Основные функции звуковой системы пк. Звуковая система компьютера

Звуковые устройства становятся неотъемлемой частью каждого персонального компьютера. В процессе конкурентной борьбы был выработан универсальный, широко поддерживаемый стандарт звукового программного и аппаратного обеспечения. Звуковые устройства превратились из дорогих экзотических дополнений в привычную часть системы практически любой конфигурации.

В современных компьютерах аппаратная поддержка звука реализуется в одной из следующих форм:

  • аудиоадаптер, помещаемый в разъем шины PCI или ISA;
  • микросхема на системной плате, выпускаемая компаниями Crystal, Analog Devices, Sigmatel, ESS и др.;
  • звуковые устройства, интегрированные в базовый набор микросхем системной платы, к которым относятся наиболее современные наборы микросхем компаний Intel, SiS и VIA Technologies, созданные для недорогих компьютеров.

Кроме основного аудиоустройства, существует еще множество дополнительных аудиоустройств: акустические системы, микрофон и др. В данной главе рассматриваются функциональность и особенности работы всех компонентов аудиосистемы компьютера.

Первые звуковые платы появились в конце 1980-х гг. на базе разработок компаний AdLib, Roland и Creative Labs и использовались только для игр. В 1989 г. компания Creative Labs выпустила стереозвуковую плату Game Blaster; позднее появилась плата Sound Blaster Pro.

Для стабильного функционирования платы требовались определенные программные (MS DOS, Windows) и аппаратные ресурсы (IRQ, DMA и адреса порта ввода-вывода).

В связи с проблемами, возникающими в процессе применения звуковых плат, не совместимых с системой Sound Blaster Pro, в декабре 1995 г. появилась новая разработка компании Microsoft - DirectX, которая представляет собой серию программируемых интерфейсов приложения (Application Program Interfaces - API) для непосредственного взаимодействия с устройствами аппаратного обеспечения.

Сегодня практически каждый компьютер оснащен звуковым адаптером того или иного типа и устройством CD-ROM или

CD-ROM-совместимым дисководом. После принятия стандартов МРС-1-МРС-3, определяющих классификацию компьютеров, системы, оборудованные звуковой платой и CD-ROM-совместимым накопителем, получили название мультимедийных компьютеров (Multimedia PC). Первый стандарт МРС-1 был представлен в 1990 г.; стандарт МРС-3, сменивший его в июне 1995 г., определил следующие минимальные требования к аппаратному и программному обеспечению:

  • процессор - Pentium, 75 МГц;
  • оперативная память - 8 Мб;
  • жесткий диск - 540 Мб;
  • дисковод CD-ROM - четырехскоростной (4х);
  • разрешающая способность VGA - 640 х 480;
  • глубина цвета - 65 536 цветов (16-битовый цвет);
  • минимальная операционная система - Windows 3.1.

Любые компьютеры, созданные после 1996 г., содержащие

звуковой адаптер и CD-ROM-совместимый дисковод, полностью удовлетворяют требованиям стандарта МРС-3.

В настоящее время критерии принадлежности компьютера к классу мультимедийных несколько изменились в связи с техническими достижениями в этой области:

  • процессор - Pentium III, Celeron, Athlon, Duron или какой-либо другой процессор класса Pentium, 600 МГц;
  • оперативная память - 64 Мб;
  • жесткий диск - 3,2 Гб;
  • гибкий диск - 1,44 Мб (3,5" диск с высокой плотностью размещения данных);
  • дисковод CD-ROM - 24-скоростной (24х);
  • звуковая частота дискретизации - 16-разрядная;
  • разрешающая способность VGA - 1024 х 768;
  • глубина цвета - 16,8 млн цветов (24-битовый цвет);
  • устройства ввода-вывода - параллельный, последовательный, MIDI, игровой порт;
  • минимальная операционная система - Windows 98 или Windows Me.

Несмотря на то, что звуковые колонки или наушники технически не являются частью МРС-спецификации или приведенного выше перечня, они необходимы для воспроизведения звука. Кроме того, для ввода голосовой информации, используемой для записи звука или речевого управления компьютером, требуется микрофон. Системы, оснащенные звуковым адаптером, обычно содержат также недорогие пассивные или активные колонки (могут быть заменены наушниками, обеспечивающими требуемое качество и частотные характеристики воспроизводимого звука).

Мультимедийный компьютер, оснащенный колонками и микрофоном, обладает рядом возможностей и обеспечивает:

  • добавление стереозвука к развлекательным (игровым) программам;
  • увеличение эффективности образовательных программ (для маленьких детей);
  • добавление звуковых эффектов в демонстрационные и обучающие программы;
  • создание музыки с помощью аппаратных и программных средств MIDI;
  • добавление в файлы звуковых комментариев;
  • реализацию звуковых сетевых конференций;
  • добавление звуковых эффектов к событиям операционной системы;
  • звуковое воспроизведение текста;
  • проигрывание аудиокомпакт-дисков;
  • проигрывание файлов формата.mp3;
  • проигрывание видеоклипов;
  • воспроизведение DVD-фильмов;
  • поддержку управления голосом.

Компоненты аудиосистемы. При выборе аудиосистемы необходимо учитывать параметры ее компонентов.

Разъемы звуковых плат. Большинство звуковых плат имеет одинаковые миниатюрные (1/8") разъемы, с помощью которых сигналы подаются с платы на акустические системы, наушники и входы стереосистемы; к аналогичным разъемам подключается микрофон, проигрыватель компакт-дисков и магнитофон. На рис. 5.4 показаны четыре типа разъемов, которые как минимум должны быть установлены на звуковой плате. Цветовые обозначения разъемов каждого типа определены в руководстве РС99 Design Guide и варьируются для различных звуковых адаптеров.

Рис. 5.4.

Перечислим наиболее распространенные разъемы:

  • линейный выход платы. Сигнал с этого разъема подается на внешние устройства - акустические системы, наушники или на вход стереоусилителя, с помощью которого сигнал усиливают до требуемого уровня;
  • линейный вход платы. Используется при микшировании или записи звукового сигнала, поступающего от внешней аудиосистемы на жесткий диск;
  • разъем для акустической системы и наушников. Присутствует не во всех платах. Сигналы на акустические системы подаются с того же разъема (линейного выхода), что и на вход стереоусилителя;
  • микрофонный вход, или вход монофонического сигнала. Применяется для подключения микрофона. Запись с микрофона является монофонической. Уровень входного сигнала при этом поддерживается постоянным и оптимальным для преобразования. Для записи лучше всего использовать электродинамический или конденсаторный микрофон, рассчитанный на сопротивление нагрузки от 600 Ом до 10 кОм. В некоторых дешевых звуковых платах микрофон подключается к линейному входу;
  • разъем для джойстика (MIDI-порт). Представляет собой 15-контактный D-образный разъем. Два его контакта можно использовать для управления устройством MIDI, например клавишным синтезатором. В этом случае необходимо приобрести Y-образный кабель;
  • разъем MIDI. Включается в порт джойстика, имеет два круглых 5-контактных разъема DIN, используемых для подключения устройств MIDI, а также разъем для джойстика;
  • внутренний контактный разъем - специальный разъем для подключения к внутреннему накопителю CD-ROM. Позволяет воспроизводить звук с компакт-дисков через акустические системы, подключенные к звуковой плате. Этот разъем отличается от разъема для подключения контроллера CD-ROM к звуковой плате, так как данные по нему не передаются на шину компьютера.

Дополнительные разъемы. Большинство современных звуковых адаптеров поддерживает возможности воспроизведения DVD, обработки звука и т. д., а следовательно, имеет несколько дополнительных разъемов, особенности которых приведены ниже:

  • вход и выход MIDI. Такой разъем, не совмещенный с игровым портом, позволяет одновременно использовать как джойстик, так и внешние устройства MIDI;
  • вход и выход SPDIF (Sony/Philips Digital Interface - SP/DIF). Разъем используется для передачи цифровых аудиосигналов между устройствами без их преобразования к аналоговому виду. Интерфейс SPDIF иногда называют Dolby Digital;
  • CD SPDIF. Разъем предназначен для подключения накопителя CD-ROM к звуковой плате с помощью интерфейса SPDIF;
  • вход TAD. Разъем для подключения модемов с поддержкой автоответчика (Telephone Answering Device) к звуковой плате;
  • цифровой выход DIN. Разъем предназначен для подключения многоканальных цифровых акустических систем;
  • вход Аих. Обеспечивает подключение к звуковой карте других источников сигнала, например ТВ-тюнера;
  • вход I2S. Позволяет подключать к звуковой карте цифровой выход внешних источников, например DVD.

Дополнительные разъемы обычно располагаются непосредственно на звуковой плате или подсоединяются к внешнему блоку или дочерней плате. Например, Sound Blaster Live! Platinum 5.1 представляет собой устройство, состоящее из двух частей. Сам звуковой адаптер подключается посредством разъема PCI, а дополнительные соединители - к внешнему коммутационному блоку LiveDrive IR, который устанавливается в неиспользуемый отсек дисковода.

Управление громкостью. В некоторых звуковых платах предусмотрено ручное регулирование громкости; на более сложных платах управление громкостью осуществляется программно с помощью комбинаций клавиш, непосредственно в процессе игры в системе Windows или в каком-либо приложении.

Синтезаторы. В настоящее время все выпускаемые платы являются стереофоническими, поддерживающими стандарт MIDI.

Стереофонические звуковые платы одновременно воспроизводят (и записывают) несколько сигналов от двух различных источников. Чем больше сигналов предусмотрено в адаптере, тем натуральнее звук. Каждая расположенная на плате микросхема синтезатора, чаще всего компании Yamaha, позволяет получить 11 (микросхема YM3812 или OPL2) сигналов или более. Для имитации более 20 сигналов (микросхема YMF262 или OPL3) устанавливается одна либо две микросхемы частотных синтезаторов.

В таблично-волновых звуковых платах вместо синтезированных звуков, генерируемых микросхемой частотной модуляции, используются цифровые записи реальных инструментов и звуковых эффектов. Например, при воспроизведении таким аудиоадаптером звука трубы слышится непосредственно звук трубы, а не его имитация. Первые звуковые платы, поддерживающие эту функцию, содержали до 1 Мб звуковых фрагментов, хранящихся в микросхемах памяти адаптера. Но в результате появления высокоскоростной шины PCI и увеличения объема оперативной памяти компьютеров в большинстве звуковых плат в настоящее время используется так называемый программируемый таблично-волновой метод, позволяющий загружать в оперативную память компьютера 2-8 Мб коротких звуковых фрагментов различных музыкальных инструментов.

В современных компьютерных играх MIDI-звук практически не используется, но, несмотря на это, изменения, произведенные в звуковой плате DirectX 8, делают его приемлемым вариантом для игровых фонограмм.

Сжатие данных. В большинстве плат качество звучания соответствует качеству компакт-дисков с частотой дискретизации

44,1 кГц, когда на каждую минуту звучания при записи даже обычного голоса расходуется около 11 Мб дискового пространства. Для того чтобы уменьшить размеры звуковых файлов, во многих платах используется сжатие данных. Например, в плате Sound Blaster ASP 16 сжатие звука осуществляется в реальном времени (непосредственно при записи) со степенью сжатия 2:1, 3: 1 или 4:1.

Поскольку для хранения звукового сигнала необходим большой объем дискового пространства, выполняется его сжатие методом адаптивной дифференциальной импульсно-кодовой модуляции (Adaptive Differential Pulse Code Modulation - ADPCM), что позволяет уменьшить размер файла примерно на 50 %. Правда, при этом ухудшается качество звука.

Многофункциональные сигнальные процессоры. Во многих звуковых платах используются процессоры цифровой обработки сигналов (Digital Signal Processor - DSP). Благодаря им платы стали более «интеллектуальными» и освободили центральный процессор компьютера от выполнения таких трудоемких задач, как очистка сигналов от шума и сжатие данных в режиме реального времени.

Процессоры устанавливаются во многих универсальных звуковых платах. Например, программируемый процессор цифровой обработки сигналов EMU10K1 платы Sound Blaster Live! сжимает данные, преобразует текст в речь и синтезирует так называемое трехмерное звучание, создавая эффект отражения звука и хорового сопровождения. При наличии такого процессора звуковая плата превращается в многофункциональное устройство. Например, в коммуникационной плате WindSurfer компании IBM цифровой процессор выполняет функции модема, факса и цифрового автоответчика.

Драйверы звуковых плат. С большинством плат поставляются универсальные драйверы для DOS- и Windows-приложений. В операционных системах Windows 9х и Windows NT уже существуют драйверы для популярных звуковых плат; драйверы для других плат можно приобрести отдельно.

Приложения DOS обычно не имеют широкого выбора драйверов, но компьютерные игры поддерживают адаптеры Sound Blaster Pro.

В последнее время требования к звуковым устройствам существенно возросли, что обусловило в свою очередь повышение мощности аппаратных средств. Современное унифицированное мультимедийное аппаратное обеспечение не может в полной мере считаться совершенной мультимедийной системой, характеризующейся следующими особенностями:

  • реалистичный объемный звук в компьютерных играх;
  • высококачественный звук в DVD-фильмах;
  • распознавание речи и голосовое управление;
  • создание и запись звуковых файлов форматов MIDI, MP3, WAV и CD-Audio.

Дополнительные требования к аппаратному и программному обеспечению, необходимые для достижения вышеперечисленных характеристик, представлены в табл. 5.3.

Таблица 5.3. Дополнительные возможности и свойства звуковых адаптеров

Назначение

Необходимые

возможности

Дополнительное аппаратное обеспечение

Дополнительное программное обеспечение

Игровой порт; трехмерный звук; аудиоускорение

Игровой контроллер; задние колонки

Фильмы формата DVD

Декодирование Dolby 5.1

Колонки с аудиоадаптером, совместимые с Dolby 5.1

Программа декодирования файлов MPEG

Программно-совместимый аудиоадаптер

Микрофон

Программное обеспечение, позволяющее диктовать тексты

Создание файлов MIDI

Аудиоадаптер с MIDI-входом

MIDI-совместимая

музыкальная

клавиатура

Программа для создания MIDI-файлов

Создание файлов MP3

Оцифровка звуковых файлов

Дисковод CD-R или CD-RW

Программа для создания МРЗ-файлов

Создание файлов WAV

Микрофон

Программа звукозаписи

Создание файлов CDAudio

Внешний источник звука

Программа преобразования файлов WAV или MP3 в CD-Audio

Минимальные требования, предъявляемые к звуковым платам.

Замена прежнего аудиоадаптера Sound Blaster Pro стандарта ISA звуковой платой PCI позволила значительно улучшить рабочие характеристики системы, однако целесообразно использовать все возможности звуковых плат, к которым в частности относятся:

  • поддержка трехмерного звука, реализованная в наборе микросхем. Выражение «трехмерный звук» означает, что звуки, соответствующие происходящему на экране, раздаются дальше или ближе, за спиной или где-то в стороне. Интерфейс Microsoft DirectX 8.0 включает поддержку трехмерного звука, однако для этого лучше использовать аудиоадаптер с аппаратно встроенной поддержкой трехмерного звука;
  • использование интерфейса DirectX 8.0 наряду с другими интерфейсами API трехмерного звука, к которым относятся, например, ЕАХ компании Creative, 3D Positional Audio компании Sensaura и технология A3D ныне не существующей компании Aureal;
  • ЗО-звуковое ускорение. Звуковые платы с наборами микросхем, поддерживающими эту возможность, имеют достаточно низкий коэффициент загрузки процессора, что приводит к общему увеличению скорости игр. Для получения наилучших результатов следует воспользоваться наборами микросхем, поддерживающими ускорение наибольшего числа 3D-потоков; в противном случае обработка трехмерного звука центральным процессором будет затруднена, что в конечном счете скажется на скорости игры;
  • игровые порты, поддерживающие игровые контроллеры с силовой обратной связью.

Сегодня существует множество звуковых плат среднего уровня, поддерживающих как минимум две из перечисленных функций. При этом розничная цена аудиоадаптеров не превышает 50-100 долл. Новые наборы микросхем трехмерного звука, поставляемые различными производителями, позволяют любителям компьютерных 3D-игр модернизировать систему в соответствии со своими пожеланиями.

Фильмы в формате DVD на экране компьютера. Для просмотра фильмов в формате DVD на компьютере необходимы следующие компоненты:

  • программное обеспечение для воспроизведения цифровых дисков, поддерживающее выход Dolby Digital 5.1. Одним из наиболее приемлемых вариантов является программа PowerDVD;
  • аудиоадаптер, поддерживающий входной сигнал Dolby Digital дисковода DVD и выводящий данные на Dolby Digital 5.1-совместимые звуковые аппаратные устройства. При отсутствии соответствующего аппаратного обеспечения вход Dolby 5.1 настраивается для работы с четырьмя колонками; кроме того, можно добавить вход S/PDIF ACS (Dolby Surround), предназначенный для четырехколоночных акустических систем;
  • Dolby Digital 5.1-совместимые приемник и колонки. Большинство высококачественных звуковых плат, поддерживающих систему Dolby Digital 5.1, соединены со специальным аналого-входным приемником, но ряд других, например, звуковые платы серии Creative Labs Sound Blaster Live! Platinum, поддерживают и акустические системы с цифровым входом, добавляя к плате дополнительный разъем Digital DIN.

