Назначение и основные схемы трансформаторных выпрямителей. Однополупериодные и двухполупериодные выпрямители

Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему счастью. На очереди у нас - подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете - тогда пожалуйста.

Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор - на схеме обозначается похожим как на рисунке,

Выпрямитель - его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.

а) - простой диод.
б) - диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) - тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).

Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:

Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl - сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.

Далее - пара-тройка постулатов.
- Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
- Под нагрузкой напряжение немного проседает, а насколько - зависит от конструкции трансформатора, его мощности и емкости конденсатора.
- Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.

Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground - земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее - общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой - минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения - если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так - если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто - двуполярным двухуровневым.

Ну а теперь к делу.

1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.

2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, намного большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.

3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.

4. Мостовая схема двуполярного выпрямителя.
Для многих - наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух - всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.

5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход - если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.

6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания - они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам - 0,5А, то нам и нужны два блока питания - +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.

7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три - тройное и т.д.

Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:

Для однополупериодного выпрямителя формула несколько отличается:

Двойка в знаменателе - число "тактов" выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.

Во всех формулах переменные обзываются так:
Cф - емкость конденсатора фильтра, мкФ
Ро - выходная мощность, Вт
U - выходное выпрямленное напряжение, В
f - частота переменного напряжения, Гц
dU - размах пульсаций, В

Для справки - допустимые пульсации:
Микрофонные усилители - 0,001...0,01%
Цифровая техника - пульсации 0,1...1%
Усилители мощности - пульсации нагруженного блока питания 1...10% в зависимости от качества усилителя.

Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.

В данной статье расскажем что такое выпрямитель тока, принципы его работы и схемы выпрямления электрического тока.

Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (одно полярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.

Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:

U ср = U max / π = 0,318 U max

Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.

Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.

Если ток вторичной обмотки трансформатора течёт по направлению от точки «А» к точке «В», то далее от точки «В» ток течёт через диод VD3 (диод VD1 его не пропускает), нагрузку R н , диод VD2 и возвращается в обмотку трансформатора через точку «А».

Когда направление тока вторичной обмотки трансформатора меняется на противоположное, то вышедший из точки «А», ток течёт через диод VD4, нагрузку R н , диод VD1 и возвращается в обмотку трансформатора через точку «В».

Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.

Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.

По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:

U ср = 2*U max / π = 0,636 U max

где: π — константа равная 3,14.

Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго — положительный):

Трёхфазные выпрямители электрического тока (Схема Ларионова)

Трёхфазные выпрямители обладают лучшей характеристикой выпрямления переменного тока – меньшим коэффициентом пульсаций выходного напряжения по сравнению с однофазными выпрямителями. Связано это с тем, что в трёхфазном электрическом токе синусоиды разных фаз «перекрывают» друг друга. После выпрямления такого напряжения, сложения амплитуд различных фаз не происходит, а выделяется максимальная амплитуда из значений всех трёх фаз входного напряжения.

На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение (красным цветом), образованное на «вершинах» трёхфазного напряжения.

За счёт «перекрытия» фаз напряжения, выходное напряжение трёхфазного однополупериодного выпрямителя имеет меньшую глубину пульсации. Вторичные обмотки трансформатора могут быть использованы только по схеме подключения «звезда», с «нулевым» выводом от трансформатора.

На следующем рисунке представлена схема трёхфазного двухполупериодного мостового выпрямителя (схема Ларионова) и его выходное напряжение (красным цветом).

За счёт использования положительной и перевернутой отрицательной полуволны трёхфазного напряжения, выходное напряжение (выделено красным цветом), образованное на вершинах синусоид, имеет самую маленькую глубину пульсаций выходного напряжения по сравнению со всеми остальными схемами выпрямления. Вторичные обмотки трансформатора могут быть использованы как по схеме подключения «звезда», без «нулевого» вывода от трансформатора, так и «треугольник».

