Объединение офисов предприятия на основе технологий VPN. Как организовать VPN канал между офисами с помощью OpenVPN

Республиканского масштаба для нужд среднего предприятия. Не ищите здесь руководство по VPN-технологиям – его здесь нет, для этого есть специализированные пособия, доступные в электронной и печатной форме. Я лишь попытаюсь дать представление на практическом примере, что это за «зверь» такой – VPN, и указать на особенности построения подобной инфраструктуры в наших условиях, попутно обобщив свой опыт на этом поприще. Все, сказанное мной, не претендует на истину в последней инстанции, и отражает лишь мою собственную точку зрения.

Зачем это нужно?

Итак, исходные условия таковы: ваша организация имеет несколько филиалов, расположенных на большом удалении друг от друга в пределах одного города или даже в разных городах страны. Вам поставлена, на первый взгляд, совершенно фантастическая задача: объединить локальные сети филиалов в одну глобальную сеть; чтобы каждый компьютер мог обращаться к другому компьютеру в этой сети, вне зависимости где он находится – в соседней комнате или в тысяче километров от него. Иногда условие задачи выглядит по-другому: предоставить доступ к определенному ресурсу одного филиала с компьютеров сети других филиалов (но суть дела от этого не меняется).

И как это сделать?

Делается это с помощью технологии VPN . Проще говоря, поверх ваших отдельных сетей «набрасывается» логическая сеть, отдельные компоненты (то бишь, филиалы) которой могут быть связаны между собой различными способами: по публичным каналам (Интернет), по выделенным линиям, по беспроводной сети. В результате, получается гомогенная сеть, состоящая из разнородных компонентов.

Понятно, что вариант с самостоятельной прокладкой каналов рассматриваться не может в силу поставленных условий, никто не даст вам тянуть кабель через весь город, да и неблагодарная это работа. Поэтому ничего иного не остается, как обратиться к поставщику телекоммуникационных услуг, а проще говоря – к провайдеру . Выбор провайдера – отдельная тема для разговора, выходящая за рамки этой статьи. Стоит лишь заметить, что все будет зависеть от нескольких факторов, самые главные из которых – объем предоставляемых услуг и качество связи. Немаловажное значение будут иметь расценки на передачу данных, и здесь нужно выбрать золотую середину между ценой и качеством. Поскольку каждый устанавливает эту планку для себя индивидуально (для кого-то целый час без связи не беда, а кому-то пять минут простоя покажутся трагедией), советовать что-либо здесь невозможно.

На этом этапе требуется сесть и тщательно продумать, какие филиалы вашей организации войдут в сеть. Если их больше двух-трех, можно для наглядности даже нарисовать схему с табличкой, в которой указать адреса и контакты каждого филиала. Если требуется организовать распределенную сеть в пределах одного города, обычно есть выбор из нескольких вариантов подключений у различных провайдеров. В моем случае, требовалось объединить несколько сетей, расположенных в различных городах области; здесь, как говорится, без вариантов – приходится обращаться к компании-монополисту Казахтелеком , единственному глобальному поставщику данного вида связи на всей территории РК. Далее в статье я буду рассматривать подключение именно через «Казахтелеком», как наиболее универсальный способ, адаптировать рекомендации под конкретного провайдера не составит особого труда.

VPN (Virtual Private Network) - это виртуальная частная сеть или логическая сеть, которая создается поверх незащищённых сетей (сетей оператора связи или сервис-провайдера Интернет). VPN – это технология, которая обеспечивает защиту данных при передаче их по незащищенным сетям. Виртуальная частная сеть позволяет организовать туннель в незащищённых сетях (между двумя точками сети), например в ATM, FR или IP-сетях.

С помощью VPN можно осуществить соединения: сеть-сеть, узел-сеть или узел-узел. Такие свойства технологии VPN предоставляют возможность объединить территориально удаленные друг от друга локальные сети офисов компании в единую корпоративную информационную сеть. Необходимо отметить, что корпоративные вычислительные сети (КВС) можно организовывать и на базе выделенных (частных или арендованных) каналов связи. Такие средства организации используются для небольших КВС (предприятий с компактно расположенными офисами) с неизменяющимся во времени трафиком.

Известны основные виды VPN и их комбинации:

  • Intranet VPN (внутрикорпоративные VPN);
  • Extranet VPN (межкорпоративные VPN);
  • Remote Access VPN (VPN с удаленным доступом);
  • Client/Server VPN (VPN между двумя узлами корпоративной сети).

В настоящее время для построения корпоративных территориально распределенных сетей в разделяемой инфраструктуре сервис-провайдеров и операторов связи применяются следующие технологий:

  • IP-туннели с использованием технологий GRE или IPSec VPN;
  • SSL, к которой относятся OpenVPN и SSL VPN (SSL/TLS VPN) для организации безопасных каналов связи;
  • MPLS в сети оператора (L3 VPN) или VPN в сети BGP/MPLS;
  • Metro Ethernet VPN в сети оператора (L2 VPN). Наиболее перспективная технология, используемая в Metro Ethernet VPN, - это VPN на базе MPLS (MPLS L2 VPN) или VPLS.

Что касается применения выделенных линий и технологий Frame Relay, ATM для организации корпоративных территориально распределенных сетей, то они уже для этих целей практически не применяются. Сегодня, как правило, КВС строятся на основе оверлейных сетей (клиент-серверных и одноранговых сетей), которые работают в разделяемой инфраструктуре операторов, и являются «надстройками» над классическими сетевыми протоколами.