Распознавание речи. Технология распознавания речи пока несовершенна, но уже сегодня существуют программы, позволяющие отдавать компьютеру команды голосом, вызывать нужные приложения, открывать файлы и необходимые диалоговые окна и даже диктовать ему тексты, которые раньше пришлось бы набирать.

Для типичного пользователя приложения этого типа бесполезны. Так, компания Compaq некоторое время поставляла компьютеры с микрофоном и приложением для голосового управления, причем стоило приложение очень дешево. Наблюдать за множеством пользователей в офисе, говорящих с компьютерами, было, конечно, интересно, но производительность фактически не увеличилась, зато много времени было потрачено впустую, поскольку пользователи были вынуждены экспериментировать с программным обеспечением, а кроме того, в офисе стало очень шумно.

Однако для пользователей с ограниченными возможностями по здоровью программное обеспечение этого типа может представлять определенный интерес, поэтому технология распознавания речи непрерывно развивается.

Как уже было сказано выше, существует еще один тип программного обеспечения распознавания речи, которое позволяет преобразовывать речь в текст. Это необычайно трудная задача, прежде всего из-за различий в речевых моделях разных людей, поэтому почти все программное обеспечение, в том числе некоторые приложения для подачи команд голосом, предусматривают этап «обучения» технологии распознавания голоса конкретного пользователя. В процессе такого обучения пользователь читает текст (или слова), бегущий на экране компьютера. Поскольку текст запрограммирован, компьютер быстро адаптируется к манере речи говорящего.

В результате проведенных экспериментов оказалось, что качество распознавания зависит от индивидуальных особенностей речи. Кроме того, некоторые пользователи способны диктовать целые страницы текста без прикосновений к клавиатуре, в то время как другие от этого утомляются.

Существует множество параметров, влияющих на качество распознавания речи. Перечислим основные из них:

  • программы распознавания дискретной и слитной речи. Слитная (или связная) речь, позволяющая вести более естественный «диалог» с компьютером, в настоящее время является стандартной, но, с другой стороны, есть ряд неразрешимых пока проблем в достижении приемлемой точности распознавания;
  • обучаемые и необучаемые программы. «Обучение» программы для корректного распознавания речи дает хорошие результаты даже в тех приложениях, которые позволяют пропустить этот этап;
  • большие активные и общие словари. Программы с большим активным словарем значительно быстрее реагируют на устную речь, а программы, имеющие больший общий словарь, позволяют сохранить уникальный запас слов;
  • производительность аппаратного обеспечения компьютера. Увеличение быстродействия процессоров и объема оперативной памяти приводит к ощутимому повышению скорости и точности программ распознавания речи, а также позволяет разработчикам вводить дополнительные возможности в новые версии приложений;
  • высококачественная звуковая плата и микрофон: наушники со встроенным микрофоном предназначены не для записи музыки или звуковых эффектов, а именно для распознавания речи.

Звуковые файлы. Для хранения аудиозаписей на персональном компьютере существуют файлы двух основных типов. В файлах первого типа, называемых обычными звуковыми файлами, используются форматы.wav, .voc, .au и.aiff. Звуковой файл содержит данные о форме волны, т. е. представляет собой запись аналоговых аудиосигналов в цифровой форме, пригодной для хранения на компьютере. Определены три уровня качества записи звуков, применяемых в операционных системах Windows 9х и Windows Me, а также уровень качества записи звука с характеристиками 48 кГц, 16-разрядный стерео и 188 Кб/с. Этот уровень предназначен для поддержки воспроизведения звука из таких источников, как DVD и Dolby АС-3.

Для достижения компромисса между высоким качеством звука и малым размером файла можно преобразовать файлы формата.wav в формат.mp3.

Сжатие аудиоданных. Существует две основные области, в которых применяется сжатие звука:

  • использование звуковых фрагментов на веб-узлах;
  • уменьшение объема высококачественных музыкальных файлов.

Специальные программы редактирования звуковых файлов, в частности, RealProducer компании Real или Microsoft Windows Media Encoder 7, позволяют уменьшать объем звуковых фрагментов при минимальной потере качества.

Самый популярный формат звуковых файлов - .mp3. Качество этих файлов приближается к качеству звучания компакт-диска, а по размеру они намного меньше обычных файлов.wav. Так, звуковой файл продолжительностью звучания 5 мин формата.wav с качеством компакт-диска имеет размер около 50 Мб, в то время как тот же звуковой файл формата.mp3 - около 4 Мб.

Единственным недостатком файлов формата.mp3 является отсутствие защиты от несанкционированного использования, т. е. любой желающий может свободно загрузить такой файл из Интернета (благо веб-узлов, предлагающих эти «пиратские» записи, существует великое множество). Описываемый формат файлов, несмотря на недостатки, получил довольно широкое распространение и обусловил массовое производство трЗ-плееров.

Файлы MIDI. Звуковой файл формата MIDI отличается от формата.wav так же, как векторный рисунок от растра. Файлы MIDI имеют расширение.mid или.rmi и являются полностью цифровыми, содержащими не запись звука, а команды, используемые аудиооборудованием для его создания. Подобно тому как по командам видеоадаптеры создают изображения трехмерных объектов, звуковые платы MIDI работают с файлами MIDI, чтобы синтезировать музыку.

MIDI - мощный язык программирования, который получил распространение в 1980-е гг. и разработан специально для электронных музыкальных инструментов. Стандарт MIDI стал новым словом в области электронной музыки. С помощью MIDI можно создавать, записывать, редактировать и воспроизводить музыкальные файлы на персональном компьютере или на MIDI-co- вместимом электронном музыкальном инструменте, подключенном к компьютеру.

Файлы MIDI в отличие от других типов звуковых файлов требуют относительно небольшого объема дискового пространства. Для записи 1 ч стереомузыки, хранимой в формате MIDI, требуется менее 500 Кбайт. Во многих играх используется запись звуков в формате MIDI, а не записи дискретизированного аналогового сигнала.

Файл MIDI - фактически цифровое отображение музыкальной партитуры, составленное из нескольких выделенных каналов, каждый из которых представляет различный музыкальный документ или тип звука. В каждом канале определены частоты и продолжительность звучания нот: в результате файл MIDI, например, для струнного квартета, содержит четыре канала, которые представляют две скрипки, альт и виолончель.

Все три спецификации МРС, а также РС9х предусматривают поддержку формата MIDI во всех звуковых платах. Стандарт General MIDI для большинства звуковых плат предусматривает до 16 каналов в единственном файле MIDI, но это не обязательно ограничивает звук 16 инструментами. Один канал способен представлять звук группы инструментов; поэтому можно синтезировать полный оркестр.

Поскольку файл MIDI состоит из цифровых команд, редактировать его намного легче, чем звуковой файл типа.wav. Соответствующее программное обеспечение позволяет выбирать любой канал MIDI, записывать ноты, а также добавлять эффекты. Определенные пакеты программ предназначены для записи музыки в файле MIDI, используя стандартную музыкальную систему обозначений. В результате композитор пишет музыку непосредственно на компьютере, редактирует ее при необходимости, а затем распечатывает ноты для исполнителей. Это очень удобно для профессиональных музыкантов, которые вынуждены тратить много времени на переписывание нот.

Проигрывание файлов MIDI. Запуск файла MIDI на персональном компьютере не означает воспроизведение записи. Компьютер фактически создает музыку по записанным командам: система читает файл MIDI, синтезатор генерирует звуки для каждого канала в соответствии с командами в файле, для того чтобы придать нужный тон и длительность звучанию нот. Для получения звука определенного музыкального инструмента синтезатор использует предопределенный образец, т. е. набор команд, с помощью которых создается звук, подобный воспроизводимому конкретным инструментом.

Синтезатор на звуковой плате подобен электронному клавишному синтезатору, но с ограниченными возможностями. В соответствии со спецификацией МРС звуковая плата должна иметь частотный синтезатор, который может одновременно проиграть по крайней мере шесть мелодичных нот и две ударные.

Частотный синтез. Большинство звуковых плат генерирует звуки с помощью частотного синтезатора; эта технология была разработана еще в 1976 г. Используя одну синусоидальную волну для изменения другой, частотный синтезатор создает искусственный звук, который напоминает звучание определенного инструмента. В стандарте MIDI определен набор предварительно запрограммированных звуков, которые можно проиграть с помощью большинства инструментов.

В некоторых частотных синтезаторах используются четыре волны, и воспроизводимые звуки имеют вполне нормальное, хотя и несколько искусственное звучание. Например, синтезируемый звук трубы, несомненно, подобен ее звучанию, но никто и никогда не признает его звуком настоящей трубы.

Таблично-волновой синтез. Особенность частотного синтеза состоит в том, что воспроизводимый звук даже в лучшем случае не полностью совпадает с реальным звучанием музыкального инструмента. Недорогая технология более естественного звучания была разработана корпорацией Ensoniq в 1984 г. Она предусматривает запись звучания любого инструмента (включая фортепьяно, скрипку, гитару, флейту, трубу и барабан) и сохранение оцифрованного звука в специальной таблице. Эта таблица записывается или в микросхемы ROM или на диск, а звуковая плата может извлекать из таблицы оцифрованный звук нужного инструмента.

С помощью таблично-волнового синтезатора можно выбрать инструмент, заставить звучать единственно нужную ноту и при необходимости изменить ее частоту (т. е. воспроизвести заданную ноту из соответствующей октавы). В некоторых адаптерах для улучшения воспроизведения звука используется несколько образцов звучания одного и того же инструмента. Самая высокая нота на фортепьяно отличается от самой низкой высотой тона, поэтому для более естественного звучания нужно выбрать образец, наиболее близкий (по высоте тона) к синтезируемой ноте.

Таким образом, от размера таблицы в значительной степени зависит качество и разнообразие звуков, которые способен воспроизводить синтезатор. Лучшие качественные таблично-волновые адаптеры обычно имеют на плате память объемом в несколько мегабайт для хранения образцов. В некоторых из них предусмотрена возможность подключения дополнительных плат для установки дополнительной памяти и записи образцов звуков в таблицу.

Подключение других устройств к разъему MIDI. Интерфейс MIDI звуковой платы применяется также для подключения электронных инструментов, генераторов звуков, барабанов и других устройств MIDI к компьютеру. В результате файлы MIDI воспроизводит высококачественный музыкальный синтезатор, а не синтезатор звуковой платы, кроме того, можно создавать собственные файлы MIDI, проигрывая ноты на специальной клавиатуре. Правильно подобранное программное обеспечение позволит сочинить симфонию на компьютере типа PC с помощью записи нот каждого инструмента отдельно в собственный канал, а затем разрешить одновременное звучание всех каналов. Многие профессиональные музыканты и композиторы используют устройства MIDI для сочинения музыки прямо на компьютерах, т. е. обходясь без традиционных инструментов.

Существуют также платы MIDI с высоким качеством звучания, которые работают в двунаправленном режиме, т. е. воспроизводят предварительно записанные звуковые дорожки во время записи новой дорожки в тот же файл MIDI. Еще несколько лет назад это можно было сделать только в студии на профессиональном оборудовании, стоившем сотни тысяч долларов.

Устройства MIDI подключаются к двум круглым 5-контактным разъемам DIN звукового адаптера, используемым для входных (MIDI-IN) и выходных (MIDI-OUT) сигналов. Многие устройства также имеют порт MIDI-THRU, который передает сигналы, поступающие на вход устройства, непосредственно на его выход, но звуковые платы, как правило, такого порта не имеют. Интересно, что в соответствии со стандартом MIDI данные передаются только через контакты 1 и 3 разъемов. Контакт 2 экранирован, а контакты 4 и 5 не используются.

Основная функция интерфейса MIDI звуковой платы состоит в конвертировании (преобразовании) потока байтов (т. е. параллельно поступающих 8 бит) данных, которые передаются системной шиной компьютера, в последовательный поток данных в формате MIDI. Устройства MIDI оснащены асинхронными последовательными портами, работающими на скорости 31,25 Кбод. При обмене данными в соответствии со стандартом MIDI используются восемь информационных разрядов с одним стартовым и одним стоповым битами, причем на последовательную передачу 1 байта затрачивается 320 мс.

В соответствии со стандартом MIDI сигналы передаются по специальной неэкранированной витой паре, которая может иметь максимальную длину до 15 м (хотя большинство продаваемых кабелей имеют длину 3 или 6 м). С помощью шлейфа можно также подключить несколько устройств MIDI, чтобы объединить их возможности. Полная длина цепочки устройств MIDI не ограничена, но длина каждого отдельного кабеля не должна превышать 15 м.

В системах типа legacy-free нет разъема игрового порта (MIDI-порта) - все устройства подключаются к шине типа USB.

Программное обеспечение для устройств MIDI. С операционными системами Windows 9х, Windows Me и Windows 2000 поставляется программа «Универсальный проигрыватель» (Media Player), которая воспроизводит файлы MIDI. Для того чтобы использовать все возможности MIDI, рекомендуется приобрести специализированное программное обеспечение для выполнения различных операций редактирования файлов MIDI (задание темпа проигрывания, вырезания, а также вставки различной предварительно записанной музыки).

Ряд звуковых плат поставляется вместе с программами, в которых предусмотрены возможности редактирования файлов MIDI. Кроме того, многие бесплатные и условно-бесплатные инструментальные средства (программы) свободно распространяются через Интернет, но действительно мощное программное обеспечение, которое позволяет создавать и редактировать файлы MIDI, приходится покупать отдельно.

Запись. Практически на всех звуковых платах устанавливается входной разъем, подключив микрофон к которому, можно записать свой голос. С помощью программы «Звукозапись» (Sound Recorder) в системе Windows воспроизводят, редактируют и записывают звуковой файл в специальном формате.wav.

Ниже перечислены основные способы использования файлов формата.wav:

  • сопровождение тех или иных событий в системе Windows. Для этого следует воспользоваться опцией «Звук» (Sounds) панели управления Windows;
  • добавление речевых комментариев с помощью элементов управления Windows OLE и ActiveX к документам различного типа;
  • ввод сопроводительного текста в презентации, создаваемые с помощью программ PowerPoint, Freelance Graphics, Corel Presentations или др.

С целью уменьшения объема и дальнейшего использования в Интернете файлы.wav преобразуют в файлы формата.mp3 или.wma.

Аудиокомпакт-диски. С помощью накопителя CD-ROM можно прослушивать аудиокомпакт-диски не только через акустические системы, но и через наушники, параллельно работая с другими программами. К ряду звуковых плат прилагаются программы для проигрывания компакт-дисков, а через Интернет такие программы зачастую скачивают бесплатно. В этих программах обычно присутствует визуальный дисплей, имитирующий переднюю панель проигрывателя компакт-дисков для управления с помощью клавиатуры или мыши.

Звуковой смеситель (микшер). При наличии нескольких источников звука и только одной акустической системы необходимо воспользоваться звуковым смесителем. Большинство звуковых плат оснащены встроенным смесителем звука (микшером), позволяющим смешивать звук от аудио-, MIDI- и WAV-источников, линейного входа и CD-проигрывателя, воспроизводя его на едином линейном выходе. Обычно интерфейсы программ для смешивания звука на экране выглядят так же, как панель стандартного звукового смесителя. Это позволяет легко управлять громкостью звука каждого источника.

Звуковые платы: основные понятия и термины. Для того чтобы понять, что такое звуковые платы, сначала необходимо разобраться в терминах. Звук - это колебания (волны), распространяющиеся в воздухе или другой среде от источника колебаний во всех направлениях. Когда волны достигают уха, расположенные в нем чувствительные элементы воспринимают вибрацию и слышится звук.

Каждый звук характеризуется частотой и интенсивностью (громкостью).

Частота - это количество звуковых колебаний в секунду; она измеряется в герцах (Гц). Один цикл (период) - это одно движение источника колебания (туда и обратно). Чем выше частота, тем выше тон.

Человеческое ухо воспринимает лишь небольшой диапазон частот. Очень немногие слышат звуки ниже 16 Гц и выше 20 кГц (1 кГц = 1000 Гц). Частота звука самой низкой ноты рояля равна 27 Гц, а самой высокой - чуть больше 4 кГц. Наивысшая звуковая частота, которую могут передать радиовещательные FM-стан- ции, составляет 15 кГц.

Громкость звука определяется амплитудой колебаний, которая зависит в первую очередь от мощности источника звука. Например, струна фортепьяно при слабом ударе по клавише звучит тихо, поскольку диапазон ее колебаний невелик. Если ударить по клавише посильнее, то амплитуда колебаний струны увеличится. Громкость звука измеряется в децибелах (дБ). Шорох листьев, например, имеет громкость около 20 дБ, обычный уличный шум - около 70 дБ, а близкий удар грома - 120 дБ.

Оценка качества звукового адаптера. Для оценки качества звукового адаптера используются три параметра:

  • диапазон частот;
  • коэффициент нелинейных искажений;
  • отношение сигнал/шум.

Частотная характеристика определяет тот диапазон частот, в котором уровень записываемых и воспроизводимых амплитуд остается постоянным. Для большинства звуковых плат диапазон составляет от 30 Гц до 20 кГц. Чем шире этот диапазон, тем лучше плата.

Коэффициент нелинейных искажений характеризует нелинейность звуковой платы, т. е. отличие реальной кривой частотной характеристики от идеальной прямой, или, проще говоря, коэффициент характеризует чистоту воспроизведения звука. Каждый нелинейный элемент является причиной искажения. Чем меньше этот коэффициент, тем выше качество звука.

Высокие значения отношения сигнал/шум (в децибелах) соответствуют лучшему качеству воспроизведения звука.