При конструировании блоков питания

Для выбора выпрямительных диодов используют следующие параметры, которые всегда указаны в справочниках:

— максимальное обратное напряжение диода – U обр ;

— максимальный ток диода – I max ;

— прямое падение напряжения на диоде – U пр .

Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.

Максимальное обратное напряжение диода U обр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n , который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.

Значение максимального тока I max выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.

Прямое падение напряжения на диоде – U пр , это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.

Схемы выпрямителей электрического тока предназначены для преобразования переменного — изменяющего полярность напряжения в однополярное — не изменяющее полярность. Но этого недостаточно для превращения переменного напряжения в постоянное. Для того, чтобы оно преобразовалось в постоянное необходимо применение сглаживающих фильтров питания , устраняющих резкие перепады выходного напряжения от нуля до максимального значения.

В маломощных источниках питания (до нескольких сотен ватт) обычно используют однофазные выпрямители. В мощных источниках целесообразно применять трехфазные выпрямители.

Выпрямители имеют следующие основные параметры: а) среднее значение выходного u вых

U ср = 1/T· T ∫ 0 u вых dt

в) среднее значение

I д.ср тока отдельного вентиля;

г) максимальное (амплитудное) значение

I д.макс тока отдельного вентиля.

Токи I д.ср и I д.макс принято выражать через I ср. Значение U обр.макс используется для выбора вентиля по напряжению. Значения

I д.ср и I д.макс используются для выбора вентиля по току. Здесь следует иметь в виду, что вследствие малой тепловой инерционности полупроводникового вентиля он может выйти из строя даже в том случае, когда его средний I д.срм мал, но велик максимальный I д.макс.


Однофазный однополупериодный выпрямитель

Он является простейшим и имеет схему, изображенную на рис. 2.73, а . В таком выпрямителе через нагрузку протекает лишь в течение полупериода сетевого (рис. 2.73, б ).



Исходя из приведенных выше определений, получим основные параметры:

U ср = √2 / π · U вх вх ≈ 2,22 · U ср

I ср = U ср R н ε= π/ 2 = 1,57

U обр. макс = √2 · U вх = π· U ср

I д.ср = I ср

I д. макс = √2 · U вх / R н = π · I ср

Такой выпрямитель находит ограниченное применение в маломощных устройствах. Кроме прочего, характерной отрицательной чертой однополупериодного выпрямителя является протекание постоянной составляющей тока во входной цепи. Если выпрямитель питается через трансформатор, как показано на рис. 2.73, в , то наличие указанной постоянной составляющей тока вызывает подмагничивание сердечника трансформатора, что приводит к необходимости увеличивать его габаритные размеры.

Двухполупериодный выпрямитель со средней точкой

Представляет собой параллельное соединение двух однополупериодных выпрямителей. Рассматриваемый выпрямитель может использоваться только с трансформатором, имеющим вывод от середины вторичной обмотки (рис. 2.74, а ).


Диоды схемы проводят поочередно, каждый в течение полупериода (рис. 2.74, б ).


Основные параметры такого выпрямителя получим аналогично тому, как это делалось ранее:

U ср = 2 · √2 · U 2 / π≈ 0,9 · U 2

U 2 ≈ 1,11 · U ср

I ср = U ср / R н

ε= 2/ 3≈ 0,67

U обр.макс = 2 · √2 · U 2 = π · U ср

I д.ср = ½ · I ср

I д.макс = √2 · U 2 / R н = π· I ср / 2

где U 2 — действующее значение каждой половины вторичной обмотки.

Рассматриваемый выпрямитель характеризуется довольно высокими технико-экономическими показателями и широко используется на практике. При его проектировании полезно помнить о сравнительно большом обратном напряжении на диодах.

Однофазный мостовой выпрямитель


Не известна другая однофазная схема без трансформатора, в которой бы так рационально использовались диоды. Диоды в рассматриваемой схеме включаются и выключаются парами. Одна пара — это диоды D 1 и D 2 , а другая — D 3 и D 4 . Таким образом, к примеру, диоды D 1 и D 2 или оба включены и проводят ток, или оба выключены (рис. 2.75, б ).