Для организации территориально распределенных корпоративных сетей провайдеры предоставляют заказчикам следующие основные модели VPN в среде Интернет:

  • модель IP VPN (GRE, IPSec VPN, OpenVPN) через WAN сеть, в которой настройка VPN обеспечивается заказчиком;
  • модель L 3 VPN или MPLS L3 VPN через WAN сеть, в которой настройка VPN обеспечивается сервис-провайдером или оператором связи;
  • модель L2 VPN через MAN сеть, в которой настройка VPN обеспечивается провайдером или оператором связи:
    • point-to-point (AToM, 802.1Q, L2TPv3);
    • multipoint (VPLS и H-VPLS).

Технологии VPN можно классифицировать и по способам их реализации с помощью протоколов: аутентификации, туннелирования и шифрования IP-пакетов. Например, VPN (IPSec, OpenVPN, PPTP) основаны на шифровании данных заказчиков, VPN (L2TP и MPLS) базируются на разделении потоков данных между заказчиками VPN, а SSL VPN основана на криптографии и аутентификации трафика. Но, как правило, VPN используют смешанные варианты, когда совместно используются технологии: аутентификации, туннелирования и шифрования. В основном организация VPN-сетей осуществляется на основе протоколов канального и сетевого уровней модели OSI.

Необходимо отметить, что для мобильных удаленных пользователей была разработана технология SSL VPN (Secure Socket Layer - уровень защищенных сокетов), которая основана на ином принципе передачи частных данных (данных пользователей) через Интернет. Для организации SSL VPN используется протокол прикладного уровня HTTPS. Для HTTPS используется порт 443, по которому устанавливается соединение с использованием TLS (Transport Layer Security - безопасность транспортного уровня).

TLS и SSL (TLS и SSL- протоколы 6 уровня модели OSI) - это криптографические протоколы, которые обеспечивают надежную защиту данных прикладного уровня, так как используют асимметричную криптографию, симметричное шифрование и коды аутентичности сообщений. Но поскольку в стеке TCP/IP определены 4 уровня, т.е. отсутствуют сеансовый и представительский уровни, то эти протоколы работают над транспортным уровнем в стеке TCP/IP, обеспечивая безопасность передачи данных между узлами сети Интернет.

Модель IP VPN, в которой настройка VPN обеспечивается заказчиком

Модель IP VPN может быть реализована на базе стандарта IPSec или других протоколов VPN (PPTP, L2TP, OpenVPN). В этой модели взаимодействие между маршрутизаторами заказчика устанавливается через WAN сеть сервис-провайдера. В этом случае провайдер не участвует в настройке VPN, а только предоставляет свои незащищённые сети для передачи трафика заказчика. Сети провайдеров предназначены только для инкапсулированного или наложенного (прозрачного) соединения VPN между офисами заказчика.

Настройка VPN осуществляется телекоммуникационными средствами заказчика, т.е. заказчик сам управляет маршрутизацией трафика. VPN соединение – это соединение поверх незащищённой сети типа точка-точка: «VPN шлюз - VPN шлюз» для объединения удаленных локальных сетей офисов, «VPN пользователь - VPN шлюз» для подключения удаленных сотрудников к центральному офису.

Для организации VPN-сети в каждый офис компании устанавливается маршрутизатор, который обеспечивает взаимодействие сети офиса с VPN-сетью. На маршрутизаторы устанавливается программное обеспечение для построения защищённых VPN, например, бесплатный популярный пакет OpenVPN (в этом случае пакет OpenVPN надо сконфигурировать для работы в режиме маршрутизации). Технология OpenVPN основана на SSL стандарте для осуществления безопасных коммуникаций через Интернет.

OpenVPN обеспечивает безопасные соединения на основе 2-го и 3-го уровней OSI. Если OpenVPN сконфигурировать для работы в режиме моста - он обеспечивает безопасные соединения на основе 2 уровня OSI, если в режиме маршрутизации - на основе 3-го уровня. OpenVPN в отличие от SSL VPN не поддерживает доступ к VPN-сети через web-браузер. Для OpenVPN требуется дополнительное приложение (VPN-клиент).

Маршрутизатор головного офиса компании настраивается в качестве VPN-сервера, а маршрутизаторы удаленных офисов в качестве VPN-клиентов. Маршрутизаторы VPN-сервер и VPN-клиенты подключаются к Интернету через сети провайдера. Кроме того, к главному офису можно подключить ПК удаленного пользователя, настроив на ПК программу VPN-клиента. В итоге получаем модель IP VPN (скриншот представлен на рис. 1).

Рис. 1. Модель сети IP VPN (Intranet VPN + Remote Access VPN)

Модель MPLS L3 VPN или L3 VPN, в которой настройка VPN обеспечивается сервис-провайдером или оператором связи (поставщиком услуг)

Рассмотрим процесс организации VPN-сети для трех удаленных локальных сетей офисов заказчика услуг (например, корпорации SC-3), размещенных в различных городах, с помощью магистральной сети MPLS VPN поставщика услуг, построенной на базе технологии MPLS L3 VPN. Кроме того, к сети корпорации SC-3 подключен ПК удаленного рабочего места и ноутбук мобильного пользователя. В модели MPLS L3 VPN оборудование провайдера участвует в маршрутизации клиентского трафика через сеть WAN.

В этом случае доставка клиентского трафика от локальных сетей офисов заказчика услуг к магистральной сети MPLS VPN поставщика услуг осуществляется с помощью технологии IP. Для организации VPN-сети в каждый офис компании устанавливается периферийный или пограничный CE-маршрутизатор (Customer Edge router), который соединяется физическим каналом с одним из пограничных РЕ-маршрутизаторов (Provider Edge router) сети MPLS провайдера (оператора). При этом на физическом канале, соединяющем CE и PE маршрутизаторы, может работать один из протоколов канального уровня (PPP, Ethernet, FDDI, FR, ATM и т.д.).