Дискретизация. Если в компьютере установлена звуковая плата, то возможна запись звука в цифровой (называемой также дискретной) форме, в этом случае компьютер используется в качестве записывающего устройства. В состав звуковой платы входит небольшая микросхема - аналого-цифровой преобразователь, или АЦП (Analog-to-Digital Converter - ADC), который при записи преобразует аналоговый сигнал в цифровую форму, понятную компьютеру. Аналогично при воспроизведении цифроаналоговый преобразователь (Digital-to-Analog Converter - DAC) преобразует аудиозапись в звук, который способны воспринимать наши уши.

Процесс превращения исходного звукового сигнала в цифровую форму (рис. 5.5), в которой он и хранится для последующего воспроизведения, называется дискретизацией, или оцифровыванием. При этом сохраняются мгновенные значения звукового сигнала в определенные моменты времени, называемые выбор-


Рис. 5.5. Схема преобразования звукового сигнала в цифровую форму ками. Чем чаще берутся выборки, тем точнее цифровая копия звука соответствует оригиналу.

Первым стандартом МРС предусматривался 8-разрядный звук. Разрядность звука характеризует количество бит, используемых для цифрового представления каждой выборки.

Восемь разрядов определяют 256 дискретных уровней звукового сигнала, а если использовать 16 бит, то их количество достигает 65 536 (естественно, качество звука значительно улучшается). Для записи и воспроизведения речи достаточно 8-разрядного представления, а для музыки требуется 16 разрядов. Большинство старых плат поддерживает лишь 8-разрядное представление звука, все современные платы обеспечивают 16 разрядов и более.

Качество записываемого и воспроизводимого звука наряду с разрешением определяется частотой дискретизации (количеством выборок в секунду). Теоретически она должна быть в 2 раза выше максимальной частоты сигнала (т. е. верхней границы частот) плюс 10%-ный запас. Порог слышимости человеческого уха - 20 кГц. Записи с компакт-диска соответствует частота 44,1 кГц.

Звук, дискретизированный на частоте 11 кГц (11 000 выборок в секунду), получается более размытым, чем звук, дискретизированный на частоте 22 кГц. Объем дискового пространства, необходимый для записи 16-разрядного звука с частотой дискретизации 44,1 кГц в течение 1 мин, составит 10,5 Мб. При 8-раз- рядном представлении, монофоническом звучании и частоте дискретизации 11 кГц необходимое дисковое пространство сокращается в 16 раз. Эти данные можно проверить с помощью программы «Звукозапись»: запишите звуковой фрагмент с различными частотами дискретизации и посмотрите на объем полученных файлов.

Трехмерный звук. Одним из наиболее сложных испытаний для звуковых плат, входящих в состав игровых систем, является выполнение задач, связанных с обработкой трехмерного звука. Существует несколько факторов, усложняющих решение задач подобного рода:

  • разные стандарты позиционирования звука;
  • аппаратное и программное обеспечение, используемое для обработки трехмерного звука;
  • проблемы, связанные с поддержкой интерфейса DirectX.

Позиционный звук. Позиционирование звука представляет собой общую технологию для всех зЬ-звуковых плат и включает настройку определенных параметров, таких, как реверберация или отражение звука, выравнивание (баланс) и указание на «расположение» источника звука. Все эти компоненты создают иллюзию звуков, раздающихся впереди, справа, слева от пользователя или даже за его спиной. Наиболее важным элементом позиционного звука является функция преобразования HRTF (Head Related Transfer Function), определяющая изменение восприятия звука в зависимости от формы уха и угла поворота головы слушателя. Параметры этой функции описывают условия, при которых «реалистичный» звук воспринимается совершенно иначе, когда голова слушателя повернута в ту или другую сторону. Использование акустических систем с несколькими колонками, «окружающими» пользователя со всех сторон, а также сложные звуковые алгоритмы, дополняющие воспроизводимый звук управляемой реверберацией, позволяют сделать синтезированный компьютером звук еще более реалистичным.

Обработка трехмерного звука. Важным фактором качественного звучания являются различные способы обработки трехмерного звука в звуковых платах, в частности:

  • централизованная (для обработки трехмерного звука используется центральный процессор, что приводит к снижению общего быстродействия системы);
  • обработка звуковой платы (3 D-ускорение) с помощью мощного цифрового обработчика сигналов (DSP), выполняющего обработку непосредственно в звуковой плате.

Звуковые платы, осуществляющие централизованную обработку трехмерного звука, могут стать основной причиной снижения частоты смены кадров (числа анимационных кадров, выводимых на экран за каждую секунду) при использовании функции трехмерного звука. В звуковых платах со встроенным аудиопроцессором частота смены кадров при включении или отключении трехмерного звука почти не изменяется.

Как показывает практика, средняя частота смены кадров реалистичной компьютерной игры должна быть не меньше 30 кадр./с (кадров в секунду). При наличии быстродействующего процессора, например, Pentium III 800 МГц, и какой-либо современной ЗЭ-звуковой платы такая частота достигается достаточно легко. При использовании более медленного процессора, скажем, Celeron 300А с рабочей частотой 300 МГц, и платы с централизованной обработкой трехмерного звука частота смены кадров станет намного ниже 30 кадр./с. Для того чтобы увидеть, как влияет обработка трехмерного звука на скорость компьютерных игр, предусмотрена функция отслеживания частоты кадров, встроенная в большинство игр. Частота смены кадров связана непосредственно с коэффициентом использования процессора; повышение ресурсных требований к процессору приведет к уменьшению частоты смены кадров.

Технологии трехмерного звука и трехмерного видеоизображения представляют наибольший интерес прежде всего для разработчиков компьютерных игр, однако их использование в коммерческой среде также не за горами.

Подключение стереосистемы к звуковой плате. Процесс подключения стереосистемы к звуковой плате заключается в их подсоединении с помощью кабеля. Если в звуковой плате есть выход для акустической системы или наушников и линейный стереовыход, то для подключения стереосистемы лучше воспользоваться последним. В этом случае получается более качественный звук, поскольку на линейный выход сигнал поступает, минуя цепи усиления, и поэтому практически не подвергается искажениям, а усиливать сигнал будет только стереосистема.

Соедините этот выход с дополнительным входом вашей стереосистемы. Если стереосистема не имеет вспомогательных входов, следует воспользоваться другими, например, входом для проигрывателя компакт-дисков. Стереоусилитель и компьютер совсем не обязательно располагать рядом, поэтому длина соединительного кабеля может составить несколько метров.

В ряде стереомагнитол и радиоприемников на задней панели предусмотрен разъем для подключения тюнера, магнитофона и проигрывателя компакт-дисков. Используя этот разъем, а также линейные вход и выход звуковой платы, можно прослушивать звук, поступающий от компьютера, а также радиопередачи посредством акустической стереосистемы.

Краткое описание

В настоящее время наша жизнь уже абсолютно не мыслима без каждодневного применения технологий, в частности, компьютерных. Компьютерные технологии сочетают в себе сотни различных функций, являя собой пример неограниченной работоспособности, направленности и, конечно, практичности.
Появление систем мультимедиа, безусловно, производит революционные изменения в таких областях, как образование, компьютерный тренинг, во многих сферах профессиональной деятельности, науки, искусства, в компьютерных играх и т.д.
Качественное «железо» и, безусловно, хорошая акустическая система для ПК нужна любому пользователю. Фирм-производителей акустики на данный момент очень много. У каждой фирмы есть как преимущества, так и недостатки. Поэтому выбрать хорошую акустическую систему для компьютера часто бывает трудновато. Если нужно хорошее качество звука при прослушивании музыки, просмотре фильмов, или же при прохождении какой-либо трехмерной игры, то относиться к покупке акустики стоит более серьезно. С приобретением качественной акустики для музыки, игр и фильмов придется немного повозиться! Объясняется это тем, что качество звучания зависит от многих факторов, которые будут рассмотрены далее.

Прикрепленные файлы: 1 файл

1.6 Параметры и назначение акустических систем ПК.

Назначение

Предназначается для воспроизведения звука. Если компьютер оборудован звуковыми колонками и звуковой картой его называют мультимедийным.

Звуковая карта (англ. soundcard) - это плата, которая позволяет работать со звуком на компьютере. В настоящее время звуковые карты бывают как встроенными в материнскую плату, так и отдельными платами расширения или внешними устройствами.

Активные колонки используются как устройство воспроизведения и усиления музыки, речи и звуковых эффектов.

Классификация

Встроенные звуковые карты.

Куда они встроены? В материнские платы. Прямо на «мать» напаивают входы/выходы и кодеки, а всю вычислительную обработку на себя берет центральный процессор. Подобное звуковое решение почти бесплатно, потому и для непритязательных пользователей более чем приемлемо – несмотря на отвратительное качество звучания.

Мультимедийные звуковые карты.

Это наиболее древняя категория плат: именно они появились первыми и сделали компьютер средством воспроизведения и записи музыки. Эти карты, в отличие от встроенных, обладают собственным звуковым процессором, который занимается обработкой звука, расчетом трехмерных звуковых эффектов используемых в играх, микшированием звуковых потоков и т.п., что позволяет разгрузить центральный процессор компьютера для обработки более важных задач.

Как правило, качество звука в отдельных мультимедиа-картах действительно выше встроенных.

Полупрофессиональные звуковые карты

Собственно называть эти платы можно по-разному – либо полупрофессиональные, либо топовые мультимедийные. Но скорее это все же полупрофессиональные платы. Как правило их выпускают производители профессионального оборудования, ориентируясь не на музыкантов, а на любителей хорошего звука.

Они отличаются от мультимедийных в первую очередь профессиональными схемотехническими решениями и высоким качеством воспроизведения звука. При этом в них, как правило, не используются серьезные звуковые процессоры, и опять же всю тяжесть обработки 3D-звука взваливает на себя центральный процессор.

Как правило, карты от производителей профессионального оборудования комплектуются драйверами для профессиональных же программ для работы с музыкой и звуком. Так что такая плата станет отличным стартом для начинающего музыканта.

Профессиональные звуковые карты

Эти карты рассчитаны на профессиональных музыкантов, аранжировщиков, музыкальных продюсеров. Всех, кто занимается производством и записью музыки. В соответствии с задачами – и особенности: высочайшее качество воспроизведения и записи звука, минимум искажений, максимум возможностей для работы с профессиональным ПО и подключения профессионального оборудования.

У профессиональных карт как правило нет мультимедийных драйверов и поддержки DirectX, что делает многие из них бесполезными в играх. Они не поддерживают даже стандартные системные регулировки громкости – каждый канал регулируется в специальной контрольной панели, показывающей уровень сигнала в децибеллах.

Входы/выходы вместо стандартного «миниджека» выполнены либо RCA, либо в виде разъемов XLR, выведенных с помощью специальных интерфейсных кабелей. Многие карты располагают внешним блоками, куда выводятся все разъемы для удобства подключения. Эти карты рассчитаны на подключение профессиональных студийных акустических мониторов, микшерных пультов, предусилителей и прочих «серьезных» устройств.

Внешние звуковые карты

Это относительно свежая тенденция в мире звуковых плат, получившая свое развитие лишь за последний год. Внешние звуковые платы подключаются к компьютеру с помощью интерфейсов USB, USB 2.0 или FireWire.

Во-первых, вынос карты за пределы корпуса PC позволяет легко решить некоторые проблемы, связанные с наводками и помехами, идущими от других компонентов компьютера и влияющих на качество звука.

Во-вторых, все большую популярность набирают barebone-системы – небольшие системные блоки с большим количеством интерфейсных разъемов и, как правило, не более чем одним PCI-слотом, занять который, возможно, придется чем-то более нужным для пользователя чем звукокарта.

В-третьих, портативная профессиональная звуковая плата, подключаемая «на лету» к любому компьютеру – это готовая портативная студия!

Но есть и проблемы. Первые выпущенные для USB устройства не обрели должной популярности из-за невысокой пропускной способности этого интерфейса. Вводились ограничения на количество и качество передаваемых сигналов. Сегодня наблюдается настоящий бум на профессиональные карты, подключаемые по шине FireWire: за счет высокой пропускной способности интерфейса не возникает практически никаких проблем с количеством каналов и качеством сигнала.

Классификация колонок.

  • Активные (встроенный усилитель, требуют дополнительных источников питания, регулятор громкости и тембра);
  • Пассивные (маленькая мощность).

1.7 Основные принципы работы

Принципы работы обычных звуковых карт

Звуковые карты состоят из двух основных частей: синтезатора для обработки MIDI команд и блока аналогово-цифрового (АЦП - AnalogDigitalConverter - ADC) и цифроаналогового (ЦАП - DigitalAnalogConverter - DAC) преобразователя.

С помощью АЦП и ЦАП обеспечивается возможность моно- или стереофонической записи и воспроизведения аудиофайлов с уровнем качества от кассетного магнитофона до аудио-CD. Разрядность АЦП и ЦАП (аналого-цифровых и цифроаналоговых преобразователей) сейчас, как правило, 16 бит, частота дискретизации от 5 до 44, 1 кГц. При использовании двух каналов DMA возможны одновременная запись и воспроизведение аудиосигналов. Возможность двунаправленной работы многих звуковых карт сейчас активно используется для общения через Internet. PCI аудиокарты за счет намного более высокой скорости работы шины всегда поддерживают полный дуплекс.

Синтезатор обеспечивает имитацию звучания музыкальных инструментов и воспроизведение различных звуков при выполнении команд MIDI. Синтезатор может быть выполнен как на основе FM синтеза, так и на основе таблицы волн. При FM синтезе возможно одновременное звучание до 20 инструментов, а с использованием таблицы волн - до 512 и более. Очень часто путают количество одновременно звучащих инструментов и разрядность звуковой карты. Еще раз обращаем внимание на то, что 32-х и 64-х разрядных классических звуковых карт НЕ БЫВАЕТ. Цифра 32 или 64 (например, SoundBlaster 32 или SoundBlaster AWE64) означает максимальное количество одновременно звучащих инструментов и не более того.

Звуковые карты на PCI, как правило, не имеют встроенной таблицы волн. Звуковые карты PCI имеют 32-разрядную шину для обмена данными, но процедуры цифровой обработки звука и приема/передачи результатов обработки могут быть с разрядностью 64 и более.

Структура аудиотракта ПК

По своей внутренней структуре персональный компьютер (ПК) во многом схож со стационарным аудиооборудованием, однако ПК – модульная конструкция, что позволяет нам гибко варьировать конфигурацию в рамках одного устройства (системного блока). В этом заключается одно из главных преимуществ компьютерных систем перед готовыми аудиокомпонентами: вместо того чтобы покупать новый аппарат, можно поменять один или несколько узлов, что обойдётся значительно дешевле.

В большинстве случаев схема формирования звука посредством ПК выглядит следующим образом: цифровой аудиопоток с какого-либо носителя попадает в компьютер. Точнее – в его системную (или, как её ещё называют, материнскую) плату, на которой установлены центральный процессор, оперативная память, чипсеты, контроллеры и прочее. Благодаря взаимодействию звуковой подсистемы и программного обеспечения с основной частью, костяком, компьютера звуковой поток проходит обработку или же подаётся как есть в звуковую подсистему, где преобразуется в аналоговую форму и выводится на активные колонки, наушники или иное оборудование.

Рисунок 2. Звуковая система ПК

Основная часть компьютера по большому счёту остаётся неизменной. Соответственно, возможные направления для улучшения качества звука – подбор соответствующей звуковой карты и акустических систем.

1.8 Звуковые карты. Звуковые характеристики.

Существуют определенные характеристики, которым следует уделить внимание при комплектовании звуковой системы компьютера.

Трехмерный звук. Если вы любитель компьютерных игр, выбирайте звуковую карту, которая поддерживает трехмерный звук. Вся проблема заключается в том, как разместить необходимое количество колонок на ограниченном пространстве.

Игровой и MIDI-порт. На звуковых картах часто встречается 15-контактный разъем. Это совмещенный игровой и MIDI-порт. MIDI-порт предназначен для музыкальных инструментов с цифровым интерфейсом (например, синтезаторов или MIDI-клавиатур). Игровой порт предназначен для подключения джойстика. При наличии нескольких звуковых карт в системе (например, встроенной и отдельной) следует отключить все игровые порты, кроме одного - иначе это может привести к аппаратному конфликту.

Память MIDI. Высокопроизводительные звуковые карты (например, SoundBlasterLive 5.1 или Audigy) обычно оснащены разъемами для модулей памяти SIMM для установки дополнительной памяти. Это и есть память MIDI, которая используется при профессиональной работе со звуком.

Разъем для аудио-CD. При выборе звуковой карты обратите внимание на наличие разъема для подключения звукового выхода CD-дисковода. Это небольшой 4-контактный разъем, расположенный на звуковой карте. При помощи тонкого 4-жильного кабеля он соединяется с аналогичным разъемом на CD-дисководе. Именно таким образом обеспечивается возможность прослушивания звуковых компакт-дисков на компьютере.

Колонки. Наконец, к звуковой карте следует подключить колонки. Рекомендуется использовать высококачественные активные колонки с широким динамическим и частотным диапазоном.

Заключение.

С развитием компьютерных технологий звуковые платы также претерпевали изменения. Они снабжались все новыми разъемами, дополнительными устройствами, менялись материалы изготовления. В настоящее время на рынке существует огромное количество разновидностей звуковых карт от различных производителей, находящихся в различных ценовых категориях. Звуковая карта может превратить компьютер в самую настоящую аудиостудию, где можно микшировать звук, добавлять различные звуковые эффекты, накладывать фоновую мелодию и так далее.