Если не забывать мысленно заменять каждый включенный диод закороткой, а каждый выключенный — разрывом цепи, то анализ работы этой схемы оказывается совсем нетрудным.

Основные параметры усилителя следующие:

U ср = 2 · √2 / π· U вх ≈ 0,9 · U вх

U вх ≈ 1,11 · U ср

I ср = U ср / R н

ε = 2 / 3 ≈ 0,67

U обр.макс = √2 · U вх = π/2 · U ср

I д.ср = ½ · I ср

I д.макс = √2 · U вх / R н = π/2 · I ср

Такой выпрямитель характеризуется высокими технико-экономическими показателями и широко используется на практике. Часто все четыре диода выпрямителя помещают в один корпус.

Схема трехфазного выпрямителя с нулевым выводом

Его временные диаграммы работы приведены на рис. 2.76.

Коэффициент пульсаций выпрямленного составляет 0,25, в то время как для двухполупериодного однофазного выпрямителя коэффициент пульсаций равен 0,67. пульсаций в трехфазном выпрямителе в три раза выше частоты питающей сети.

Схема трехфазного мостового выпрямителя (схема Ларионова)

приведена на рис. 2.77.



Используемые в данной схеме 6 диодов выпрямляют как положительные, так и отрицательные полуволны трехфазного напряжения. Этот выпрямитель является аналогом однофазного мостового выпрямителя.

Рассматриваемый выпрямитель характеризуется высокими технико-экономическими показателями и очень широко используется на практике. Коэффициент пульсаций схемы очень мал (ε = 0,057), а пульсаций в шесть раз выше частоты сети. Все это позволяет в некоторых случаях не использовать выходной фильтр. Анализ работы рассматриваемой схемы сложнее, чем анализ работы однофазного мостового выпрямителя, однако не сопряжен с какими-либо принципиальными затруднениями.

Как известно, электрическая энергия производится, распределяется и потребляется преимущественно в виде энергии переменного тока. Так удобнее. Однако потребители электрической энергии бывают разные. Для потребителей переменного тока (асинхронных и синхронных электрических двигателей, трансформаторов, люминесцентных ламп) важно, чтобы потребляемый ими ток был знакопеременным (лучше всего – синусоидальным). Частота изменения знака тока стандартизована (в Украине – 50 Гц). Другие потребители требуют, ток был одного знака. К таким относятся электрические двигатели переменного тока, аккумуляторные батареи во время их заряда, гальванические и электролизные ванны, сварочные установки, электронные микросхемы и т.п. Их называют потребителями постоянного тока.

Выпрямитель – полупроводниковый преобразователь энергии, предназначенный для преобразования электрической энергии переменного тока в энергию постоянного тока. Потребность в использовании выпрямителя возникает тогда, когда для питания потребителя постоянного тока необходимо использовать энергию из источника переменного тока (например, промышленной или бытовой сети переменного тока). В таком случае выпрямитель включают между источником переменного тока и потребителем постоянного тока.

Выпрямители широко используются в блоках питания компьютеров, агрегатах бесперебойного питания, зарядных устройствах для мобильных телефонов и ноутбуков, на преобразовательных подстанциях электрического транспорта, в электроприводах постоянного тока, разнообразных электронных схемах.

Какие бывают выпрямители

Если задачей выпрямителя есть лишь преобразование рода тока (выпрямление), их строят на основе неуправляемых вентилей (диодов). В случае, когда на выпрямитель возложено также регулирование уровня напряжения, подаваемого к потребителю, необходимо использование управляемых вентилей (тиристоров). Подобного регулирования требует, например, электрический двигатель постоянного тока для изменения скорости вращения.

В зависимости от количества фаз питающей сети различают однофазные выпрямители и трехфазные.

По уровню мощности выпрямители подразделяют на маломощные (выпрямители сигналов) и мощные или силовые.

Вентили

Современные вентили – обычно полупроводниковые (маломощные – на основе кристаллов германия, более мощные – кремниевые). Не вдаваясь в подробности их внутреннего строения и физических принципов функционирования, рассмотрим только потребительские свойства.