Сеть поставщика услуг (сервис-провайдера или оператора связи) состоит из периферийных РЕ-маршрутизаторов и опорной сети (ядра сети) с коммутирующими по меткам магистральными маршрутизаторами P (Provider router). Таким образом, MPLS L3 VPN состоит из офисных локальных IP-сетей заказчика и магистральной сети MPLS провайдера (домена MPLS), которая объединяет распределенные локальные сети офисов заказчика в единую сеть.

Удаленные локальные сети офисов заказчика обмениваются IP-пакетами через сеть провайдера MPLS, в которой образуются туннели MPLS для передачи клиентского трафика по опорной сети поставщика. Скриншот модели сети MPLS L3 VPN (Intranet VPN + Remote Access VPN) представлен на рис. 2. С целью упрощения схемы сети приняты следующие начальные условия: все ЛВС офисов относятся к одной VPN, а опорная (магистральная) сеть является доменом MPLS (MPLS domain), находящаяся под единым управлением национального сервис-провайдера (оператора связи).

Необходимо отметить, что MPLS L3 VPN может быть организована с помощью нескольких доменов MPLS разных сервис-провайдеров. На рисунке 2 представлена полносвязная топология VPN.


Рис. 2. Модель сети MPLS L3 VPN (Intranet VPN + Remote Access VPN)

Функционирование PE-маршрутизаторов

Периферийные маршрутизаторы CE и PE (заказчика и провайдера) обмениваются друг с другом маршрутной информацией одним из внутренних протоколов маршрутизации IGP (RIP, OSPF или IS-IS). В результате обмена маршрутной информацией каждый РЕ-маршрутизатор создает свою отдельную (внешнюю) таблицу маршрутизации VRF (VPN Routing and Forwarding) для локальной сети офиса заказчика, подключенной к нему через CE-маршрутизатор. Таким образом, маршрутная информация, полученная от CE, фиксируется в VRF-таблице PE.

Таблица VRF называется виртуальной таблицей маршрутизации и продвижения. Только РЕ-маршрутизаторы знают о том, что в сети MPLS организована VPN для заказчика. Из модели сети MPLS L3 VPN следует, что между CE-маршрутизаторами заказчика не осуществляется обмен маршрутной информацией, поэтому заказчик не участвует в маршрутизации трафика через магистраль MPLS, настройку VPN (РЕ-маршрутизаторов и Р-маршрутизаторов) осуществляет провайдер (оператор).

К РЕ-маршрутизатору могут быть подключены несколько VPN-сетей разных заказчиков (рис.3). В этом случае на каждый интерфейс (int1, int2 и т.д.) PE-маршрутизатора, к которому подключена локальная сеть офиса заказчика, устанавливается отдельный протокол маршрутизации. Для каждого интерфейса РЕ-маршрутизатора один из протоколов IGP создает таблицу маршрутизации VRF, а каждая таблица маршрутизации VRF соответствует VPN-маршрутам для каждого заказчика.

Например, для заказчика SC-3 и его сети LAN0 (главного офиса), подключенной через CE0 к PE0, на PE0 будет сформирована таблица VRF1 SC-3, для LAN1 заказчика SC-3 на PE1 будет создана VRF2 SC-3, для LAN2 на PE2 - VRF3 SC-3 и т.д., а принадлежат они одной VPN SC3. Таблица VRF1 SC-3 является общей для маршрутной информации CE0 и CE4. Необходимо отметить, что таблицы VRF пополняются информацией об адресах локальных сетей всех других офисов данного заказчика с помощью протокола MP-BGP (multiprotocol BGP). Протокол MP-BGP используется для обмена маршрутами непосредственно между РЕ-маршрутизаторами и может переносить в маршрутной информации адреса VPN-IPv4.

Адреса VPN-IPv4 состоят из исходных адресов IPv4 и префикса RD (Route Distinguisher) или различителя маршрутов, который идентифицирует конкретную VPN. В итоге на маршрутизаторах РЕ будут созданы VRF-таблицы с идентичными маршрутами для одной сети VPN. Только те РЕ-маршрутизаторы, которые участвуют в организации одной и той же VPN-сети заказчика, обмениваются между собой маршрутной информацией по протоколу MP-BGP. Префикс RD конфигурируется для каждой VRF-таблицы.

Маршрутная информация, которой обмениваются РЕ-маршрутизаторы по протоколу MP-BGP через глобальный или внутренний интерфейс:

  • Адрес сети назначения (VPN-IPv4);
  • Адрес следующего маршрутизатора для протокола (next hop);
  • Метка Lvpn – определяется номером интерфейса (int) РЕ-маршрутизатора, к которому подключена одна из ЛВС офиса заказчика;
  • Атрибут сообщения RT (route-target) – это атрибут VPN, который идентифицирует все ЛВС офисов, принадлежащие одной корпоративной сети заказчика или одной VPN.

Рис. 3. РЕ-маршрутизатор

Кроме того, каждый РЕ-маршрутизатор обменивается маршрутной информацией с магистральными P-маршрутизаторами одним из внутренних протоколов маршрутизации (OSPF или IS-IS) и создает также отдельную (внутреннюю) глобальную таблицу маршрутизации (ГТМ) для магистральной сети MPLS. Внешняя (VRF) таблица и внутренняя (ГТМ) глобальная таблицы маршрутизации в РЕ-маршрутизаторах изолированы друг от друга. P-маршрутизаторы обмениваются маршрутной информацией между собой и PЕ-маршрутизаторами с помощью традиционных протоколов внутренней IP-маршрутизации (IGP), например OSPF или IS-IS, и создают свои таблицы маршрутизации.