Развитие самих акустических систем также не стоит на месте. Dolby Digital внедряется в домашний обиход посредством технологии DVD, ведь звук, записанный в AC-3, можно найти и на DVD-Video, и на обычных DVD-ROM. При записи фильмов на DVD применяют три основных звуковых стандарта: PCM, Dolby Digital и MPEG. Поэтому, принимая во внимание, что практически любой современный DVD-проигрыватель имеет встроенный декодер AC-3, оказывается, что звуковые дорожки в формате Dolby Digital имеются почти на всех дисках DVD.

По моему мнению, ни один персональный компьютер не может обходиться без мультимедийных технологий. Звуковая система является частью этих технологий. Сейчас сложно представить современный компьютер без возможности записи, редактирования и воспроизведения звуковых файлов. Звуковая система компьютера является значимой и довольно важной системой, без которой его было бы трудно назвать мультимедийным.

Список литературы и интернет ресурсов

  1. www.marak.ucoz.ru
  2. www.compremont.org
  3. www.bigor.bmstu.ru
  4. www.orbiter.ucoz.ru
  5. www.images.yandex.ru

Профессиональные звуковые платы позволяют выполнять сложную обработку звука, обеспечивают стереозвучание, имеют собственное ПЗУ с хранящимися в нем сотнями тембров звучаний различных музыкальных инструментов. Звуковые файлы обычно имеют очень большие размеры. Так, трехминутный звуковой файл со стереозвучанием занимает примерно 30 Мбайт памяти. Поэтому платы Sound Blaster, помимо своих основных функций, обеспечивают автоматическое сжатие файлов.

Компоненты платы

Звуковая плата персонального компьютера содержит несколько аппаратных систем, связанных с производством и сбором аудиоданных, две основные аудиоподсистемы, предназначенные для цифрового «аудиозахвата», синтеза и воспроизведения музыки. Исторически подсистема синтеза и воспроизведения музыки генерирует звуковые волны одним из двух способов:

  • через внутренний ЧМ-синтезатор (FM-синтезатор);
  • проигрывая оцифрованный (sampled) звук.

Секция цифровой звукозаписи звуковой платы включает пару 16-разрядных преобразователей - цифроаналоговый (ЦАП) и аналого-цифровой (АЦП) и программируемый генератор частоты выборки, синхронизирующий преобразователи и управляемый центральный процессор. Компьютер передает оцифрованные звуковые данные к преобразователям или обратно. Частота преобразования обычно кратна (или часть от) 44.1 кГц.

Большинство плат использует один или более каналов прямого доступа к памяти, некоторые платы также обеспечивают прямой цифровой вывод, используя оптическое или коаксиальное подключение S/PDIF (цифровой звук в стандарте Sony/Philips Digital Interface).

Генератор звука, установленный на плате, использует процессор цифровых сигналов (Digital Signal Processor - DSP), который проигрывает требуемые музыкальные ноты, объединяя их считывание из различных областей звуковой таблицы с различными скоростями, чтобы получить требуемую высоту тона. Максимальное количество доступных нот связано с мощностью DSP-процессора и называется «полифонией» платы.

DSP-процессоры используют сложные алгоритмы, чтобы создать эффекты типа реверберации, хорового звучания и запаздывания. Реверберация создает впечатление, что инструменты играют в больших концертных залах. Хор используется, чтобы создать впечатление, что несколько инструментов играют совместно, тогда как фактически есть только один. Добавление запаздывания к партии гитары, например, может дать эффект пространства и стереозвучания.

Частотная модуляция

Первой широко распространенной технологией, которая используется в звуковых платах, является частотная модуляция (ЧМ), которая была разработана в начале 1970-х годов Дж. Чоунингом (Стэнфордский университет). ЧМ-сингезатор (FM-синтезатор) производит звук, генерируя чистую синусоидальную волну (несущая) и смешивая ее со вторым сигналом (модулятор). Когда эти две формы волны близки в частоте, создается волна сложной формы. Управляя несущей и модулятором, можно создавать различные тембры, или инструменты.

Каждый голос ЧМ-синтезатора требует минимум двух генераторов сигнала, обычно называемых «операторами». Разные конструкции ЧМ-синтезатора имеют различные степени управления параметрами оператора. Сложные системы ЧМ могут использовать четыре или шесть операторов на каждый голос, и операторы могут иметь корректируемые параметры, которые позволяют настроить скорости нарастания и угасания сигнала.

Yamaha была первой компанией, которая вложила капитал в исследования по теории Чоунинга, что привело к разработке легендарного синтезатора DX7. Специалисты Yamaha скоро поняли, что смешивание более широкого диапазона несущих и модуляторов позволяет создать более сложные тембры, приводя к реалистически звучащим инструментам.

Хотя системы ЧМ были осуществлены в аналоговом исполнении на ранних клавиатурных синтезаторах, в дальнейшем выполнение синтеза ЧМ было сделано в цифровой форме. Методы синтеза ЧМ очень полезны для того, чтобы создать выразительные новые звуки. Однако если цель синтезирующей системы состоит в том, чтобы воспроизвести звук некоторого существующего инструмента, это лучше делать в цифровой форме на основе выборок сигналов, как при синтезе с использованием звуковых таблиц (WaveTable synthesis).

Табличный синтез (WaveTable synthesis)

Чтобы создать звук, звуковая таблица использует не несущие и модуляторы, а выборки звуков реальных инструментов. Выборка - цифровое представление формы звука, произведенного инструментом. Платы, использующие ISA, обычно сохраняют выборки в ROM, хотя более новые РСI-из-делия используют основную оперативную память персонального компьютера, которая загружается при запуске операционной системы (например, Windows) и может включать новые звуки.

В то время как все звуковые платы ЧМ звучат аналогично, платы звуковых таблиц значительно отличаются по качеству. Качество звучания инструментов включает факторы:

  • качество первоначальной записи;
  • частота, на которой выборки были записаны;
  • количество выборок, использованных для каждого инструмента;
  • методы сжатия, использованные для сохранения выборки.

Большинство инструментальных выборок записаны в стандарте

16 бит и 44.1 кГц, но многие изготовители сжимают данные так, чтобы больше выборок или инструментов можно было записать в ограниченный объем памяти. Однако сжатие часто приводит к потере динамического диапазона или качества.

Когда аудиокассета воспроизводится слишком быстро или слишком медленно, ее высота звучания меняется, и это справедливо также для цифровой звукозаписи. Проигрывание выборки на более высокой скорости, чем ее оригинал, приводит к более высокому воспроизводимому звуку, позволяя инструментам играть более нескольких октав. Однако если некоторые тембры воспроизводятся быстро, они звучат слишком слабо и тонко; аналогично, когда выборка проигрывается слишком медленно, она звучит мрачно и неестественно. Чтобы преодолеть эти эффекты, изготовители разбивают клавиатуру на несколько областей и применяют соответствующие выборки звуков инструментов в каждой из них.

Каждый инструмент звучит с различным тембром в зависимости от стиля игры. Например, при мягкой игре на фортепьяно не слышен звук молоточков, бьющих по струнам. При более интенсивной игре мало того что звук становится более очевидным, но можно заметить также и изменения тона.

Для каждого инструмента должно быть записано много выборок и их разновидностей, чтобы синтезатор точно воспроизвел этот диапазон звука, а это неизбежно требует большего количества памяти. Типичная звуковая плата может содержать до 700 инструментальных выборок в пределах ROM 4 Мбайт. Точное воспроизведение фортепьяно соло, однако, требует от 6 до 10 Мбайт данных, вот почему нет никакого сравнения между синтезируемым и реальным звуком.

Обновление звуковой таблицы не всегда означает необходимость покупать новую звуковую плату. Большинство 16-разрядных звуковых плат имеет разъем, который может соединиться с дополнительной платой звуковой таблицы (daughterboard). Качество звучания инструментов, которые такие платы обеспечивают, значительно различается, и это обычно зависит от того, какой объем памяти расположен на плате. Большинство плат содержит от 1 до 4 Мбайт выборок и предлагает целый ряд цифровых звуковых эффектов.

Коннекторы звуковой платы

В 1998 года Creative Technology был выпущен очень успешный образец звуковой платы SoundBlaster Live!, ставший в дальнейшем стандартом де-факто.

Версия Platinum 5.1 карты Creative SoundBlaster Live!, которая появилась к концу 2000 года, имела следующие гнезда и соединители:

  • аналого-цифровой выход: либо сжатый сигнал в формате Dolby АС-3 SPDIF с 6 каналами для подключения внешних цифровых устройств или динамиков цифровых систем, либо аналоговая система громкоговорителей 5.1;
  • линейный вход - соединяется с внешним устройством типа кассетного, цифрового магнитофона, плеера и прочего;
  • микрофонное гнездо - соединяется с внешним микрофоном для ввода голоса;
  • линейный выход - соединяется с динамиками или внешним усилителем для аудиовывода или наушниками;
  • соединитель джойстика/MlDI - соединяется с джойстиком или устройством MIDI и может быть настроен так, чтобы соединяться с обоими одновременно;
  • CD/SPDIF соединитель - соединяется с выводом SPDIF (цифровое аудио), расположенном на дисководе DVD или CD-ROM;
  • дополнительный аудиовход - соединяется с внутренними аудиоисточниками типа тюнера, MPEG или других подобных плат;
  • соединитель аудиоCD - соединяется с аналоговым аудиовыводом на CD-ROM или DVD ROM, используя кабель аудиоCD;
  • соединитель автоответчика - обеспечивает монофоническую связь со стандартным голосовым модемом и передает сигналы микрофона к модему.

  • а - аудиоплата;
  • б - блок Live! Drive.

Аудиорасширение (цифровой ввод-вывод) - соединяется с цифровой платой ввода-вывода (располагается в свободной нише накопителя на 5.25 дюймов, выходящей на переднюю панель компьютера), иногда называемой Live!Drive. Обеспечивает следующие соединения:

  • гнездо RCA SPDIF - соединяется с устройствами цифровой звукозаписи типа цифровой ленты и мини-дисков;
  • гнездо наушников - соединяется с парой высококачественных наушников, вывод динамика отключается;
  • регулировка уровня наушников - управляет громкостью сигнала наушников;
  • второй вход (линейный/микрофонный) - соединяется с высококачественным динамическим микрофоном или аудиоисточником (электрическая гитара, цифровое аудио или мини-диск);
  • переключатель второго входа (линейный/микрофон);
  • соединители MIDI - соединяются с устройствами MIDI через кабель Mini DIN-Standard DIN;
  • инфракрасный порт (сенсор) - позволяет организовать дистанционное управление персональным компьютером;
  • вспомогательные гнезда RCA - соединяются с оборудованием бытовой электроники (видеомагнитофон, телевизор или проигрыватель компакт-дисков);
  • оптический вход-выход SPDIF - соединяется с устройствами цифровой звукозаписи типа цифровой ленты или минидисков.

Современные аудиокарты поддерживают также ряд стандартных возможностей моделирования, генерации и обработки звукового сигнала:

  • DirectX - предложенная Microsoft система команд управления позиционированием виртуального звукового источника (модификации - DirectX 3.5, 6);
  • A3D - разработанный в 1997 году NASA (National Aeronautics and Space Administration) и Aureal для использования в летных тренажерах стандарт генерации таких эффектов, как густой туман или подводные звуки. A3D2 позволяет моделировать конфигурацию помещения, в котором раздаются и распространяются звуки, вычисляя до 60 звуковых отражений (как в ангаре, так и в колодце);
  • ЕАХ (Environmental Audio Extensions), предложенная Creative Technology в 1998 году модель добавления реверберации в A3D с учетом звуковых препятствий и поглощения звуков;
  • MIDI (Musical Instrument Digital Interface), разработанный в 1980-х годов Команды по стандартному интерфейсу передаются в соответствии с MIDI протоколом. MIDI-сообщение содержит не запись музыки как таковой, а ссылки на ноты. В частности, когда звуковая карта получает подобное сообщение, оно расшифровывается (какие ноты каких инструментов должны звучать) и отрабатывается в синтезаторе. В свою очередь, персональный компьютер может через интерфейс MIDI управлять различными «интерактивными» инструментами. В Windows MIDI-файлы могут воспроизводиться специальной программой-проигрывателем MIDI-Sequencer. В этой области синтеза звука также имеется свой стандарт. Основным является стандарт МТ-32, разработанный фирмой Roland и названный в соответствии с одноименным модулем генерации звуков. Этот стандарт также применяется в звуковых картах LAPC и определяет основные средства для управления расположением инструментов, голосов, а также для деления на инструментальные группы (клавишные, ударные и так далее).

Формат сжатия звука МРЗ

Разработанный на основе исходного MPEG-1 стандарт МРЗ (сокращение от аудиоМРЕG, уровень 3) является одной из трех схем кодирования (Layer (уровень) 1 Layer 2 и Layer 3) для сжатия аудиосигналов. Общая структура процесса кодирования одинакова для всех уровней. Для каждого уровня определен свой формат записи битового потока и свой алгоритм декодирования. Алгоритмы MPEG основаны в целом на изученных свойствах восприятия звуковых сигналов слуховым аппаратом человека (то есть кодирование производится с использованием так называемой «психоакустической модели»). Поскольку человеческий слух не идеален и восприимчивость слуха на разных частотах, в разных композициях различная, этим пользуются при построении психоакустической модели, которая учитывает, какие звуки, частоты, можно исключить, не нанося ущерба слушателю композиции.

Входной цифровой сигнал сначала раскладывается на частотные составляющие спектра. МРЗ стандарт делит спектр частоты на 576 полос частоты и сжимает каждую полосу независимо. Затем этот спектр очищается от заведомо неслышных составляющих - низкочастотных шумов и наивысших гармоник, то есть фильтруется. На следующем этапе производится значительно более сложный психоакустический анализ слышимого спектра частот. Это делается в том числе с целью выявления и удаления «замаскированных» частот (частот, которые не воспринимаются слухом ввиду их приглушения другими частотами). Если два звука происходят в одно и то же время, МРЗ делает запись только того, который будет фактически воспринят. Тихий звук немедленно после громкого также может быть удален, так как ухо адаптируется к громкости. Если звук идентичен на обоих каналах стерео, этот сигнал сохраняется 1 раз, но воспроизводится на обоих каналах, когда МРЗ файл декомпрессирован и озвучивается.

Затем, в зависимости от уровня сложности используемого алгоритма, может быть также произведен анализ предсказуемости сигнала. В довершение ко всему проводится сжатие уже готового битового потока упрощенным аналогом алгоритма Хаффмана (Huffman), что позволяет также значительно уменьшить занимаемый потоком объем.

Как было указано выше, стандарт MPEG-1 имеет три уровня (Layer 1, 2 и 3). Эти уровни различаются по обеспечиваемому коэффициенту сжатия и качеству звучания получаемых потоков. Layer 1 позволяет сигналы 44.1 кГц/16 бит хранить без ощутимых потерь качества при скорости потока 384 Кбит/с, что составляет 4-кратный выигрыш в занимаемом объеме; Layer 2 обеспечивает такое же качество при 194 Кбит/с, a Layer 3 - при 128. Выигрыш Layer 3 очевиден, но скорость компрессии при его использовании самая низкая (надо отметить, что при современных скоростях процессоров это ограничение уже незаметно).

Системы воспроизведения звукового окружения

Воспроизведение звукового окружения начиналось со стереозаписей и УКВ ЧМ-радио. Широко использовались магнитофоны и FM-стереотюнеры с высококачественным двухканальным звуком. В кинотеатрах зрители могли оценить звук в формате Dolby Stereo Optical. Первые видеокассеты предполагали только монофонический звук посредственного качества, однако вскоре начали тиражироваться кассеты с двухканальным звуком. Сначала использовались просто раздельные звуковые дорожки, затем технология Hi-Fi. Лазерные диски с самого начала выпускались с двухканальным стереозвуком высокого качества. Вскоре и большинство стандартов вещательного телевидения были адаптированы для передачи видео с двухканальным звуковым сопровождением в эфире и в кабеле. Так популярный двухканальный формат звука стал тривиальной опцией домашнего видео. Первыми на рынке появились простые декодеры Dolby Surround, которые позволяли на домашней аппаратуре выделить и прослушать третий, пространственный канал - surround channel. Впоследствии был разработан более интеллектуальный декодер, Dolby Surround Pro Logic, который выделял и центральный канал - center channel. Получился «домашний кинотеатр» - комплекс аппаратуры для высококачественного воспроизведения звука и видео с декодером Dolby Pro Logic Surround Sound.

В отличие от аппаратуры квадро, аппаратура Dolby Surround производилась и производится в массовых масштабах и постоянно совершенствуется. Во-первых, технология Dolby Pro Logic удачно совмещает оптимальную конфигурацию пространственных каналов (R, L, С, S) с возможностями записи и передачи (два физических канала), которыми обладает практически вся бытовая аппаратура. Во-вторых, возможности и качество Dolby Pro Logic отвечают актуальным требованиям современного пользователя. И, в-третьих, используются единые стандарты на аппаратные и программные средства.