Простейший из вентилей (диод ) является неуправляемым. Он имеет два вывода (анод А и катод К, см. рис. 1) и может проводить ток только в одном направлении – от анода к катоду. Если к аноду приложен положительный потенциал, а к катоду – отрицательный (как на рис. 1а), диод будет открыт, и через него будет протекать ток. Если поменять направление включения диода (как на рис. 1б) или источника питания U , ддиод будет закрыт, а ток – отсутствовать. Будем считать диод идеальным вентилем (то есть, его внутреннее сопротивление в открытом состоянии равно нулю, а в закрытом – бесконечности). Графическое обозначение диода на электрических схемах похоже на стрелку, показывающую единственное возможное направление протекания тока. Чтобы отличить на схеме один диод от других, рядом с их графическим обозначением пишут VD и текущий номер диода (например VD1 ).


Рис. 1. Способы включения диода (а – прямой, б – обратный)

Тиристор является вентилем управляемым. Кроме анода и катода, он имеет третий вывод (управляющий электрод УЭ на рис. 2). Он также проводит ток только в одном направлении (от анода к катоду). Для его отрывания необходимо выполнить два условия:

  • подать на анод положительный потенциал относительно катода (как для диода);
  • обеспечить протекание в цепи между управляющим электродом и катодом тока управления i у , направленного как на рис 2а.

Рис. 2. Два состояния тиристора (а – открыт и б – закрыт)

Для обеспечения протекания тока управления используют дополнительный источник напряжения u у . ВВеличина тока управления намного меньше тока между анодом и катодом (то есть силового тока). Если цепь управляющего электрода разомкнуть (как на рис. 2б), ток управления будет отсутствовать, и тиристор не откроется. Графическое обозначение тиристора похоже на обозначение диода, однако имеет третий вывод УЭ. Нумерацию тиристоров на схемах производят с использованием букв VS. Благодаря наличию управляющего электрода тиристор становится управляемым вентилем. Он открывается только тогда, когда будет выполнено на только первое условие его открывания, но и второе. Потому ток управления могут подавать не сразу после выполнения первого условия, а несколько позднее. Этот ток подается от специальной системы управления. Долее мы не будем показывать цепь, по которой протекает ток управления.

Рис. 3. Диоды

Тиристор имеет одну особенность: он открывается при помощи управляющего электрода, но закрывается только тогда, когда ток между анодом и катодом исчезнет. Добиться этого с помощью управляющего электрода невозможно. Поэтому тиристор иногда вентилем. называют полууправляемым вентилем.

Конструкция диодов малой мощности показана на рис. 3. У верхнего диода (более мощного, чем нижние) катод расположен слева. Внизу изображен диодный мостик (о них ниже).

Более мощные диоды и тиристоры изображены на рис. 4. Катод обычно имеет резьбу, которой крепится на охладителе, анод – гибкий вывод. Охладители (рис. 5), отводя тепло от вентиля, предотвращают их перегрев. Наиболее мощные приборы имеют таблеточную конструкцию (см. нижнюю часть рис. 4), которая обеспечивает отвод тепла наружу от обоих торцов (справа на рис. 5).

Простейший выпрямитель

ВВыпрямитель (рис. 6а) питается от источника знакопеременного (обычно синусоидального) напряжения u . Он состоит только из одного диода. Будем считать, что нагрузка выпрямителя – потребитель с чисто активным внутренним сопротивлением (R ). Ток, протекающий через нагрузку, и приложенное к ней напряжение обозначены на рис. 6б индексами d (от англ. Direct – постоянный). Диод открыт только тогда, когда к аноду приложен положительный потенциал (напряжение источника положительное, первый полупериод на рис. 6б).