На основе таблиц маршрутизации с помощью протоколов распределения меток LDP или протоколов RSVP на основе технологии Traffic Engineering строятся таблицы коммутации меток на всех маршрутизаторах P (на PE создаются FTN), образующих определенный маршрут LSP (Label Switched Paths). В результате формируются маршруты с коммутацией по меткам LSP, по которым IP-пакеты продвигаются на основе значений меток заголовка MPLS и локальных таблиц коммутации, а не IP-адресов и таблиц маршрутизации.

Заголовок MPLS добавляется к каждому IP-пакету, поступающему на входной PE-маршрутизатор, и удаляется выходным PE-маршрутизатором, когда пакеты покидают сеть MPLS. В заголовке MPLS используется не метка, а стек из двух меток, т.е. входной PE назначает пакету две метки. Одна из них внешняя L, другая внутренняя Lvpn. Внешняя метка или метка верхнего уровня стека используется непосредственно для коммутации пакета по LSP от входного до выходного PE.

Необходимо отметить, что PE направляет входной трафик в определенный виртуальный путь LSP на основании FEC (Forwarding Equivalence Class – класса эквивалентности продвижения). FEC – это группа пакетов к условиям, транспортировки которых предъявляются одни и те же требования. Пакеты, принадлежащие одному FEC, перемещаются по одному LSP. Классификация FEC может осуществляться различными способами, например: по IP-адресу сети (префиксу сети) назначения, типу трафика, требованиям инжиниринга и т.д.

Если использовать классификацию по IP-адресу сети назначения, то для каждого префикса сети назначения создается отдельный класс. В этом случае протокол LDP полностью автоматизирует процесс создание классов и назначение им значений меток (табл. 1). Каждому входящему пакету, который направляется маршрутизатором PE на определенный IP-адрес сети офиса, назначается определенная метка на основании таблицы FTN.

Таблица 1. FTN (FEC To Next hop) на маршрутизаторе PE1

Из таблицы 1 следует, что значение внешней метки назначает входной маршрутизатор PE1 на основании IP-адреса локальной сети офиса. Внутренняя метка или метка нижнего уровня стека в процессе коммутации пакета по LSP от входного до выходного PE не участвует, а она определяет VRF или интерфейс на выходном PE, к которому присоединена ЛВС офиса заказчика.

Обмен информацией о маршрутах VPN по протоколу MP-BGP

Маршрутная информация (информация о маршрутах VPN), которую передает маршрутизатор PE1 маршрутизатору PE2 по протоколу BGP (красные линии):

  • Адрес VPN-IPv4: 46.115.25.1:106:192.168.1.0;
  • Next Hop = 46.115.25.1;
  • Lvpn=3;
  • RT= SC-3.

Различитель маршрутов RD=46.115.25.1:106 добавляется к IPv4-адресу сети LAN1 регионального офиса 1. Где 46.115.25.1 – это IP-адрес глобального интерфейса маршрутизатора PE1, через который PE1 взаимодействует с P-маршрутизаторами. Для данного маршрута VPN SC-3 администратор сети провайдера в маршрутизаторе PE1 или PE1 назначает метку (номер), например 106.

Когда маршрутизатор PE2 получает от PE1 адрес сети назначения VPN-IPv4, он отбрасывает разграничитель маршрутов RD, помещает адрес 192.168.1.0 в таблицу VRF3 SC-3 и отмечает, что запись была сделана протоколом BGP. Кроме того, он объявляет этот маршрут, подключенному к нему маршрутизатору заказчика CE2 для данной VPN SC-3.

Таблица VRF3 SC-3 также пополняется протоколом MP-BGP – об адресах сетей других ЛВС офисов данной VPN SC-3. Маршрутизатор PE1 направляет по протоколу MP-BGP маршрутную информация также другим маршрутизаторам: PE0 и PE3. В итоге, все маршруты в таблицах VRF маршрутизаторов (PE0, PE1, PE2 и PE3) содержат адреса всех сетей ЛВС офисов данного заказчика в формате IPv4.

Рис. 4. Таблицы VRF маршрутизаторов (PE0, PE1, PE2 и PE3)

Маршрутная информация, которую передает маршрутизатор PE2 маршрутизатору PE1 по протоколу MP-BGP (красные линии):

  • Адрес VPN-IPv4: 46.115.25.2:116:192.168.2.0;
  • Next Hop = 46.115.25.2;
  • Lvpn=5;
  • RT=SC-3.
Передача данных между ПК в корпоративной сети организованной на базе технологии MPLS L3 VPN

Рассмотрим, как происходит обмен данными между ПК 2 (IP: 192.168.1.2) сети LAN1 и ПК 1 (IP: 192.168.3.1) сети LAN. Для доступа к файлам, размещенным в директориях или логических дисках ПК 1 (LAN) с общим доступом, необходимо на ПК 2 (LAN1) в строке "Найти программы и файлы" (для ОС Win 7) ввести \\192.168.3.1 и нажать клавишу Enter. В результате на экране ПК 2 будут отображены директории с общим доступом ("расшаренные" директории или папки), которые размещены на ПК 1. Как это происходит?

При нажатии клавишу Enter в ПК 2 (LAN1) на сетевом уровне сформировался пакет с IP-адресом назначения 192.168.3.1. В первую очередь пакет поступает на маршрутизатор CE1 (рис. 5), который направляет его в соответствии с таблицей маршрутизацией на интерфейс int3 маршрутизатора PE1, так как он является следующим маршрутизатором для доступа к сети 192.168.3.0/24, в которой находятся ПК 1 (LAN ГО) с IP-адресом 192.168.3.1. С интерфейсом int3 связана таблица маршрутизации VRF2 SC-3, поэтому дальнейшее продвижение пакета осуществляется на основе ее параметров.