Кодер Dolby Surround не предназначен для передачи четырех независимых сигналов звука, каждый из которых надо прослушивать раздельно (например, звука одной ТВ-программы на разных языках). В этом случае развязка между двумя любыми каналами должна была бы быть максимальной, а амплитуды и фазы сигналов могли бы быть совершенно не связаны между собой. Напротив, задача Dolby Surround - передать четыре канала звука (soundtrack), которые будут прослушиваться одновременно и при этом воссоздавать в сознании слушателя пространственную звуковую картину (soundfield). Эта картина составляется из нескольких звуковых образов (sound images) - звуков, которые слушатель воспринимает связанными со зрительными образами на экране. Звуковой образ характеризуется не только содержанием и мощностью звука, но и направлением в пространстве.

На входе кодера Dolby Surround присутствуют сигналы четырех каналов - L, С, R и S, а на выходах - два канала L, (left total) и R, (right total). Слово «total» (общий) означает, что каналы содержат не только «свой» сигнал (левый и правый), но и кодированные сигналы других каналов - С и S. Функциональная схема кодера показана на рисунке.

Сигналы каналов L и R передаются на выходы L, и R, без каких-либо изменений. Сигнал канала С делится поровну и складывается с сигналами каналов L и R. Предварительно сигнал С ослабляется на 3 дБ (чтобы сохранить неизменной акустическую мощность сигнала после сложения его «половинок» в матрице декодера). Сигнал канала S также ослабляется на 3 дБ, но, кроме того, перед cложением с сигналами L, и R, он подвергается следующим преобразованиям:

  • полоса частот ограничивается полосовым фильтром (BPF) от 100 Гц до 7 кГц;
  • сигнал обрабатывается шумоподавителем - процессором Dolby B-type Noise Reduction;
  • сигнал S сдвигается по фазе на +90 и - 90 годаад., таким образом, составляющие сигнала S, предназначенные для сложения с L и R оказываются в противофазе друг с другом.

Совершенно ясно, что сигналы L и R не влияют друг на друга, они совершенно независимы. На первый взгляд не столь очевидно, но факт - между сигналами C и S развязка теоретически также идеальная. Действительно: в декодере сигнал S получается как разность сигналов L и R. Но в этих сигналах присутствуют совершенно одинаковые компоненты сигнала С, которые при вычитании взаимно компенсируются. Напротив, сигнал С выделяется декодером, как сумма L и R Так как компоненты сигнала S, присутствующие в этих сигналах, находятся в противофазе, при сложении они также взаимно компенсируются.

Такое кодирование позволяет передать сигналы S и С с высокой степенью развязки при одном условии: если амплитудные и фазовые характеристики физических каналов, по которым передаются сигналы L и R абсолютно идентичны. Если имеется некоторый дисбаланс между каналами, развязка уменьшается. Например, если компоненты сигнала С в каналах R и L из-за разных характеристик каналов передачи окажутся неодинаковыми, произойдет нежелательное проникновение (crosstalk) части сигнала С в канал S.

1.3 Оснащение рабочего места………………………….
1.4 Правила техники безопасности при работе с СВТ и компьютерной сетью………………………………….
2 Выполнение индивидуального задания…………....
2.2 Описание и технические характеристики аудио-системы……………………………………………………

2.3 Принцип работы Звуковой системы ПК………..
2.4 Этапы настройки и конфигурирования
звуковой системы ПК………………………………………….
2.5 Инструменты для диагностики и ремонта Звуко-вой системы………………………………………………
2.6 Виды неисправностей звуковой системы ПК и их устранение……………………………………………………
3 Работа с компьютерной сетью…………………….
3.1 Описание места прокладки сети и
имеющегося оборудования…………………………………….
3.2 Проектирование компьютерной сети и выбор оборудования……………………………………………………..
3.3 Этапы монтажа и настройки компьютерной се-ти…………………………………………………………………………
3.4Способы и инструменты тестирования сети
Список литературы……………………………………..
Приложение A Устройство и принцип работы Звуко-вой системы ПК………………………………………………

Приложение Б Анализ финансовых затрат на
ремонт аудиосистемы…………………..…………………….

Приложение В Проект компьютерной сети в
программе компас………………………………………………
Приложение Г Анализ финансовых затрат на
создание компьютерной сети………………………………..
Приложение Д Скриншот схемы сети и листинг ко-манд настройки рабочих станций в программе CiscoPacket-Tracer……………………………………………………..
Приложение Е Листинг команд настройки
активного сетевого оборудования в программе CiscoPack-etTracer……………………………………………………..
Приложение Ж Скриншот схемы виртуальных сетей и листинг команд настройки VLAN в программе CiscoPack-etTracer. …………………………………………….

Введение
Производственная практика проходит по модулю ПМ 03 « Техническое обслуживание и ремонт компьютерных систем и комплексов».
Местом прохождение практики является предприятие «ОООТелКом». Практика проходит в подразделении монтажа и прокладки оптоволоконных сетей.
Целью прохождения практики является приобретение практических навыков в процессе прокладки сети, обслужива-нии ПК и периферийных устройств.
Задачи практики:
 изучение структуры предприятия идолжностной инст-рукции по правилам распорядка;
 ознакомление с оснащением рабочего места и прави-лами техники безопасности при работе с СВТ и компьютер-ной сетью;
 выполнение индивидуального задания;
 развитие практических навыков по прокладке сетей и обслуживании ПК.
Тема индивидуального задания - Звуковая система ПК.
Эта тема актуальна потому что, это устройство ис-пользуется на всех ПК, и служит для воспроизведения звука. Как и все другие устройства звуковая система может выхо-дить из строя. На предприятии «ООО ТЕЛКОМ» потребуется исправить неисправности звуковой системы, если таковые имеются.
Методы выполнения практики:
 наблюдение за процессомработы звуковой системы ПК;
 анализ неисправностей звуковой системы ПК;
 прогнозирование возможных неисправностей;
 практическая работа по устранению неисправностей в звуковой системе ПК;
 проектирование сети;
 эксперимент по прокладке оптоволоконных сетей.


1 Общая часть
1.1 Структура предприятия

1.2 Должностная инструкция и правила техника- программиста.
1.2.1 Техник-программист должен знать:

Рабочие программы, инструкции, макеты и другие руко-водящие материалы, определяющие последовательность и технику выполнения расчетных операций;
- технологию механизированной и автоматизированной обработки информации;
- методы проектирования механизированной и автома-тизированной обработки информации;
- средства вычислительной техники, сбора, передачи и обработки информации и правила их эксплуатации;
- виды технических носителей информации, правила их хранения и эксплуатации;
- действующие системы счислений, шифров и кодов;
- методы проведения расчетов и вычислительных работ, а так же расчета выполненных работ;
- правила и нормы охраны труда;
- правила внутреннего трудового распорядка;
- основные формализованные языки программирования;
- основы программирования.

1.2.2 Техник-программист исполняет следующие должно-стные обязанности:

Выполнение подготовительных операций, связанных с осуществлением вычислительного процесса, ведение наблю-дения за работой машин;
-выполнение работы по подготовке технических носите-лей информации, обеспечивающих автоматический ввод дан-ных в вычислительную машину, по накоплению и систематиза-ции показателей нормативного и справочного фонда, разра-ботке форм исходящих документов, внесению необходимых изменений и своевременному корректированию рабочих про-грамм;
-ведение учета использования машинного времени, объе-мов выполненных работ;
-выполнение отдельных служебных поручений своего не-посредственного руководителя;
-участие в проектировании систем обработки данных и систем математического обеспечения машины;
-участие в выполнении различных операций технологиче-ского процесса обработки информации (прием и контроль входной информации, подготовка исходных данных, обработка информации, выпуск исходящей документации и передача ее заказчику);
-составление простых схем технологического процесса обработки информации, алгоритм решения задач, схем комму-тации, макетов, рабочих инструкций и необходимые пояснения к ним;
-разработка программ по решению простых задач, прове-дение их отладки и экспериментальной проверки отдельных этапов работ.

1.2.3 Техник-сетевик имеет право обращаться к руково-дству предприятия:

С требованиями оказания содействия в исполнении сво-их должностных обязанностей и прав;
- с предложениями по совершенствованию работы, свя-занной с обязанностями, предусмотренными настоящей инст-рукцией;
- с сообщениями в пределах своей компетенции о всех вы-явленных в процессе осуществления своих должностных обя-занностей недостатках в деятельности центра (его струк-турных подразделениях) и вносить предложения по их устра-нению.
Запрашивать лично или по поручению непосредственного руководителя от руководителей подразделений центра и спе-циалистов информацию и документы, необходимые для выпол-нения своих должностных обязанностей.
Привлекать специалистов всех (отдельных) структур-ных подразделений к решению возложенных на него задач (если это предусмотрено положениями о структурных подразделе-ниях, если нет - с разрешения начальника ВЦ (ИВЦ).

1.2.4 Рабочее время и время отдыха

Нормальная продолжительность рабочего времени рабо-чих и служащих не может превышать 40 часов в неделю. По мере создания экономических и других необходимых условий бу-дет осуществляется переход к более сокращенной рабочей недели.
Для рабочих и служащих устанавливается пятидневная рабочая неделя с двумя выходными. При пятидневной рабочей недели продолжительность ежедневной работы определяется правилами внутреннего распорядка труда. На нашем предпри-ятии рабочий день с 8-00 до 17-00 – для работников и ИТР.
Рабочим и служащим предоставляется перерыв на обед для отдыха и питания продолжительностью не менее 1 часа. Перерыв не включается в рабочее время.
Накануне праздничных дней продолжительность работы рабочих, служащих сокращается на один час. Сверхурочные ра-боты, как правило, не допускаются.
1.3 Программное Оснащение рабочего места

Компания ООО «ТелКом» предоставляет каждому сту-денту на производственной практике свою собственную ма-шину, за которой выполняется своеобразная работа для каж-дого человека.
На данном предприятии ООО «ТелКом» используются ряд программ, например такие как:

Рисунок 1 – Общий вид программы ООО «ТелКом»
(по абонентам города Коркино)

В данной программе, мы видим, что на каждый день со-ставляется оператором «открытые наряды», которые рабо-чие должны выполнить в течении дня.
В каждом окошке содержится общая информация:
- время, в которое было оговорено прибыть на место подключения;
- ФИО подключаемого абонента;
- место жительства;
- сотовый номер.
С помощью данной информации, монтажники должны вы-полнить в договоренное время подключение.
Следующая программа, которая используется на пред-приятии, связана с главным сервером ООО «ТЕЛКОМ» осуще-ствляет постоянный мониторинг доступности и быстродей-ствия серверов. В случае ошибок и сбоев в работе сервера, HostMonitor предупреждает администратора (или же пытает-ся исправить проблему самостоятельно). В программе исполь-зуются 60 методов тестирования, присутствует большое ко-личество настроек. Кроме того, HostMonitor позволяет созда-вать детализированные логи в различных форматах (Text, HTML, DBF и ODBC), имеется встроенный редактор отчетов, удобный и понятный интерфейс и т.д. В новой версии улучше-на работа HostMonitor, LogAnalyzer, RemoteControlConsole, RMA Manager, WebService и MIB Browser

Рисунок 2 – Общий вид программы KS-HostMonitor

В программе KS-HostMonitor, для того чтобы осуществ-лять постоянный мониторинг доступности и быстродействия серверов, необходимо создать базу для каждого района, и внести с помощью IPадреса доступ к каждому коммутатору, который будет именоваться как адрес его нахождения (напри-мер «Терешковой 12», «Калинина 14», и т.д).
Следующая программа, подключается к главной базе дан-ных по IPадресу, и содержит информацию о абонентах, кото-рые подключены.

Рисунок 3 – Общий вид программы «Korkino2»

В программе содержится полностью вся информация о подключенных абонентах, такая как: логин, ФИО, № лицевого счёта, личный IPадрес, баланс и т.д.

1.4 Правила техники безопасности при работе с СВТ и компьютерной сетью
1.4.1 Требования безопасности перед началом работы
Перед началом работы следует убедиться в исправности электропроводки, выключателей, штепсельных розеток, при помощи которых оборудование включается в сеть, наличии заземления компьютера, его работоспособности. В случае неисправностей сообщить начальнику организации.
1.4.2 Требования безопасности во время работы
Для снижения или предотвращения влияния опасных и вредных факторов необходимо соблюдать санитарные прави-ла и нормы. Во избежание повреждения изоляции проводов и возникновения коротких замыканий не разрешается: вешать что-либо на провода, закрашивать и белить шнуры и провода, закладывать провода и шнуры за газовые и водопроводные трубы, за батареи отопительной системы, выдергивать штепсельную вилку из розетки за шнур, усилие должно быть приложено к корпусу вилки.
Для исключения поражения электрическим током запре-щается: часто включать и выключать компьютер без необхо-димости, прикасаться к экрану и к тыльной стороне блоков компьютера, работать на средствах вычислительной техники и периферийном оборудовании мокрыми руками, работать на средствах вычислительной техники и периферийном оборудо-вании, имеющих нарушения целостности корпуса, нарушения изоляции проводов, неисправную индикацию включения пита-ния, с признаками электрического напряжения на корпусе, класть на средства вычислительной техники и периферийном оборудовании посторонние предметы.
Запрещается под напряжением очищать от пыли и за-грязнения электрооборудование.
Запрещается проверять работоспособность электро-оборудования в неприспособленных для эксплуатации помеще-ниях с токопроводящими полами, сырых, не позволяющих за-землить доступные металлические части.
Недопустимо под напряжением проводить ремонт средств вычислительной техники и периферийного оборудова-ния. Ремонт электроаппаратуры производится только спе-циалистами-техниками с соблюдением необходимых техниче-ских требований.
Во избежание поражения электрическим током, при поль-зовании электроприборами нельзя касаться одновременно ка-ких-либо трубопроводов, батарей отопления, металлических конструкций, соединенных с землей.
При пользовании электроэнергией в сырых помещениях соблюдать особую осторожность.
1.4.3 Требования безопасности в аварийных ситуациях
При обнаружении неисправности немедленно обесточить электрооборудование, оповестить администрацию. Продол-жение работы возможно только после устранения неисправно-сти.
При обнаружении оборвавшегося провода необходимо не-медленно сообщить об этом администрации, принять меры по исключению контакта с ним людей. Прикосновение к проводу опасно для жизни.
Во всех случаях поражения человека электрическим то-ком немедленно вызывают врача. До прибытия врача нужно, не теряя времени, приступить к оказанию первой помощи по-страдавшему.
Искусственное дыхание пораженному электрическим то-ком производится вплоть до прибытия врача.
На рабочем месте запрещается иметь огнеопасные ве-щества
В помещениях запрещается:
 зажигать огонь;
 включать электрооборудование, если в помещении пах-нет газом;
 курить;
 сушить что-либо на отопительных приборах;
 закрывать вентиляционные отверстия в электроаппа-ратуре.
Источниками воспламенения являются:
 искра при разряде статического электричества;
 искры от электрооборудования;
 искры от удара и трения;
 открытое пламя.
При возникновении пожароопасной ситуации или пожара персонал должен немедленно принять необходимые меры для его ликвидации, одновременно оповестить о пожаре админи-страцию.
1.4.4 Требования безопасности по окончании работы
После окончания работы необходимо обесточить все средства вычислительной техники и периферийное оборудо-вание. В случае непрерывного производственного процесса не-обходимо оставить включенными только необходимое обору-дование.


2Выполнение индивидуального
задания
2.1 Понятие и компоненты звуковой системы ПК
Звуковая система ПК конструктивно представляет со-бой звуковые карты, либо устанавливаемые в слот материн-ской платы, либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК. Отдельные функ-циональные модули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.
Звуковая система персонального компьютера служит для воспроизведения звуковых эффектов и речи, сопровождающей воспроизводимую видеоинформацию.
Включает в себя:
 модуль записи/воспроизведения;
 синтезатор;
 модуль интерфейсов;
 микшер;
 акустическую систему.

Рисунок 4 -Структура звуковой системы ПК

Компоненты звуковой системы (исключая акустическую систему) конструктивно оформляются в виде отдельной зву-ковой платы или частично реализуются в виде микросхем на материнской плате компьютера.
1. Модуль записи и воспроизведения звуковой системы осуществляет аналого-цифровое и цифроаналоговое преобра-зования в режиме программной передачи звуковых данных или передачи их по каналам DMA (DirectMemoryAccess- канал прямо-го доступа к памяти).
2. Электромузыкальный цифровой синтезатор звуковой системы позволяет генерировать практически любые звуки, в том числе звучание реальных музыкальных инструментов.
3. Модуль интерфейсов обеспечивает обмен данными ме-жду звуковой системой и другими внешними и внутренними устройствами.
Подключение ПК в MIDI-сеть осуществляется с помощью специального MIDI-адаптера, который имеет три MIDI-порта: ввода, вывода и сквозной передачи данных, а также два разъе-ма для Подключения джойстиков.
4. Модуль микшера звуковой карты выполняет:
 коммутацию (подключение/отключение) источников и приемников звуковых сигналов, а также регулирование их уров-ня;
 микширование (смешивание) нескольких звуковых сигна-лов и регулирование уровня результирующего сигнала.
Программное управление микшером осуществляется ли-бо средствами Windows, либо с помощью программы-микшера, поставляемой в комплекте с программным обеспечением зву-ковой карты.
5. Акустическая система (АС) непосредственно преобра-зует звуковой электрический сигнал в акустические колебания и является последним звеном звуковоспроизводящего трак-та.В состав АС, как правило, входят несколько звуковых коло-нок, каждая из которых может иметь один или несколько дина-миков.
Количество колонок в АС зависит от числа компонентов, составляющих звуковой сигнал и образующих отдельные зву-ковые каналы.
2.2 Описание и технические характеристики звуко-вой системы ПК

Рисунок 5 – Звуковая карта Creative SB 5.1 VX

Характеристики звуковой карты:
Общие характеристики.
 Тип – внутренняя;
 Тип подключения – PCI;
 Необходимость дополнительного питания – нет;
 Возможность вывода многоканального звука – есть;
Звуковые характеристики.
 Разрядность ЦАП – 24 бит;
 Максимальная частота ЦАП (стерео)- 96 кГц;
Аналоговые входы.
 Входных аналоговых каналов – 2;
 Входных разъемов jack 3.5 мм – 1;
 Микрофонных входов – 1;
Аналоговые выходы.
 Выходных аналоговых каналов – 6;
 Выходных аналоговых разъемов – 3;
Поддержка стандартов.
 Поддержка EAX - v. 2;
 Поддержка ASIO – нет.