Рис. 4. Мощные диоды и тиристоры

Рис. 5. Тиристоры с охладителями

Рис. 6. Процессы в простейшем выпрямителе

К нагрузке через открытый диод подается напряжение от источника. Ток, протекающий по цепи «источник u – диод – нагрузка» при чисто активной нагрузке повторяет по форме напряжение: . Поэтому со снижением напряжения до нуля исчезает и ток, а диод закрывается. На следующем полупериоде, когда напряжение источника отрицательно, ток отсутствует, напряжение на нагрузке равняется нулю. После того, как напряжение источника снова станет положительным, открывается диод, и к нагрузке снова прикладывается напряжение. Таким образом, благодаря выпрямителю напряжение на нагрузке (выпрямленное напряжение u d ) содержит в себе только положительные полупериоды напряжения u , а выпрямленный ток повторяет по форме выпрямленное напряжение. В нижней части рис. 6б изображена диаграмма работы диода (черная линия показывает интервалы времени, когда диод открыт).

Только что рассмотренная схема используется только для питания потребителей малой мощности. Более распространена мостовая схема (рис. 7а).



Рис. 7. Мостовой выпрямитель

В ее состав входят четыре диода, работающие попарно-поочередно. На первом полупериоде питающего напряжения (правая клемма источника имеет положительный потенциал) открыты диоды VD1 и VD4 , образуется путь протекания тока, изображенный на рис. 7б. К нагрузке прикладывается положительное напряжение. На втором полупериоде открыты VD2 та VD3 , а ток протекает, как показано на рис. 7в (в нагрузке – в прежнем направлении). К нагрузке вновь приложено положительное напряжение. Выпрямленные напряжение и ток во времени изменяются согласно рис. 7г. Поскольку оба полупериода напряжения питания являются рабочими, среднее значение выпрямленного напряжения вдвое больше по сравнению со схемой рис. 6а. Мостовые выпрямители небольшой мощности выпускают в виде т.н. «диодных мостиков» (снизу на рис. 3).

Если необходимо не только формировать на нагрузке знакопостоянное напряжение, но и изменять при необходимости ее среднее значение (для регулирования сварочного тока, скорости электродвигателя), вместо диодов в выпрямителях используют тиристоры (рис. 8а). Если тиристоры получают в цепь управления управляющий сигнал сразу же после того, как напряжение их анодах становится положительным, тиристоры работают также, как и диоды, и процессы в схеме ничем не отличаются от рассмотренных ранее. Если же задержать подачу тока управления, открывание тиристоров происходит позднее (на рис. 8б – по окончании времени задержки t з ). Пока тиристоры закрыты, ток отсутствует, и напряжение к нагрузке не прикладывается. Из кривой выпрямленного напряжения «вырезается» определенный участок, и среднее значение напряжения уменьшается. Увеличение задержки t з приводит к дальнейшему уменьшению среднего выпрямленного напряжения.



Рис. 8. Тиристорный мостовой выпрямитель

Тиристорные выпрямители используются в электроприводах постоянного тока для питания обмоток якоря и возбуждения электродвигателей постоянного тока. На рис. 9 показан внешний вид подобного электропривода. Кроме собственно выпрямителя, в его состав входят микропроцессорные системы управления вентилями, скоростью и моментом электродвигателя, дисплей и пульт управления для диалога с пользователем, а также дополнительные элементы, обеспечивающие функционирование электропривода. Выпрямители большой мощности размещаются в электрических шкафах (рис. 10).



Рис. 9. Современный электропривод постоянного тока на базе тиристорного выпрямителя

Рис. 10. Мощный выпрямитель

Одними из самых распространенных преобразователей тока являются выпрямители переменного тока в пульсирующий (постоянный по направлению движения носителей, но переменный по мгновенной величине) ток. Они имеют очень широкое применение. Условно их можно разделить на маломощные выпрямители (до нескольких сотен ватт и выпрямители большой мощности (киловатты и больше)).