Как следует из таблицы VRF2 SC-3, следующим маршрутизатором для продвижения пакета к сети 192.168.3/24 является PE0 и эта запись была выполнена протоколом BGP. Кроме того, в таблице указано значение метки Lvpn=2, которая определяет интерфейс выходного маршрутизатора PE0. Отсюда следует, что дальнейшее продвижение пакета к сети 192.168.3/24 определяется параметрами глобальной таблицы маршрутизации ГТМ PE1.

Рис. 5. Передача данных между ПК2 (192.168.1.2) и ПК1 (192.168.3.1) сетей LAN1 и LAN главного офиса КС SC-3

В глобальной таблице (ГТМ PE1) адресу следующего маршрутизатора (NH - Next Hop) PE0 соответствует начальное значение внешней метки L=105, которая определяет путь LSP до PE0. Продвижение пакета по LSP происходит на основании L-метки верхнего уровня стека (L=105). Когда пакет проходит через маршрутизатор P3, а затем через маршрутизатор P1, метка L анализируется и заменяется новыми значениями. После достижения пакетом конечной точки LSP, маршрутизатор PE0 удаляет внешнюю метку L из стека MPLS.

Затем маршрутизатор PE0 извлекает из стека метку нижнего уровня стека Lvpn=2, которая определяет интерфейс int2, к которому присоединен маршрутизатор CE0 локальной сети главного офиса заказчика (LAN ГО). Далее из таблицы (VRF1 SC-3), содержащей все маршруты VPN SC3, маршрутизатор PE0 извлекает запись о значении метки Lvpn=2 и о связанном с ней маршруте к сети 192.168.3/24, который указывает на CE0 в качестве следующего маршрутизатора. Из таблицы следует, что запись о маршруте была помещена в таблицу VRF1 SC-3 протоколом IGP, поэтому путь движения пакета от PE0 до CE0 осуществляется по IP-протоколу.

Дальнейшее движение пакета от CE0 к ПК 1 с IP-адресом 192.168.3.1 осуществляется по MAC-адресу, так как CE0 и ПК 1 (192.168.3.1) находятся в одной ЛВС. После получения пакета-запроса от ПК 2 операционная система компьютера ПК 1 отправит копии своих директорий с общим доступом для ПК 2. Операционная система ПК 2, получив копии директорий с общим доступом от ПК 1, отображает их на экране монитора. Таким образом, через общественные сети MPLS провайдера по виртуальным каналам LSP осуществляется обмен данными между двумя ПК, принадлежащим разным ЛВС офисов одного заказчика.

Что касается подключения удаленного мобильного пользователя к ресурсам территориально распределенной корпоративной сети, то его можно реализовать с помощью одной из технологий Remote Access VPN (Remote Access IPSec VPN и SSL VPN). Необходимо отметить, что технология SSL VPN поддерживает два типа доступа: полный сетевой доступ и clientless. Технология clientless SSL VPN обеспечивает удаленный доступ к сети через стандартный веб-браузер, но в этом случае доступны только сетевые приложения с web-интерфейсом. Технология SSL VPN с полным сетевым доступом, после установки на ПК дополнительного приложения (VPN-клиента) обеспечивает доступ ко всем ресурсам территориально распределенной корпоративной сети.

Как правило, подключение удалённого пользователя к MPLS L3 VPN производится посредством сервера удаленного доступа (RAS), который подключается к одному из PE-маршрутизаторов MPLS сети. В нашем случае мобильный пользователь через сеть доступа (Интернет) подключен с помощью Remote Access IPSec VPN к RAS, который соединен с маршрутизатором PE0. Таким образом, мобильный пользователь через IPSec VPN подключается к своей корпоративной сети (корпорации SC-3), организованной на основе MPLS L3 VPN.

Модель MPLS L2 VPN, в которой настройка VPN обеспечивается провайдером или оператором связи (поставщиком услуг)

Организовать единое информационное пространство в трех офисах (например, корпорации SC-3), расположенных в пределах одного города можно на базе широкополосной Metro Ethernet сети оператора связи (L2 VPN). Одной из услуг сетей Metro Ethernet является организация корпоративных сетей через магистральные сети MAN (сети оператора связи в масштабах города). Для организации Metro Ethernet VPN (L2 VPN) используются различные технологии, например AToM (в основном EoMPLS), 802.1Q, L2TPv3 и так далее, но наиболее перспективной является технология MPLS L2 VPN или VPLS. В этом случае доставка клиентского трафика от локальных сетей офисов заказчика услуг к опорной сети MPLS VPN поставщика услуг осуществляется с помощью технологии второго уровня (Ethernet, Frame Relay или ATM).

Операторы связи предоставляют два типа услуг Ethernet сетей для организации виртуальных частных сетей на втором уровне модели OSI, которые формируются на базе технологии MPLS - это VPWS (Virtual Private Wire Services) и VPLS (Virtual Private LAN Services). Эти VPN строятся на базе псевдоканалов (pseudowire), которые связывают пограничные PE-маршрутизаторы сети провайдера (MPLS domain). Туннели LSP или логические каналы создаются при помощи меток, внутри которых прокладываются псевдоканалы (эмулированные VC) и по этим псевдоканалам передаются пакеты MPLS. VPWS основана на Ethernet over MPLS (EoMPLS). Но в VPLS в отличие от сетей point-to-point (P2P) VPWS организация псевдоканалов осуществляется с помощью многоточечных соединений (P2M).

В VPLS существует два способа установления псевдоканалов между любыми двумя PE, которые входят в состав данной VPLS (с помощью протокола BGP и протокола рассылки меток LDP). Расширенный протокол BGP (MP-BGP) обеспечивает автоматическое определения PE, которые взаимодействуют при построении территориально распределенной ЛВС на основе сервиса VPLS, и сигнализацию меток (vc-labels) виртуальных каналов. Для сигнализации vc-labels можно использовать и расширенный протокол LDP. В этом случае выявление всех PE-маршрутизаторов, которые входят в состав данной VPLS, осуществляется в режиме ручной настройки.