Рисунок 6 – Акустическая система
Ritmix SP-2025

Характеристики.
 Управление - регулятор громкости, кнопка вкл./выкл. Питания;
 Диапазон воспроизводимых частот - 210 - 20 000 Гц;
 Мощность звука (динамики) - 5 Вт (RMS);
 Диаметр излучателя - 51 x 102 мм;
 Питание - сеть 220 В;
 Выходы - 3,5 мм (на наушники);
 Размеры - 79 x 86 x 210 мм;
 Вес - 673 г

2.3 Принцип работы звуковой системы ПК
Принцип работы звуковой системы ПК заключается в следующих этапах.
1. Модуль записи и воспроизведения звука.
Звуковой сигнал может быть представлен в аналоговой или цифровой форме.
Если при записи звука пользуются микрофоном, который преобразует непрерывный во времени звуковой сигнал в непре-рывный во времени электрический сигнал, получают звуковой сигнал в аналоговой форме. Поскольку амплитуда звуковой волны определяет громкость звука, а ее частота - высоту звукового тона, постольку для сохранения достоверной ин-формации о звуке напряжение электрического сигнала должно быть пропорционально звуковому давлению, а его частота должна соответствовать частоте колебаний звукового дав-ления.
На вход звуковой карты ПК в большинстве случаев звуко-вой сигнал подается в аналоговой форме. В связи с тем, что ПК оперирует только цифровыми сигналами, аналоговый сиг-нал должен быть преобразован в цифровой. Вместе с тем аку-стическая система, установленная на выходе звуковой карты ПК, воспринимает только аналоговые электрические сигналы, поэтому после обработки сигнала с помощью ПК необходимо обратное преобразование цифрового сигнала в аналоговый.
Аналого-цифровое преобразование осуществляется спе-циальным электронным устройством - аналого-цифровым преобразователем (АЦП), в котором дискретные отсчеты сигнала преобразуются в последовательность чисел. Полу-ченный поток цифровых данных, т.е. сигнал, включает как по-лезные, так и нежелательные высокочастотные помехи, для фильтрации которых полученные цифровые данные пропуска-ются через цифровой фильтр.
Цифроаналоговое преобразование в общем случае проис-ходит в два этапа. На первом этапе из потока цифровых дан-ных с помощью цифроаналогового преобразователя (ЦАП) вы-деляют отсчеты сигнала, следующие с частотой дискрети-зации. На втором этапе из дискретных отсчетов путем сгла-живания (интерполяции) формируется непрерывный аналого-вый сигнал с помощью фильтра низкой частоты, который по-давляет периодические составляющие спектра дискретного сигнала.
2. Синтез - компьютер посылает в звуковую карту нот-ную информацию, а карта преобразует ее в аналоговый сигнал (музыку). Существует два способа синтеза:
а) FrequencyModulation (FM) synthesis , при котором звук воспроизводит специальный синтезатор, который оперирует математическим представлением звуковой волны (частота, амплитуда, etc) и из совокупности таких искусственных звуков создается практически любое необходимое звучание.
Большинство систем, оснащенных FM-синтезом показы-вают очень неплохие результаты на проигрывании "компью-терной" музыки, но попытка симулировать звучание живых ин-струментов не очень хорошо удается. Ущербность FM-синтеза состоит в том, что с его помощью очень сложно (практически невозможно) создать действительно реалисти-ческую инструментальную музыку, с большим наличием высо-ких тонов (флейта, гитара, etc). Первой звуковой картой, ко-торая стала использовать эту технологию, был легендарный Adlib, который для этой целей использовал чип из синтеза Yamaha YM3812FM. Большинство Adlib-совместимых карт (SoundBlaster, ProAudioSpectrum) также используют эту тех-нологию, только на других более современных типах микро-схем, таких как Yamaha YMF262 (OPL-3) FM.
б) синтез по таблице волн (Wavetablesynthesis), при этом методе синтеза заданный звук "набирается" не из синусов ма-тематических волн, а из набора реально озвученных инстру-ментов - самплов. Самплы сохраняются в RAM или ROM звуко-вой карты. Специальный звуковой процессор выполняет опера-ции над самлами (с помощью различного рода математических преобразований изменяется высота звука, тембр, звук допол-няется спецэффектами).
Так как самплы - оцифровки реальных инструментов, они делают звук крайне реалистичным. До не давнего времени по-добная техника использовалась только в hi-end инструментах, но она становится все более популярной теперь. Пример попу-лярной карты, использующей WS GravisUltraSound(GUS).
3. MIDI. Компьютер посылает на MIDI-интерфейс специ-альные коды, каждый из которых обозначает действие, кото-рое должен произ вести MIDI-устройство (обычно это синте-затор) (General) MIDI - это основной стандарт большинства звуковых плат. Звуковая плата, самостоятельно интерпре-тирует, посылаемые коды и приводит им в соответствие зву-ковые самлы(илипатчи), хранящиеся в памяти карты. Количе-ство этих патчей в стандарте GM равно 128. На PC - совмес-тимых компьютерах исторически сложились два MIDI-интерфейса: UART MIDI и MPU-401. Первый рализован в SoundBlasters картах, второй использовался в ранних моделях Roland.
4. Блок интерфейса ISAили PCI
Интерфейс ISA в 1998 г. был вытеснен в звуковых картах интерфейсом PCI.
Интерфейс PCI обеспечивает широкую полосу пропуска-ния (например, версия 2.1 - более 260 Мбит/с), что позволяет передавать потоки звуковых данных параллельно. Использова-ние шины PCI позволяет повысить качество звука, обеспечив отношение сигнал/шум свыше 90 дБ. Кроме того, шина PCI обеспечивает возможность кооперативной обработки звуко-вых данных, когда задачи обработки и передачи данных распре-деляются между звуковой системой и CPU.

Рисунок 7 - Устройство и принцип работы.
2.4 Этапы настройки и конфигурирования Звуковой системы ПК
Звуковая карта может быть встроена в материнскую плату или отдельно устанавливаться в отдельный слот на мп.Настройка звуковой картыбудет произведена в 2 этапа.
1. Установка ПО.
Прежде всего надо установить драйвера. Конечно, скорее всего ОС Windows уже сама нашла и установила драйвера для звукового устройства, однако для получения доступа ко всему функционалу, а также для душевного спокойствия, установим пакет драйверов непосредственно от Realtek, Указанные здесь настройки проверялись на версии драйверов R2.67.Скачиваем драйвера, производим несложную процедуру установки (запус-тив HD_Audio/Setup.exe), перезагружаем компьютер. После за-грузки ОС в системном трее должен появиться коричневый значок динамика.
2. Настройка драйверов
Панель Управления Windows->Оборудование и звук->Звуки, убедившись, что наши наушники или динамики подключены в зеленое гнездо звуковой карты, отключаем все ненужные устройства, а наше подключенное устройство делаем устройством по умолчанию.
Когда настройка звуковой карты завершена можно под-ключать акустическую систему.
2.5 Инструменты для диагностики и ремонта
Звуковой системы ПК
Звуковая система ПК как и все другие компоненты ком-пьютера со временем выходят из строя. Для диагностики и ремонта Звуковой системы ПК необходимы следующие инст-рументы:
 электрический паяльник;

Рисунок 8 – электрический паяльник

Паяльник - ручной инструмент, применяемый при луже-нии и пайке для нагрева деталей, флюса, расплавления припоя и внесения его в место контакта спаиваемых деталей. Рабо-чая часть паяльника, обычно называемая жалом, нагревается пламенем (например от паяльной лампы) или электрическим током.
С помощью паяльника можно припаивать неисправные компоненты на звуковой карте или припаивать проводки кабе-ля к штекеру.
 Изолента -предназначенная для электрической изоля-ции токоведущих частей.
Изолентой обматывают кабель где проходила пайка.

Рисунок 9 - изолента
 Отвертки – служат для демонтажа и монтажа звуковой карты, и акустической системы.

Рисунок 10 – отвертки

 BIOS – базовая система вводавывода. Можно настро-ить подключение звуковой карты.
 провода и штекеры – служат для замены неисправных проводов и штекеров.

Рисунок 11 – провода и штекеры

 мультиметр;

Рисунок 9 – Мультиметр

Мультиметр служит для измерения контрольных пара-метров.

2.6 Виды неисправностей звуковой системы и их устранение
1. Неисправности звуковой картыочень распространен-ное явления, эта поломка возникает очень легко, но устранить ее очень не просто, так как причина возникновения в от-сутствии звука может скрываться в самых неожиданных мес-тах компьютера.
a) При включении системного блока, отсутствуют звуковых сигналы. Причины поломки и как устранить:
 проверить правильность подключения колонок к разъе-му звуковой карты и подключения к сети питания самих коло-нок.
 отсутствие драйверов и аппаратная не совмести-мость программ может привести к программной ошибке или сбою в работе звуковой карты, здесь необходимо проверить программное и аппаратную совместимость звуковой карты с остальным оборудованием в диспетчере устройств системы и при необходимости удалить конфликтные программы и ус-тановить необходимые драйвера.
 неисправность звуковой карты может сопровождаться вышедшими из строя элементами и деталями звуковой карты, например сам выход звуковой карты или отошла пайка на са-мой дорожке, которые необходимо пропаять.
 звуковая карта, тем более если она встроенная, может попросту отключена в Биосе, которую необходимо включить.
 очень часто встроенная звуковая карта попросту вы-горает, и ее заменяют на внешнюю или внутреннюю, при их подключении необходимо отключить встроенную звуковую карту в БИОСе, это необходимо для того чтобы не было ап-паратной ошибки в работе системного блока.
б)От колонок идет гул и непонятный фон - неисправны штекера подключения, которые необходимо пропаять или за-менить, со временем теряется емкость конденсаторов на звуковой карте и в блоке предварительного усиления сигнала самих колонок.
в) От колонок идут не понятные прерывистые звуки и посторонние шумы - в этом случае, отсутствуют необходи-мые звуковые кодеки. Которые, необходимо заменить или об-новить через необходимое программное обеспечение.
2.Неисправности акустических систем.
Акустические системы, особенно недорогие и от неиз-вестных производителей, не выдерживают длительной экс-плуатации на предельной мощности, так как их встроенный блок питания рассчитан на номинальную нагрузку, а такая на-грузка создается при громкости звука около 80% от макси-мальной. Поэтому, естественно, что при эксплуатации сис-темы на максимальной громкости, блок питания испытывает повышенные нагрузки, а это вызывает перегрев элементов схемы, и, как следствие, их повреждение.
Довольно часто причиной искажений звука становятся механические регуляторы громкости. "Вычислить" такой ре-гулятор просто, достаточно прибавить или убавить гром-кость звука, возникающие в это время хрипы и трески будут свидетельством того, что рабочая часть регулятора изно-шена, такой регулятор необходимо заменить аналогичным.
При эксплуатации на максимальной громкости может пе-регореть обмотка катушки динамика, такой громкоговори-тель придется заменить, также подлежат замене динамики со значительными повреждениями диффузора, если повреждение небольшое и диффузор из бумаги, можно попытаться его за-клеить кусочком ватмана.
При эксплуатации динамиков на большой мощности про-исходит обрыв проводника соединяющего внешнюю клемму громкоговорителя с клеммой его диффузора, в этом случае все ремонтируется обычной пайкой.
Часто причиной неисправности становятся обрывы про-водов возле штекеров подключения, причем изоляция этих про-водов в большинстве случаев остается цела, что затрудняет диагностику. "Вызвонить" такое повреждение можно при по-мощи мультиметра, если он у вас отсутствует, то можно воспользоваться батарейкой и обычной лампочкой из фонари-ка, для этого один контакт лампочки соединяется с батарей-кой напрямую, а второй контакт присоединяется к батарейке через проверяемый кабель, ну а дальше все понятно - лампочка загорелась кабель целый не загорелась - поврежден. В случае повреждения желательно такой кабель заменить, ведь как мы знаем повреждение кабелей наиболее часто происходит очень близко к разъему, хотя можно попытаться исправить и это. Для этого потребуется очистить штекер от покрывающей его пластмассы, припаять к нему проводки кабеля заново, за-тем все это тщательно замотать изолентой.


3 Работа с компьютерной сетью
3.1 Описание места прокладки компьютерной сети и имеющегося оборудования
Место прокладки сети 2 этаж здания суши-бар «Саму-рай» по ул. Цвилинга 21.
Данный этаж содержит одну комнату, размер комнаты: длина комнаты 5,10 метров. Ширина комнаты 3 метра. Высо-та комнаты 3,1 метра. Площадь комнаты составляет 20 квадратных метра.
В комнате имеется: одно окно, одна дверь, 4 лампы уста-новленных в навесном потолке, две батареи, один стула, шкаф, диван, холодильник, компьютерный стол.

Имеющееся оборудование:
- коммутаторD-LinkDES-1210-28/ME;
- кабельNETLANEC-UU002-5-PVC-GY,2 пары, Кат.5, внутренний;
- сетевые розетки для подключения кабеля RJ-45;
- кабель канал.
3.2 Проектирование компьютерной сети и выбор оборудования

При проектировании компьютерной сети использовалась топология сети – звезда, т.к.все компьютеры сети присоеди-нены к центральному узлу(коммутатору), образуя физический сегмент сети.
Тип кабеля, используемый при проектировании сети - эк-ранированная витая пара категории 5, обеспечивают пропуск-ную способность 100Мбит/с, предназначена для прокладки внутри помещения. К достоинствам данного кабеля можно от-нести его недорогую стоимость, однако при этом полностью соответствуя стандартам и доступностью.
Для защиты кабелейиспользовались кабель каналы, а также устанавливались боксы TDM на 6 модулей. Преимуще-ством данных боксов является:
- удобство монтажа на боковых и задней стенке корпуса выштампованы легко удаляемые вводы для кабеля, а разметка с указанием установочных размеров на задней стенке сделает монтаж более точным;
- специальный замок-защёлка позволяет фиксировать дверцу бокса в открытом положении;
- все шурупы, входящие в состав бокса, имеют универ-сальную шляпку. Она подходит как под крестовую, так и под плоскую отвёртку.
Коммутатор используемый при проектировании сети, был выбран D-LinkDES-1210-28/ME. Так как данный коммутатор обладает расширенным функционалом, и к тому же являются недорогим решением по созданию безопасной и высокопроизво-дительной сети.Отличительными особенностями данного коммутатора являются высокая плотность портов, оснащен 24 портами FastEthernet, а также 4 портами GigabitEthernet, включая 2 комбо-порта 1000Base-T/SFP, которые поддержива-ют как трансиверы SFP Gigabit, так и 100BASE-FX.
К преимуществам можно отнести: функцию управления широковещательным штормом, которая сводит к минимуму вероятность вирусных атак в сети, а так же функциюзерка-лирования портов, которая упрощает диагностику трафика, а также помогает администраторам следить за производи-тельностью коммутатора и изменять ее в случае необходи-мости.
Приложение В

3.3 Этапы монтажа и настройки компьютерной сети
При монтаже использовался Кабель NikoLan NKL 4700B-BK, который является качественным экранированным 4-х пар-ным кабелем со сплошной жилой и предназначен для внешней прокладки. Жесткая полиэтиленовая оболочка не боится ультрафиолета, устойчива к холоду вплоть до минус 60 гра-дусов, и внешним воздействиям.
При креплении кабеля, необходимо канцелярским ножом снять слой оплётки, под которой находится многожильный стальной трос. Далее с помощью шуруповерта и болта с шестигранной головкой наматываем на болт стальной трос, который при закручивании стянет основой кабеля, на этом монтаж закончен.
Далее необходимо обжать экранированную витую пару по стандарту, который используется на предприятии. Он выгля-дит вот так:
1 –белооранжевый;
2 – оранжевый;
3 –белосиний;
4 – зеленый;
5 – белозеленый;
6 – синий;
7 –белокоричневый;
8 – коричневый.
Перед обжатием кабеля, необходимо его подготовить. Для начала снимаем оплетку, аккуратно надрезая кабель. После удаляем экранированную пленку. И заключительным этапом будет расправить каждую жилу, чтобы она выглядела как струна, и по стандарту вставить в коннектор RJ-45, и об-жать обжимным инструментом.
После всех манипуляций с кабелем, необходимо настро-ить его на компьютере. Для того чтобы настроить необхо-димо задать свой личный IPадрес, маску подсети, основной шлюз, предпочитаемый шлюз, и альтернативный шлюз кото-рый у каждого абонента отличается от другого абонента, так как на каждого абонента выдается свой личный договор, в котором и содержится вся необходимая информация по на-стройке.
После выполненных шагов, замеряем скорость и пинг с помощью сайта www.speedtest.net, чтобы примерно всё соот-ветствовало заявленному тарифу.
3.4 Способы и инструменты тестирования компь-ютерной сети
3.4. 1 Использование тестеров

Наиболее объективным и простым способом тестирова-ния всех особенностей локальной сети является использова-ние разного рода тестеров. Они позволяют максимально ав-томатизировать и упростить процесс тестирования, поэто-му, если есть такая возможность, желательно применять именно этот способ.
Существуют разные варианты тестеров, отличающихся методами тестирования, количеством разнообразных тестов, а также способом выдачи результатов. От этих функций напрямую зависит стоимость тестирующего оборудования. На рынке существует достаточно много тестирующего обо-рудования от разных производителей, стоимость которого колеблется в широком диапазоне: от $50 до $20 000. По по-нятным причинам использовать дорогостоящее оборудование может себе позволить лишь серьезная фирма, предоставляю-щая профессиональные услуги по монтажу СКС. На практике при тестировании большей части создаваемых локальных се-тей с 30–50 компьютерами применяются простейшие тесте-ры, которые позволяют только проверять состояние кабель-ного сегмента, чего в 90 % случаев вполне достаточно.
Различают два основных вида тестеров: для тестирова-ния физических линий и сетевые анализаторы.
Тестеры для тестирования физических линий получили наибольшее распространение благодаря своей цене. Такой тестер способен определять неисправность кабельного сег-мента на физическом уровне, вплоть до определения места обрыва проводников. Кроме того, он может, например, про-тестировать волновое сопротивление линии или измерить скорость передачи данных, что позволяет определить исполь-зуемый сетевой стандарт или соответствие определенному стандарту. Покупку такого тестера может позволить себе даже небольшая фирма, что даст возможность быстро опре-делять и устранять неисправность в процессе эксплуатации локальной сети.
Сетевые анализаторы – дорогостоящее оборудование, приобретение которого могут себе позволить только сете-вые интеграторы. С помощью такого сетевого анализатора можно не только исследовать характеристики кабельной структуры, но и получить полную информацию о процессе, происходящем при прохождении сигнала от любого узла к лю-бому узлу, с определением проблемных сегментов и «узких мест». Кроме того, можно даже прогнозировать состояние сети в ближайшем будущем и пути решения или предотвраще-ния будущих проблем.
Внешний вид тестера, позволяющего оценить физиче-скую целостность кабельного сегмента любой длины, показан на рисунке 13.

