часто и где их использует, предлагаю в комментариях ниже написать.
P.S.2. Надеюсь эта информация пролила свет на то почему очень важно иметь график зависимости напряжения батарейки/аккумулятора от времени разряда в тестах. Также в этой маленькой статье нет графика зависимости времени от тока разряда, но в целом стоит отметить что чем больше ток тем сильнее усугубляется ситуация с батарейками. Чем меньше ток тем больше сокращается разница между хорошими батарейками и аккумуляторами (если не учитывать аккумуляторы с низким током саморазряда, они по прежнему оставляют батарейки позади), но эта разница сокращается на хоть какое-то более менее значимое значение при токах порядка 0.5мА (пол года работы). При токах 200мА когда аккумулятор или батарейка разряжаются за 10-15 часов, ток саморазряда роли практически не играет и батарейки проигрывают по всем параметрам.