Можно также использовать системы управления, которые автоматизируют поиск и настройку PE устройств для организации VPLS сервисов. Для передачи кадров использует стек меток, верхняя метка предназначена для туннелей LSP, которая используется для достижения выходного PE. Нижняя метка - это метка VC Label, которая используется для демультиплексирования виртуальных каналов (pseudowires), передаваемых внутри одного туннеля. В одном туннеле может быть проложено множество псевдоканалов для разных экземпляров VPLS.

Для каждого экземпляра VPLS на PE создаются отдельные виртуальные коммутаторы VSI. Коммутаторы VSI изучают MAC-адреса и строят таблицы продвижения MPLS-пакетов. На основании данных таблицы продвижения коммутаторы VSI, получив кадры, инкапсулированные в пакеты MPLS, направляют их в псевдоканалы ведущие к пограничным PE, к которым подключены пограничные коммутаторы CE сегментов ЛВС офисов заказчика.

На базе VPWS (point-to-point) можно объединить две подсети офисов корпорации в одиную сеть, с единой сквозной IP-адресацией. VPLS – это технология, которая обеспечивает многоточечные соединения поверх пакетной сетевой инфраструктуры IP/MPLS. VPLS позволяет объединить несколько территориально распределенных локальных сетей офисов корпорации в единую локальную сеть. В этом случае магистральная сеть MPLS сервис-провайдера представляет собой виртуальный Ethernet-коммутатор (L2-коммутатор), который пересылает Ethernet-фреймы между сегментами ЛВС отдельных офисов заказчика. Схема территориально распределенной (в пределах города) локальной сети корпорации представлена на рис. 6.

Рис. 6. Схема территориально распределенной (в пределах города) локальной сети корпорации

Суть концепции VPLS заключается в прозрачной передаче Ethernet-фреймов ПК локальных сетей офисов (сегментов сетей офисов заказчика) заказчика по магистральной сети MPLS провайдера. Пограничными устройствами на стороне заказчика VPLS 1 служат коммутаторы CE0, CE1, CE2, которые соединены с устройствами PE0, PE1, PE2. PE-маршрутизаторы взаимодействуют друг с другом, с целью выявления всех PE, подключенных к VPLS 1. Устройства PE и P строят таблицы маршрутизации, на основе которых создаются каналы LSP и псевдоканалы.

В качестве протоколов сигнализации могут использоваться как BGP, так и LDP. Виртуальные коммутаторы VSI 1 устройств PE0, PE1, PE2 строят таблицы продвижения MPLS-пакетов. Например, VSI 1 устройства PE0 формирует таблицу коммутации, представленную на рис. 6. При поступлении Ethernet-фрейма c одного из ПК сети LAN главного офиса на вход устройства PE0 он инкапсулирует Ethernet-фрейм в MPLS пакет и, используя таблицу коммутации, направляет его в туннель, по которому пакет поступает на выходное устройство PE1.

Для продвижения пакета через MPLS сеть (через псевдоканалы в туннелях LSP) используется стек меток, который состоит из метки туннеля LSP и метки псевдоканала VC Label, например, 15. На выходном устройстве PE1 пакеты MPLS преобразуются в Ethernet-фреймы и направляются на коммутатор С1, к которому подключен ПК назначения с MAC-адресом 90:5C:E7:C8:56:93. В документах RFC 4761 и RFC 4762 подробно изложены методы сигнализации на базе протоколов BGP и LDP для локальных сетей организованных с помощью услуг VPLS.

Список источников информации:

1. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 4-е изд. / В.Г. Олифер, Н.А. Олифер –СПб. Питер, 2010. – 944 с.

2. Олвейн, Вивек. Структура и реализация современной технологии MPLS.: Пер. с англ. – М. : Издательский дом «Вильямс», 2004. – 480 с.

VPN (Virtual Private Network) – широко распространённая технология, позволяющая организовывать виртуальные сети поверх существующих реальных сетей. В данной статье речь пойдёт о терминологии и общих принципах, настройка таких сетей будет рассматриваться отдельно.

Не смотря на слово «Private» в названии технологии, существует возможность организации и общедоступных – нешифрованных сетей. Вообще, организация VPN может осуществляться огромным количеством способов с использованием разных технологий (SSL VPN, IPSec, GRE и др.).

Любое построение VPN-а означает создание туннелей, под туннелем подразумевается канал между двумя устройствами, по которому передаётся данные. Важное условие – данные изолированы от особенностей построения канала. Устройство, передающее полезные данные делает это так, как будто бы никакого туннеля нет, а настройка самого туннеля при этом выделяется в отдельную задачу. Существует два типа VPN туннелей:

  1. Remote access VPN – означает, что туннель организуется между приложением на компьютере клиента и каким-либо устройством, которое выступает в качестве сервера и организовывает подключения от различных клиентов (например, VPN-концентратор, маршрутизатор, Cisco ASA и т.п.)
  2. Site-to-site VPN – подразумевает наличие двух устройств (например, маршрутизаторов), между которыми имеется перманентный туннель, в этом случае, пользователи находятся за устройствами, в локальный сетях и на их компьютерах не требуется установки какого-либо специального программного обеспечения.

Первый тип используется для подключения, например, удалённых работников в корпоративную сеть предприятия по защищённому каналу. В этом случае работник может находиться в любом месте, где есть интернет, и программное обеспечение на его компьютере построит туннель до маршрутизатора компании, по которому будут передаваться полезные данные. Второй тип используется в случае необходимости стационарного соединения между двумя удалёнными филиалами, или филиалом и центральным офисом. В этом случае сотрудники без специального ПО работают в локальной сети офиса, а на границе этой сети стоит маршрутизатор, который незаметно для пользователя создаёт туннель с удалённым маршрутизатором и передаёт на него полезный трафик.