Рисунок 13 - кабельный тестер с набором переходников
Хороший тестер позволяет оценить максимальное коли-чество параметров кабеля, для чего в комплекте с тестером часто идут разного рода переходники и вспомогательные ин-струменты. Например, используя соответствующие переход-ники, можно производить тестирование как коаксиальных сег-ментов, так и сегментов кабеля «витая пара». Что касается оптоволоконных линий, то оборудование для их тестирования имеет более сложную конструкцию и часто ориентировано только на тестирование оптоволокна.
Тестирование кабельного сегмента происходит разными способами, которые зависят от наличия доступа к кабелю. Один из способов заключается в следующем: конец обжатого кабеля подключается к разъему на тестере, а на второй конец устанавливается специальная заглушка. В результате тес-тер может проверить сопротивление каждого проводника, а также соответствие их подключению одному из стандартов. Использование данных о сопротивлении позволяет определить технические характеристики кабеля, а также выяснить расстояние до точки обрыва.
3.4.2 Использование программного способа
Когда возможности приобретения тестера нет, что часто происходит при монтаже офисной или «домашней» се-ти, целостность и качество кабельного сегмента можно про-верить и программным путем, используя, например, систем-ную утилиту ping.
Принцип работы этого метода крайне прост и сводится к тому, чтобы попытаться передать через кабель любые дан-ные.
Например, чтобы проверить сегмент коаксиального пу-ти, необходимо соединить им два компьютера и установить на них терминаторы. Далее нужно настроить IP-адресацию каждого компьютера, присвоив одному, например, IP-адрес 192.168.2.1, а второму – 192.168.2.2 с маской подсети 255.255.255.0. Затем на компьютере с адресом 192.168.2.1 сле-дует запустить командную строку, в которой ввести следую-щую команду: ping 192.168.2.2
Если в результате выполнения этой команды последует ответ "Ответ от 192.168.2.2: число байт=32 время < 1мс TTL=64", значит, кабельный сегмент физически цел.
Если же в результате выполнения команды на экране появится надпись "Превышен интервал ожидания для запроса", это будет свидетельствовать о том, что кабель имеет об-рыв или коннекторы обжаты неправильно.
Подобным образом можно производить тестирование любого кабеля, в том числе и кабеля «витая пара». В случае с кабелем «витая пара» подобного рода подключение возможно только для варианта кроссовер. Если же необходимо протес-тировать работоспособность кабеля типа патч-корд, его не-обходимо подключать к центральному узлу, например, комму-татору, а в паре с ним использовать заведомо рабочий кабель, который подключен ко второму компьютеру.

Заключение
В процессе прохождения производственной практики по ПМ 03. «Техническое обслуживание и ремонт компьютерных систем и комплексов» были выполнены следующие задачи:
 изучена структура предприятия ООО «ТЕЛКОМ» и ос-новные виды его деятельности;
 изучена работа звуковой системы ПК, она заключается в 4 этапах.(Приложение А)
 Рассмотрены этапы настройки и конфигурирования звуковой системы ПК, которые заключаются в двух этапах;
 перечислены инструменты необходимые для диагно-стики и ремонта Звуковой системы ПК, к ним относятся: на-бор отверток, изолента, мультиметр, паяльник.
 изучены виды неисправностей звуковой системы ПК и их устранение.
Таким образом, полученные на практике знания и сфор-мированные умения можно применять в будущей профессио-нальной деятельности 
Список литературы
1. Стандарты по локальным вычислительным сетям: Справочник / В. К. Щербо, В. М. Киреичев, С. И. Самойленко; под ред. С. И. Самойленко. - М.: Радио и связь, 2005.
2. Практическая передача данных: Модемы, сети и про-токолы / Ф. Дженнингс; пер. с англ. - М.: Мир, 2000.
3. Сети ЭВМ: протоколы стандарты, интерфейсы / Ю. Блэк; пер. с англ. - М.: Мир, 1999.
4. Fast Ethernet / Л. Куинн, Р. Рассел. - BHV-Киев, 2007.
5. Коммутация и маршрутизация IP/IPX трафика / М. В. Кульгин, АйТи. - М.: Компьютер-пресс, 2001.
6. Волоконная оптика в локальных и корпоративных се-тях связи / А. Б. Семенов, АйТи. - М.: Компьютер-пресс, 1998.
7. Протоколы Internet. С. Золотов. - СПб.: BHV - Санкт-Петербург, 2002.
8. Персональные компьютеры в сетях TCP/IP. Крейг Хант; пер. с англ. - BHV-Киев, 2003.
9. Вычислительные системы, сети и телекоммуникации / Пятибратов и др. - ФИС, 2004.
10. Высокопроизводительные сети. Энциклопедия поль-зователя / А. Марк Спортак и др.; пер. с англ. - Киев: Диа-Софт, 2006.

Приложение А

Устройство и принцип работы звуковой системы ПК


Приложение Б

Анализ финансовых затрат на ремонт аудиосис-темы


Приложение В

Проект компьютерной сети

Приложение Г

Анализ финансовых затрат на создание
компьютерной сети


Приложение Д

Скриншот схемы сети и листинг команд настройки рабочих станций в программе CiscoPacketTracer

Приложение Е

Листинг команд настройки
активного сетевого оборудования в программе Cisco-PacketTracer


Приложение Ж

Листинг команд настройки активного сетевого оборудования в CPT


1.Звуковая система ПК

Звуковая система ПК в виде звуковой карты появилась в 1989 г., существенно расширив возможности ПК как технического сред­ства информатизации.

Звуковая система ПК - комплекс программно-аппаратных средств, выполняющих следующие функции:

запись звуковых сигналов, поступающих от внешних источни­ков, например, микрофона или магнитофона, путем преобразо­вания входных аналоговых звуковых сигналов в цифровые и по­следующего сохранения на жестком диске;

воспроизведение записанных звуковых данных с помощью внешней акустической системы или головных телефонов (науш­ников);

воспроизведение звуковых компакт-дисков;

микширование (смешивание) при записи или воспроизведе­нии сигналов от нескольких источников;

одновременная запись и воспроизведение звуковых сигналов (режим Full Duplex );

обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня;

обработка звукового сигнала в соответствии с алгоритмами объемного (трехмерного - 3 D - Sound ) звучания;

генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков;

управление работой внешних электронных музыкальных инст­рументов через специальный интерфейс MIDI.

Звуковая система ПК конструктивно представляет собой зву­ковые карты, либо устанавливаемые в слот материнской пла­ты, либо интегрированные на материнскую плату или карту рас­ширения другой подсистемы ПК. Отдельные функциональные мо­дули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.

Классическая звуковая система, как показано на рис. 5.1, со­держит:

Модуль записи и воспроизведения звука;



  • модуль синтезатора;

  • модуль интерфейсов;

  • модуль микшера;

  • акустическую систему.
Первые четыре модуля, как правило, устанавливаются на зву­ковой карте. Причем существуют звуковые карты без модуля син­тезатора или модуля записи/воспроизведения цифрового звука. Каждый из модулей может быть выполнен либо в виде отдельной микросхемы, либо входить в состав многофункциональной мик­росхемы. Таким образом, Chipset звуковой системы может содер­жать как несколько, так и одну микросхему.

Конструктивные исполнения звуковой системы ПК претерпе­вают существенные изменения; встречаются материнские платы с установленным на них Chipset для обработки звука.

Однако назначение и функции модулей современной звуковой системы (независимо от ее конструктивного исполнения) не ме­няются. При рассмотрении функциональных модулей звуковой карты принято пользоваться терминами «звуковая система ПК» или «звуковая карта».

2. Модуль записи и воспроизведения

Модуль записи и воспроизведения звуковой системы осуще­ствляет аналого-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных или передачи их по каналам DMA (Direct Memory Access - канал прямого доступа к памяти).

Звук, как известно, представляет собой продольные волны, свободно распространяющиеся в воздухе или иной среде, поэтому звуковой сигнал непрерывно изменяется во времени и в про­странстве.

Запись звука - это сохранение информации о колебаниях зву­кового давления в момент записи. В настоящее время для записи и передачи информации о звуке используются аналоговые и циф­ровые сигналы. Другими словами, звуковой сигнал может быть представлен в аналоговой или цифровой форме.

Если при записи звука пользуются микрофоном, который пре­образует непрерывный во времени звуковой сигнал в непрерыв­ный во времени электрический сигнал , получают звуковой сиг­нал в аналоговой форме. Поскольку амплитуда звуковой волны определяет громкость звука, а ее частота - высоту звукового тона, постольку для сохранения достоверной информации о звуке на­пряжение электрического сигнала должно быть пропорционально звуковому давлению, а его частота должна соответствовать часто­те колебаний звукового давления.

На вход звуковой карты ПК в большинстве случаев звуковой сигнал подается в аналоговой форме. В связи с тем что ПК опери­рует только цифровыми сигналами, аналоговый сигнал должен быть преобразован в цифровой. Вместе с тем акустическая систе­ма, установленная на выходе звуковой карты ПК, воспринимает только аналоговые электрические сигналы, поэтому после обра­ботки сигнала с помощью ПК необходимо обратное преобразова­ние цифрового сигнала в аналоговый.

Аналого-цифровое преобразование представляет собой преобра­зование аналогового сигнала в цифровой и состоит из следующих основных этапов: дискретизации, квантования и кодирования. Схема аналого-цифрового преобразования звукового сигнала пред­ставлена на рис. 5.2.

Предварительно аналоговый звуковой сигнал поступает на ана­логовый фильтр, который ограничивает полосу частот сигнала.

Дискретизация сигнала заключается в выборке отсче­тов аналогового сигнала с заданной периодичностью и определя­ется частотой дискретизации. Причем частота дискретизации дол­жна быть не менее удвоенной частоты наивысшей гармоники (ча­стотной составляющей) исходного звукового сигнала. Поскольку человек способен слышать звуки в частотном диапазоне от 20 Гц до 20 кГц, максимальная частота дискретизации исходного зву­кового сигнала должна составлять не менее 40 кГц, т. е. отсчеты требуется проводить 40 000 раз в секунду. В связи с этим в боль­шинстве современных звуковых систем ПК максимальная частота дискретизации звукового сигнала составляет 44,1 или 48 кГц.

Квантование по амплитуде представляет собой измерение мгновенных значений амплитуды дискретного по времени сигна­ла и преобразование его в дискретный по времени и амплитуде. На рис. 5.3 показан процесс квантования по уровню аналогового сигнала, причем мгновенные значения амплитуды кодируются 3-разрядными числами.




Кодирование заключается в преобразовании в цифровой код квантованного сигнала. При этом точность измерения при кван­товании зависит от количества разрядов кодового слова. Если зна­чения амплитуды записать с помощью двоичных чисел и задать длину кодового слова N разрядов, число возможных значений ко­довых слов будет равно 2 N . Столько же может быть и уровней квантования амплитуды отсчета. Например, если значение амплитуды отсчета представляется 16-разрядным кодовым словом, максималь­ное число градаций амплитуды (уровней квантования) составит 2 16 = 65 536. Для 8-разрядного представления соответственно полу­чим 2 8 =256 градаций амплитуды.

Аналого-цифровое преобразование осуществляется специаль­ным электронным устройством - аналого-цифровым преобразова­ телем (АЦП), в котором дискретные отсчеты сигнала преобразу­ются в последовательность чисел. Полученный поток цифровых данных, т.е. сигнал, включает как полезные, так и нежелатель­ные высокочастотные помехи, для фильтрации которых получен­ные цифровые данные пропускаются через цифровой фильтр.

Цифроаналоговое преобразование в общем случае происходит в два этапа, как показано на рис. 5.4. На первом этапе из потока цифровых данных с помощью цифроаналогового преобразователя (ЦАП) выделяют отсчеты сигнала, следующие с частотой диск­ретизации. На втором этапе из дискретных отсчетов путем сглажи­вания (интерполяции) формируется непрерывный аналоговый сиг­нал с помощью фильтра низкой частоты, который подавляет пе­риодические составляющие спектра дискретного сигнала.

Для записи и хранения звукового сигнала в цифровой форме требуется большой объем дискового пространства. Например, сте­реофонический звуковой сигнал длительностью 60 с, оцифрован­ный с частотой дискретизации 44,1 кГц при 16-разрядном кван­товании для хранения требует на винчестере около 10 Мбайт.

Для уменьшения объема цифровых данных, необходимых для представления звукового сигнала с заданным качеством, исполь­зуют компрессию (сжатие), заключающуюся в уменьшении (Количества отсчетов и уровней квантования или числа бит, при-I холящихся на один отсчет.




Подобные методы кодирования звуковых данных с использо­ванием специальных кодирующих устройств позволяют сократить объем потока информации почти до 20 % первоначального. Выбор метода кодирования при записи аудиоинформации зависит от набора программ сжатия - кодеков (кодирование-декодиро­вание), поставляемых вместе с программным обеспечением зву­ковой карты или входящих в состав операционной системы.

Выполняя функции аналого-цифрового и цифроаналогового преобразований сигнала , модуль записи и воспроизведения циф­рового звука содержит АЦП, ЦАП и блок управления, которые обычно интегрированы в одну микросхему, также называемую кодеком. Основными характеристиками этого модуля являют­ся: частота дискретизации; тип и разрядность АЦП и ЦАП; спо­соб кодирования аудиоданных; возможность работы в режиме Full Duplex .

Частота дискретизации определяет максимальную час­тоту записываемого или воспроизводимого сигнала. Для записи и воспроизведения человеческой речи достаточно 6 - 8 кГц; му­зыки с невысоким качеством - 20 - 25 кГц; для обеспечения высококачественного звучания (аудиокомпакт-диска) частота дискретизации должна быть не менее 44 кГц. Практически все звуковые карты поддерживают запись и воспроизведение стерео­фонического звукового сигнала с частотой дискретизации 44,1 или 48 кГц.

Разрядность АЦП и ЦАП определяет разрядность пред­ставления цифрового сигнала (8, 16 или 18 бит). Подавляющее большинство звуковых карт оснащено 16-разрядными АЦП и ЦАП. Такие звуковые карты теоретически можно отнести к классу Hi-Fi, которые должны обеспечивать студийное качество звуча­ния. Некоторые звуковые карты оснащаются 20- и даже 24-раз­рядными АЦП и ПАП, что существенно повышает качество запи­си/воспроизведения звука.

Full Duplex (полный дуплекс) - режим передачи данных по каналу, в соответствии с которым звуковая система может одно­временно принимать (записывать) и передавать (воспроизводить) аудиоданные. Однако не все звуковые карты поддерживают этот режим в полном объеме, поскольку не обеспечивают высокое ка­чество звука при интенсивном обмене данными. Такие карты можно использовать для работы с голосовыми данными в Internet, на­пример, при проведении телеконференций, когда высокое каче­ство звука не требуется.

3. Модуль синтезатора

Электромузыкальный цифровой синтезатор звуковой системы позволяет генерировать практически любые звуки, в том числе и звучание реальных музыкальных инструментов. Принцип действия синтезатора иллюстрирует рис. 5.5.