Главною его частью является выпрямляющее устройство В, образованное из диодов, объединенных особым образом. Именно здесь и происходит преобразование переменного тока в пульсирующий постоянный. Переменное напряжение подается на выпрямляющее устройство через трансформатор Тр. В некоторых случаях трансформатора может и не быть (если напряжение силовой сети отвечает той, которая необходима для работы выпрямителя). Трансформатор(если он есть) в большинстве также имеет особенности в соединении его обмоток. Пульсирующий ток, как правило не является постоянным по величине в каждое мгновение времени, и когда необходимо иметь более сглаженное его значение, чем полученный после выпрямляющего устройства, применяют фильтры Ф. В случае необходимости выпрямитель дополняют стабилизатором напряжения или тока Ст, который поддерживает их на постоянном уровне, если параметры силовой сети изменяется по разным причинам. Структурную схему завершает нагрузка Н, которая значительно влияет на работу всего устройства и поэтому считается составляющей частью всего преобразователя.

Собственно выпрямителем является та его часть, которая обведена на рисунке выше пунктиром и состоит из трансформатора и выпрямительного устройства.

В этом подразделе рассматриваются выпрямители малой мощности, которые необходимы для обеспечения постоянным напряжением всяких устройств в областях управления, регулирования, усилителях тока, генераторах малой мощности и так далее. Как правило, они питаются от однофазного переменного напряжения 220 или 380 В частотою 50 Гц.

Нулевая схема выпрямления

Рассмотреть принцип действия самого простого выпрямителя однофазного тока целесообразно на так называемой нулевой схеме. Хотя она сейчас встречается относительно редко (о чем речь пойдет далее), знание физических процессов, которые происходят в этой схеме, очень важны для понимания дальнейшего материала.

Нулевая схема выглядит так:

Трансформатор Тр имеет на вторичной стороне две обмотки, соединенные последовательно таким образом, что относительно средней точки а напряжения на свободных концах обмоток в и с одинаковые по величине, но противоположные по фазе. Выпрямительное устройство образовано двумя диодами D1 и D2, которые соединены вместе своими катодами, тогда как каждый анод соединен с соответствующей обмоткой. Нагрузка Zн присоединена между катодами диодов и точкой трансформатора.

Рассмотрим, как возникает пульсирующее напряжение на нагрузке. Сначала будем считать нагрузку чисто активным сопротивлением, Z н =R н. Когда напряжение в обмотках будет изменяться по синусоидальному закону, то в тот полупериод, когда к аноду диода приложен положительный потенциал, будет проходить прямой ток. Поскольку напряжение на диоде составляет доли вольта, пренебрежем им. Тогда вся положительная полуволна переменного напряжения будет приложена просто к нагрузке R н. Когда напряжение приложенное минусом к аноду, тока не будет (малым обратным током диода также пренебрежем). Таким образом, до нагрузки будем доходить лишь положительная полуволна переменного напряжения в течении половины периода. Вторая половина периода будет свободна от тока.

Вторичные обмотки соединены противофазно, нагрузка общая для обеих обмоток, таким образом, в то время, когда в одной из них (например в верхней) ток будет проходить, другая будет от него свободна и наоборот.

Поэтому в нагрузке каждый полупериод будет заполнен полуволной переменного напряжения:

И выпрямленное напряжение U d будет иметь вид одинаковых полуволн, которые повторяются с периодом, вдвое меньшим, чем период переменного напряжения в сети питания (2π радиан). Для обобщения, что будет удобно, далее будем считать, что период изменения выпрямленного напряжения меньше 2π в m раз и равняется 2π/m (в нашем случае m -2). Если нагрузка активное сопротивление R н, то и ток в нем i d , будет повторять кривую напряжения.

Рассмотренная схема будет иметь тот недостаток, что во вторичных обмотках по сравнению с первичной имеют место значительные пульсации тока, потому что эти обмотки работают по очереди. Поскольку они намотаны на один сердечник, магнитный поток в последнем будет переменным, поэтому и в первичной обмотке ток будет переменным, имея как положительную, так и отрицательную полуволны. Как известно из курса электротехники, действующие и средние значения тока или напряжения одинаковые только для постоянного тока. Чем больше пульсации, тем больше будет действующее значение относительно среднего. Поэтому мощности обеих сторон трансформатора не будут одинаковыми. Однако трансформатор один, и объем железа для его сердечника следует выбирать, исходя из какого-то одного значения мощности.