В туннеле обычно используется три прослойки протоколов:

  1. Транспортный протокол (например, IP). Это протокол, на котором построена существующая реальная сеть, то есть, он изначально не связан с VPN-ом, но используется для транспортировки инкапсулированных пакетов, содержащих внутри себя зашифрованную, или открытую информацию, относящуюся ко внутренней сети туннеля.
  2. Протокол инкапсуляции (например, GRE) – используется как прослойка между транспортным протоколом и внутренним транспортируемым протоколом.
  3. Инкапсулированный (транспортируемый) протокол (например, IP, IPX, IPSec) – это собственно пакеты внутритуннельной сети, пользователь, подключенный к VPN-у отправляет пакеты, которые на входе в туннель становятся инкапсулированными, например, в GRE, который, в свою очередь, инкапсулируется в транспортный протокол.

Таким образом, общий порядок инкапсуляции, в случае использования site-to-site VPN следующий: пользователь отправляет обычный пакет, пакет доходит до устройства, на котором поднят туннель, устройство заворачивает этот полезный пакет в поле «data» протокола инкапсуляции, который, в свою очередь заворачивается в поле «data» транспортного протокола. После чего из устройства выходит с виду обычный, например, ip пакет, в котором, на самом деле, в поле с полезными данными содержится GRE-пакет, в котором, в свою очередь, содержится другой внутренний IP пакет. Это позволяет использовать независимую адресацию внутри туннеля и снаружи туннеля. Когда целевое устройство получает такой пакет, оно разворачивает его, декапсулируя из него GRE и потом внутренний IP пакет. После чего внутренний пакет направляется получателю. В данной ситуации, как не сложно догадаться, отправитель и получатель ничего не знаю о наличии туннеля, и работают так, как будто бы его нет. При этом в транспортном протоколе используется одна адресация (например, публичные IP адреса), а в транспортируемом протоколе могут использоваться приватные адреса, что не мешает ему транспортироваться через интернет (так как маршрутизация осуществляется для внешнего, транспортного пакета).

Мультисервисные и беспроводные сети

Объединение офисов предприятия на основе технологий VPN

Корпоративные сети передачи данных предназначены для обеспечения эффективного функционирования информационной инфраструктуры предприятия. КСПД позволяют объединить разрозненные и удаленные территории и офисы компании в единую корпоративную сеть , создать единое информационное пространства и защищенные соединения удаленных офисов на основе технологий VPN (см. рис.1). Защищённая корпоративная виртуальная частная сеть, обеспечивает шифрование данных, передаваемых между офисами компании.ИЦ "Телеком-Сервис" предлагает комплексные решения по построению корпоративных VPN сетей на основе оборудования Cisco Systems, Juniper Networks и Huawei Technologies.

Рис.1 Схема организации корпоративной VPN сети


Организация корпоративной VPN сети на основе оборудования Cisco Systems

В настоящее время компания Cisco Systems предлагает высокотехнологичные VPN-решения полностью соответствующие требованиям российского технического регулирования в сфере информационной безопасности.

Компаниями Cisco Systems и С-Терра СиЭсПи разработана новая версия VPN-модуля NME-RVPN (MCM), поддерживающий российские крипто алгоритмы и тесно интегрируемый в интеллектуальную информационную сеть.Интеграция модуля NME-RVPN в исполнении МСМ в маршрутизаторы Cisco ISR серий 2800/3800 и 2900/3900 позволяет потребителям получить единое решение, обеспечивающее защиту передаваемой информации в соответствии с требованиями российских стандартов, развитую маршрутизацию, поддержку механизмов качества обслуживания приоритетного трафика (QoS), а также сервисы IP-телефонии и передачи видео. Подобные качества, дополненные управляемостью и надежностью платформ на базе операционной системыВ качестве альтернативного решения предлагается построение защищенной VPN сети на основе межсетевых экранов Cisco ASA 5500. Линейка межсетевых экранов ASA 5500 позволяет разворачивать VPN сети на основе протокола IPSec с использованием симметричного алгоритма шифрования DES (Data Encryption Standard ). Для шифрования использует ключ с длиной 56 бит, что соответствует требованиям российского технического регулирования в сфере информационной безопасности. Решение является бюджетным по сравнению с вариантом на основе модуля NME-RVPN. Недостатком такого решения является низкая стойкость алгоритма шифрования DES по сравнению с существующими алгоритмами шифрования.


Организация корпоративной VPN сети на основе оборудования Juniper Networks

Реализацию защищенной VPN сети предлагается выполнять на основе серии сервисных шлюзов Juniper SRX. Серия сервисных шлюзов SRX позволяет разворачивать VPN сети на основе протокола IPSec без ограничений по используемым алгоритмам шифрования. В сервисных шлюзах SRX консолидирован функционал маршрутизации, коммутации и сетевой безопасности. Серия шлюзов SRX имеет высокую производительность в части функционала межсетевого экрана, функции IPS и большую плотность GE портов с поддержкой функции PoE. Т.о. данное решение можно отнести к классу бюджетных решений, позволяющих разворачивать VPN сети без ограничений по применяемым алгоритмам шифрования.


Организация корпоративной VPN сети на основе оборудования Huawei Symantec

Реализацию защищенной VPN сети предлагается выполнять на основе шлюзов безопасности USG. Шлюзы безопасности USG позволяет разворачивать VPN сети на основе протокола IPSec без ограничений по используемым алгоритмам шифрования. Универсальные шлюзы безопасности USG представляют собой новое поколение многофункциональных шлюзов безопасности, предназначенных для предприятий среднего бизнеса, филиалов крупных предприятий. Благодаря модульной структуре, USG объединяет различные функции, такие как безопасность, маршрутизация, коммутация и функции беспроводной связи.Также предлагается решение по организации VPN сетей полностью соответствующих требованиям российского технического регулирования в сфере информационной безопасности. Для защиты данных используется программно-аппаратный комплекс (далее - ПАК) «ViPNet Coordinator HW-VPNM», являющийся совместной разработкой компаний ИнфоТеКС и Huawei Symantec. ПАК «ViPNet Coordinator HW-VPNM» является универсальным средством защиты информации в локальных и глобальных сетях связи (включая Интернет) и выполняет функции межсетевого экрана и криптошлюза. Особенностями ПАК являются его исполнение в виде модуля расширения к маршрутизаторам Huawei Symantec USG, а также высокая производительность в задаче шифрования реального IP-трафика – до 180 Мбит/с трафика без ограничения на число одновременно поддерживаемых сессий. Следует отметить, что при этом осуществляется полное шифрование всего IP-трафика по алгоритму ГОСТ 28147-89 с одновременной инкапсуляцией (сокрытием структуры информации) исходных IP-пакетов в UDP-пакеты. Это обеспечивает беспрецедентную стойкость к попыткам анализа и несанкционированного доступа к защищаемой информации. ПАК «ViPNet Coordinator HW» имеет сертификат соответствия ФСБ РФ №СФ/124-1459 от 9 мая 2010 года, удостоверяющего его соответствие требованиям ФСБ России к СКЗИ класса КС3 и возможность использования для криптографической защиты информации (шифрование и имитозащиты IP-трафика) информации, не содержащей сведений, составляющих государственную тайну.


Организация корпоративной VPN сети на основе системы ViPNet компании ИнфоТеКС

Концепция построения виртуальных частных сетей в полном соответствии с современными законодательными требованиями российских регуляторов. Предлагаемое решение соответствует следующим требованиям:
  • Использование только отечественных алгоритмов симметричного шифрования, хэширования, а также асимметричного шифрования и электронно-цифровой подписи (ГОСТ 28147-89, ГОСТ 34.11-94, ГОСТ 34.10-2001)
  • Наличие сертификатов ФСТЭК и ФСБ как на криптографические продукты, так и на изделия в целом (для программно-аппаратных комплексов)
  • Сертифицированные решения по межсетевому экранированию
  • Организация особых условий доступа к открытым сетям (невозможность одновременного доступа к ресурсам открытых сетей и защищённой сети)
  • Защита передаваемых данных посредством шифрования на всех сегментах сети (всех участках прохождения данных начиная от рабочей станции).

Типовое решение состоит из следующих функциональных компонентов (см. рис.2):

Рис.2

  • Рабочее место администратора – комплект программного обеспечения для первоначальной настройки и управления виртуальной частной сетью.
  • Программное обеспечение ViPNet Client (клиентское ПО) – программный продукт, устанавливаемый на каждой рабочей станции (или сервере с операционной системой MS Windows), для которой необходимо обеспечить криптографическую защиту передаваемых данных – реализует функции шифрования трафика и персонального межсетевого экрана.
  • Криптошлюз – программно-аппаратный комплекс (специализированное устройство), выполняющий функции маршрутизации, терминирования туннелей виртуальной частной сети и корпоративного межсетевого экрана
  • Сервер открытого Интернета – программно-аппаратный комплекс, выполняющий функцию защищённого прокси-сервера для доступа к ресурсам Интернет.

строим VPN канал

Всем привет сегодня в статье мы подробно рассмотрим как настроить VPN канал между офисами с помощью OpenVPN с возможностью дополнительной парольной защитой. Не для кого не секрет, что OpenVPN в последнее время стал очень популярен во многих организациях, и дело тут не в том, что он полностью бесплатен, а дело в эффективности, с помощью которой можно соединить VPN-каналами удаленные офисы. Настраивать мы будет VPN туннель между офисами с дополнительной парольной защитой на платформе Windows.

Задача: Настроить VPN канал между двумя филиалами вашей компании. Сеть в первом филиале называется N_B1) и сеть во втором филиале N_B2. Установка OpenVPN в обоих офисах будет на ОС Windows 7 . Приступим к выполнению поставленной задачи.

Network N_B1 содержит:

Компьютер или сервер, где устанавливается сервер OpenVPN, имеет 2 сетевых интерфейса, один как вы можете понять для wan ip адреса, а второй для внутренней сети..
Также на ней установлен proxy сервер который раздает инет в локальную сеть, тем самым являясь для всех машин в локальной сети основным шлюзом (192.168.2.100)
192.168.2.100 смотрит в локальную сеть
192.168.2.3 данный интерфейс смотрит в интернет через маршрутизатор, который имеет статический IP скажем 123.123.123.123. На нем сделан форвардинг или как его еще называют проброс порта 1190 (для примера порт 1190 проброшен на сетевом интерфейсе с ip адресом 192.168.2.3)
Пользователь в сети имеет 192.168.2.100

Network N_B2 содержит:

Компьютер или сервер, где устанавливается клиент OpenVPN, так же имеет 2 сетевых интерфейса.
Также на ней установлен proxy сервер который раздает интернет в локальную сеть, тем самым являясь для всех машин в локальной сети основным шлюзом(172.17.10.10)
172.17.10.10 смотрит в локальную сеть
192.168.2.3 смотрит в мир через маршрутизатор.
Пользователь в сети: 172.17.10.50

Задача: Человек из офиса с сетью N_B1 (192.168.2.100) должен видеть общие ресурсы на компьютере человека из сети N_B2 (172.17.10.50) и в обратном направлении.

Другими словами каждый каждого должен видеть и иметь возможность заходить в гости, вдруг кто фотки новые расшарит посмотреть своему коллеге из другого branche.