Синтезирование представляет собой процесс воссоздания струк­туры музыкального тона (ноты). Звуковой сигнал любого музыкаль­ного инструмента имеет несколько временных фаз. На рис. 5.5, а показаны фазы звукового сигнала, возникающего при нажатии клавиши рояля. Для каждого музыкального инструмента вид сиг­нала будет своеобразным, но в нем можно выделить три фазы: атаку, поддержку и затухание. Совокупность этих фаз называется амплитудной огибающей, форма которой зависит от типа музы­кального инструмента. Длительность атаки для разных музы­кальных инструментов изменяется от единиц до нескольких де­сятков или даже до сотен миллисекунд. В фазе, называемой под­держкой, амплитуда сигнала почти не изменяется, а высота музыкального тона формируется во время поддержки. Последней фазе, затуханию, соответствует участок достаточно быстрого уменьшения амплитуды сигнала.

В современных синтезаторах звук создается следующим обра­зом. Цифровое устройство , использующее один из методов синте­за, генерирует так называемый сигнал возбуждения с заданной высотой звука (ноту), который должен иметь спектральные ха­рактеристики, максимально близкие к характеристикам имити­руемого музыкального инструмента в фазе поддержки, как пока­зано на рис. 5.5, б. Далее сигнал возбуждения подается на фильтр, имитирующий амплитудно-частотную характеристику реального музыкального инструмента. На другой вход фильтра подается сигнал амплитудной огибающей того же инструмента. Далее совокупность сигналов обрабатывается с целью получения специальных звуковых эффектов, например, эха (реверберация), хорового исполнения (хо-рус). Далее производятся цифроаналоговое преобразование и фильт­рация сигнала с помощью фильтра низких частот (ФНЧ). Основные характеристики модуля синтезатора:

Метод синтеза звука;

Объем памяти;

Возможность аппаратной обработки сигнала для создания зву­ковых эффектов;

Метод синтеза звука, использующийся в звуковой системе ПК, определяет не только качество звука, но и состав системы. На практике на звуковых картах устанавливаются синтезаторы, гене­рирующие звук с использованием следующих методов.

Метод синтеза на основе частотной модуляции (Frequency Modulation Synthesis - FM-синтез) предполагает исполь­зование для генерации голоса музыкального инструмента как ми­нимум двух генераторов сигналов сложной формы. Генератор не­сущей частоты формирует сигнал основного тона, частотно-мо­дулированный сигналом дополнительных гармоник, обертонов, определяющих тембр звучания конкретного инструмента. Генера­тор огибающей управляет амплитудой результирующего сигнала. FM-генератор обеспечивает приемлемое качество звука, отлича­ется невысокой стоимостью, но не реализует звуковые эффекты. В связи с этим звуковые карты, использующие этот метод, не рекомендуются в соответствии со стандартом РС99.

Синтез звука на основе таблицы волн (Wave Table Synthesis - WT-синтез) производится путем использования пред­варительно оцифрованных образцов звучания реальных музыкаль­ных инструментов и других звуков, хранящихся в специальной ROM, выполненной в виде микросхемы памяти или интегриро­ванной в микросхему памяти WT-генератора. WT-синтезатор обес­печивает генерацию звука с высоким качеством. Этот метод син­теза реализован в современных звуковых картах.

Объем памяти на звуковых картах с WT-синтезатором может увеличиваться за счет установки дополнительных элементов па­мяти (ROM) для хранения банков с инструментами.

Звуковые эффекты формируются с помощью специального эффект-процессора, который может быть либо самостоя­тельным элементом (микросхемой), либо интегрироваться в состав WT-синтезатора. Для подавляющего большинства карт с WT-синтезом эффекты реверберации и хоруса стали стандартными. Синтез звука на основе физического моделирования предусматривает использование математических моделей звуко­образования реальных музыкальных инструментов для генера­ции в цифровом виде и для дальнейшего преобразования в зву­ковой сигнал с помощью ЦАП. Звуковые карты, использую­щие метод физического моделирования, пока не получили широкого распространения , поскольку для их работы требует­ся мощный ПК.

4. Модуль интерфейсов

Модуль интерфейсов обеспечивает обмен данными между звуко­вой системой и другими внешними и внутренними устройствами.

Интерфейс ISA в 1998 г. был вытеснен в звуковых картах интер­фейсом PCI.

Интерфейс PCI обеспечивает широкую полосу пропускания (например, версия 2.1 - более 260 Мбит/с), что позволяет пере­давать потоки звуковых данных параллельно. Использование шины PCI позволяет повысить качество звука, обеспечив отношение сигнал/шум свыше 90 дБ. Кроме того, шина PCI обеспечивает возможность кооперативной обработки звуковых данных, когда задачи обработки и передачи данных распределяются между зву­ковой системой и CPU.

MIDI (Musical Instrument Digital Interface - цифровой интерфейс музыкальных инструментов) регламентируется специальным стан­дартом, содержащим спецификации на аппаратный интерфейс: типы каналов, кабели, порты, при помощи которых MIDI-устройства подключаются один к другому, а также описание поряд­ка обмена данными - протокола обмена информацией между MIDI-устройствами. В частности, с помощью MIDI-команд мож­но управлять светотехнической аппаратурой, видеооборудовани­ем в процессе выступления музыкальной группы на сцене. Уст­ройства с MIDI-интерфейсом соединяются последовательно, об­разуя своеобразную MIDI-сеть, которая включает контроллер - управляющее устройство, в качестве которого может быть исполь­зован как ПК, так и музыкальный клавишный синтезатор, а так­же ведомые устройства (приемники), передающие информацию в контроллер по его запросу. Суммарная длина MIDI-цепочки не ограничена, но максимальная длина кабеля между двумя MIDI-устройствами не должна превышать 15 метров.

Подключение ПК в MIDI-сеть осуществляется с помощью спе­циального MIDI-адаптера, который имеет три MIDI-порта: вво­да, вывода и сквозной передачи данных, а также два разъема для подключения джойстиков.

В состав звуковой карты входит интерфейс для подключения приводов CD-ROM.
5. Модуль микшера

Модуль микшера звуковой карты выполняет:

коммутацию (подключение/отключение) источников и при­емников звуковых сигналов, а также регулирование их уровня;

микширование (смешивание) нескольких звуковых сигналов и регулирование уровня результирующего сигнала.

К числу основных характеристик модуля микшера относятся:


  • число микшируемых сигналов на канале воспроизведения;

  • регулирование уровня сигнала в каждом микшируемом канале;

  • регулирование уровня суммарного сигнала;

  • выходная мощность усилителя;

  • наличие разъемов для подключения внешних и внутренних приемников/источников звуковых сигналов.
Источники и приемники звукового сигнала соединяются с модулем микшера через внешние или внутренние разъемы. Вне­шние разъемы звуковой системы обычно находятся на задней па­нели корпуса системного блока: Joystick / MIDI - для подключе­ния джойстика или MIDI-адаптера; Mic In - для подключения микрофона; Line In - линейный вход для подключения любых источников звуковых сигналов; Line Out - линейный выход для подключения любых приемников звуковых сигналов ; Speaker - для подключения головных телефонов (наушников) или пассив­ной акустической системы.

Программное управление микшером осуществляется либо сред­ствами Windows, либо с помощью программы-микшера, поставля­емой в комплекте с программным обеспечением звуковой карты.

Совместимость звуковой системы с одним из стандартов зву­ковых карт означает, что звуковая система будет обеспечивать качественное воспроизведение звуковых сигналов. Проблемы со­вместимости особенно важны для DOS-приложений. Каждое из них содержит перечень звуковых карт, на работу с которыми DOS-приложение ориентировано.

Стандарт Sound Blaster поддерживают приложения в виде игр для DOS, в которых звуковое сопровождение запрограммировано с ориентацией на звуковые карты семейства Sound Blaster.

Стандарт Windows Sound System (WSS ) фирмы Microsoft вклю­чает звуковую карту и пакет программ, ориентированный в ос­новном на бизнес-приложения.

6. Акустическая система

Акустическая система (АС) непосредственно преобразует зву­ковой электрический сигнал в акустические колебания и являет­ся последним звеном звуковоспроизводящего тракта.

В состав АС, как правило, входят несколько звуковых коло­нок, каждая из которых может иметь один или несколько динамиков. Количество колонок в АС зависит от числа компонентов, составляющих звуковой сигнал и образующих отдельные звуко­вые каналы.

Например, стереофонический сигнал содержит два компонен­та - сигналы левого и правого стереоканалов, что требует не ме­нее двух колонок в составе стереофонической акустической сис­темы. Звуковой сигнал в формате Dolby Digital содержит инфор­мацию для шести звуковых каналов: два фронтальных стереокана­ла, центральный канал (канал диалогов), два тыловых канала и канал сверхнизких частот. Следовательно, для воспроизведения сигнала Dolby Digital акустическая система должна иметь шесть звуковых колонок.

Как правило, принцип действия и внутреннее устройство зву­ковых колонок бытового назначения и используемых в техниче­ских средствах информатизации в составе акустической системы PC практически не различаются.

В основном АС для ПК состоит из двух звуковых колонок, ко­торые обеспечивают воспроизведение стереофонического сигна­ла. Обычно каждая колонка в АС для ПК имеет один динамик, однако в дорогих моделях используются два: для высоких и низ­ких частот. При этом современные модели акустических систем позволяют воспроизводить звук практически во всем слышимом частотном диапазоне благодаря применению специальной конст­рукции корпуса колонок или громкоговорителей.

Для воспроизведения низких и сверхнизких частот с высоким качеством в АС помимо двух колонок используется третий звуко­вой агрегат - сабвуфер (Subwoofer ), устанавливаемый под ра­бочим столом. Такая трехкомпонентная АС для ПК состоит из двух так называемых сателлитных колонок, воспроизводящих средние и высокие частоты (примерно от 150 Гц до 20 кГц), и сабвуфера, воспроизводящего частоты ниже 150 Гц.

Отличительная особенность АС для ПК - возможность нали­чия собственного встроенного усилителя мощности. АС со встро­енным усилителем называется активной. Пассивная АС усилителя не имеет.

Главное преимущество активной АС состоит в возможности подключения к линейному выходу звуковой карты. Питание ак­тивной АС осуществляется либо от батареек (аккумуляторов), либо от электрической сети через специальный адаптер, выполненный в виде отдельного внешнего блока или модуля питания, устанав­ливаемого в корпус одной из колонок.

Выходная мощность акустических систем для ПК может изме­няться в широком диапазоне и зависит от технических характе­ристик усилителя и динамиков. Если система предназначена для

озвучивания компьютерных игр, достаточно мощности 15 -20 Вт на колонку для помещения средних размеров. При необходимо­сти обеспечения хорошей слышимости во время лекции или пре­зентации в большой аудитории возможно использовать одну АС, имеющую мощность до 30 Вт на канал. С увеличением мощности АС увеличиваются ее габаритные размеры и повышается сто­имость.

Современные модели акустических систем имеют гнездо для головных телефонов, при подключении которых воспроизведе­ние звука через колонки автоматически прекращается.

Основные характеристики АС: полоса воспроизводимых час­тот, чувствительность, коэффициент гармоник, мощность.

Полоса воспроизводимых частот (FrequencyRespon ­ se ) - это амплитудно-частотная зависимость звукового давления, или зависимость звукового давления (силы звука) от частоты пе­ременного напряжения, подводимого к катушке динамика. Поло­са частот, воспринимаемых ухом человека, находится в диапазо­не от 20 до 20 000 Гц. Колонки, как правило, имеют диапазон, ограниченный в области низких частот 40 - 60 Гц. Решить пробле­му воспроизведения низких частот позволяет использование саб­вуфера.

Чувствительность звуковой колонки (Sensitivity ) характеризуется звуковым давлением, которое она создает на рас­стоянии 1 м при подаче на ее вход электрического сигнала мощ­ностью 1 Вт. В соответствии с требованиями стандартов чувстви­тельность определяется как среднее звуковое давление в опреде­ленной полосе частот.

Чем выше значение этой характеристики , тем лучше АС пере­дает динамический диапазон музыкальной программы. Разница между самыми «тихими» и самыми «громкими» звуками совре­менных фонограмм 90-95 дБ и более. АС с высокой чувствитель­ностью достаточно хорошо воспроизводят как тихие, так и гром­кие звуки.

Коэффициент гармоник (Total Harmonic Distortion - THD ) оценивает нелинейные искажения, связанные с появлени­ем в выходном сигнале новых спектральных составляющих. Коэф­фициент гармоник нормируется в нескольких диапазонах частот. Например, для высококачественных АС класса Hi-Fi этот коэф­фициент не должен превышать: 1,5% в диапазоне частот 250- 1000 Гц; 1,5 % в диапазоне частот 1000-2000 Гц и 1,0 % в диапа­зоне частот 2000 - 6300 Гц. Чем меньше значение коэффициента гармоник, тем качественнее АС.

Электрическая мощность (Power Handling ), которую выдерживает АС, является одной из основных характеристик. Од­нако нет прямой взаимосвязи между мощностью и качеством вос­произведения звука. Максимальное звуковое давление зависит,

скорее, от чувствительности, а мощность АС в основном опреде­ляет ее надежность.

Часто на упаковке АС для ПК указывают значение пиковой мощности акустической системы, которая не всегда отражает ре­альную мощность системы, поскольку может превышать номи­нальную в 10 раз. Вследствие существенного различия физических процессов, происходящих при испытаниях АС, значения элек­трических мощностей могут отличаться в несколько раз. Для срав­нения мощности различных АС необходимо знать, какую именно мощность указывает производитель продукции и какими метода­ми испытаний она определена.

Среди производителей высококачественных и дорогих АС - фирмы Creative, Yamaha, Sony, Aiwa. AC более низкого класса выпускают фирмы Genius, Altec, JAZZ Hipster.

Некоторые модели колонок фирмы Microsoft подключаются не к звуковой карте, а к порту USB. В этом случае звук поступает на колонки в цифровом виде, а его декодирование производит не­большой Chipset, установленный в колонках.
7. Направления совершенствования звуковой системы

В настоящее время фирмы Intel, Compaq и Microsoft предло­жили новую архитектуру звуковой системы ПК. Согласно этой архитектуре модули обработки звуковых сигналов выносятся за пределы корпуса ПК, в котором на них действуют электричес­кие помехи, и размещаются, например, в колонках акустической системы. В этом случае звуковые сигналы передаются в цифровой форме, что значительно повышает их помехозащищенность и ка­чество воспроизведения звука. Для передачи цифровых данных в цифровой форме предусматривается использование высокоско­ростных шин USB и ШЕЕ 1394.

Еще одним направлением совершенствования звуковой систе­мы является создание объемного (пространственного) звука, на­зываемого трехмерным, или 3D-Sound (Three Dimentional Sound ). Для получения объемного звучания производится специальная обработка фазы сигнала: фазы выходных сигналов левого и пра­вого каналов сдвигаются относительно исходного. При этом ис­пользуется свойство мозга человека определять положение источ­ника звука путем анализа соотношения амплитуд и фаз звукового сигнала, воспринимаемого каждым ухом. Пользователь звуковой системы, оборудованной специальным модулем обработки 3D-звука, ощущает эффект «перемещения» источника звука.

Новым направлением применения мультимедийных техноло­гий является создание домашнего театра на базе ПК (PC - Theater ), т.е. варианта мультимедийного ПК, предназначенного одновре­менно нескольким пользователям для наблюдения за игрой, про-

смотра образовательной программы или фильма в стандарте DVD. PC-Theater в своем составе имеет специальную многоканальную акустическую систему, формирующую объемный звук (Surround Sound ). Системы Surround Sound создают в помещении различные звуковые эффекты , причем пользователь ощущает, что он нахо­дится в центре звукового поля, а источники звука - вокруг него. Многоканальные звуковые системы Surround Sound используют­ся в кинотеатрах и уже начинают появляться в виде устройств бытового назначения.

В многоканальных системах бытового назначения звук записы­вается на двух дорожках лазерных видеодисков или видеокассет по технологии Dolby Surround, разработанной фирмой Dolby Laboratories. К наиболее известным разработкам в этом направле­нии относятся:

Dolby (Surround ) Pro Logic - четырехканальная звуковая систе­ма, содержащая левый и правый стереоканалы, центральный ка­нал для диалогов и тыловой канал для эффектов.

Dolby Surround Digital - звуковая система, состоящая из 5 + 1 ка­налов: левого, правого, центрального, левого и правого каналов тыловых эффектов и канала сверхнизких частот. Запись сигналов для системы выполняется в виде цифровой оптической фоно­граммы на кинопленке.

В отдельных моделях акустических колонок помимо стандарт­ных регуляторов высоких/низких частот, громкости и баланса имеются кнопки для включения специальных эффектов, напри­мер, ЗD-звука, Dolby Surround и др.

Контрольные вопросы

    Какие основные функции выполняет звуковая система ПК?

    Какие основные компоненты входят в состав звуковой системы ПК?

    Исходя из каких соображений выделяется частота дискретизации сигнала в процессе аналого-цифрового преобразования?


  1. Перечислите основные этапы аналого-цифрового и цифроаналогового преобразования.
  2. Какие основные параметры характеризуют модуль записи и воспроизведения звука?

    Какие применяют методы синтеза звука?

    Какие функции выполняет модуль микшера и что относится к числу его основных характеристик?

    В чем отличие пассивной акустической системы от активной?