Поэтому условно ввели понятие типовой мощности трансформатора, которая равняется среднему мощностей обеих сторон:

Выпрямительный мост или схема Гретца

Указанный недостаток можно исправить, используя выпрямляющее устройство в виде так называемого моста (схема Гретца):

В этом случае первые полупериоды будут работать, например, диоды D2 и D4, а вторые полупериода — D1 и D3. На нагрузке каждый раз будет полная полуволна вторичного напряжения:

Мостовая схема кроме того имеет менее сложный, более легкий и дешевый трансформатор. у нее есть еще несколько преимуществ.

Интересно, что эта схема появилась исторически раньше нулевой однако распространения не получила, потому что имела во-первых четыре диода вместо двух. Однако главным было не их количество, а то что при работе каждые полупериода ток проходит через два последовательно соединенных диода, на которые падает двойное напряжение. На то время полупроводниковых диодов еще не было, а вакуумные или ртутные имели значительное падение напряжения при прохождении прямого тока, что существенно понижало коэффициент полезного действия. Оказалось, что более сложный трансформатор нулевой схемы, но с одним диодом в кругу выпрямления тока экономично выгоднее, чем мостовая схема с удвоенным числом диодов и двойным расходом энергии на них. И только появление относительно дешевых полупроводниковых диодов с очень маленьким падением прямого напряжения позволило повернуться к мостовым схемам, которая сейчас практически вытеснила нулевую (в этом при желании можно усмотреть проявление одного из диалектических законов – развитие по спирали).

Основные соотношения для выпрямителя

Выведем некоторые важные формулы, которые описывают процессы, существующие в этой схеме. Будем считать, что заданными величинами являются средние значения напряжения на нагрузку U d и среднее значение тока в нем I d .

Запомним это выражение на дальнейшее. В нашем случае m=2 и . Поскольку U d считаем заданным, то


Из предыдущего выражения имеем:

Этот коэффициент определяет отношения питающей сети к напряжению на обмотке вторичной стороны:

Действующее значение тока вторичной обмотки

Ток вторичной обмотки в то же время есть током в нагрузке. Поскольку нагрузка чисто активная и ток в ней повторяет по форме пульсирующее напряжение, то между его средним значением и его действующим значением существует такая же зависимость, что и для напряжений, то есть


Действующее значение тока первичной обмотки

Ток в первичной обмотке повторяет с учетом n ток вторичной обмотки:

Мощность трансформатора

Мощности первичной и вторичной сторон трансформатора в этой схеме одинаковые, поэтому:

Пульсация выпрямленного напряжения

Пульсирующее напряжение состоит из среднего значения U d и бесконечного количества гармоничных составляющих, амплитуды которых можно определить по формулам Фурье. Если начало координат выбрать так как на рисунке, то в гармоничном составе будут присутствовать только косинусные гармоники (т.к. кривая симметрична относительна оси координат). Амплитуда k-ой гармоники определяется по формуле:

Где: l – полупериод π/m;

Наибольшую амплитуду будет иметь первая гармоника U (1) m , поэтому определим только ее, предположив, что k=1:

Заменив получим:

Отношение первой гармоники к среднему значению называют коэффициентом пульсаций:

Запомним эту формулу на будущее, а сейчас отметим, что в нашем случае при m – 2, q – 2/3. Это большие пульсации – амплитуда первой гармоники составляет 67% от среднего значения выпрямленного напряжения.

Средний ток диодов

Как мы уже видели диоды работают по очереди – каждый из них проводит в среднем половину общего тока, который есть в нагрузке. Поэтому каждый из диодов должен быть рассчитан на ток I в = I d /2

Наибольшее обратное напряжение на диоде

В то время когда диод B1 проводит его можно считать замкнутым, и тогда к диоду B2 будет приложено в обратном направлении напряжение вторичной обмотки. Поэтому каждый из диодов должен быть рассчитан на ее амплитудное значение: