Отметьте верные утверждения теорема куна таккера. Понятие седловой точки

Теоремы Куна-Таккера - родовое название для утверждений, представляющих собой обобще-

ние теоремы Лагранжа на случай задач оптимизации с ограничениями в виде неравенств, т. е. задач

следующего типа:

gj(x) > 0, j = 1, .

M, (?)

x = (x1, . . . , xn) 2 X.

Здесь f: X 7! R - (в соответствие с установившейся терминологией) целевая функция, gr: X 7! R,

r = 1, . . . ,m, - функции ограничений, X _ Rn - открытое множество.

Теорема 196 (Теорема Джона в терминах седловой точки):

Пусть функции f( ), g1( ), . . . , gn( ) вогнуты и?x - решение задачи (?), такое что?x 2 intX.

Тогда существуют множители Лагранжа _j >

X является решением задачи

Мы приведем эти утверждения для случая, когда функции f, gr дифференцируемы (теоремы Ку-

на-Таккера в дифференциальной форме).

Напомним, что функция

L(x,_) = _0f(x) +

называется функцией Лагранжа (лагранжианом) этой задачи, а коэффициенты _j - множителями

Лагранжа.

Имеет место следующее утверждение.

Теорема 197 (Теорема Джона для дифференцируемых функций):

Пусть?x - решение задачи (?), такое что?x 2 intX и функции f( ), g1( ), . . . , gn( ) дифферен-

цируемы в точке?x.

Тогда существуют множители Лагранжа _j > 0, j = 0, . . . ,m, не все равные нулю, такие что

выполнены следующие соотношения (условия Куна-Таккера):

0, i = 1, . . . , n

J = 0 (условия дополняющей

нежесткости).

Отметим, что условия дополняющей нежесткости можно записать в виде

gj(?x)_j = 0, j = 1, . . . , m.

Из этих условий следует, что если множитель Лагранжа положителен (_j > 0), то соответствующее

ограничение в решении задачи (при x = ?x) выполняется как равенство (т. е. gj(?x) = 0). Другими

словами, это ограничение активно. С другой стороны, в случае, когда gj(?x) > 0, то соответствующий

множитель Лагранжа _j равен нулю.

Если в задаче (?) часть ограничений имеет вид ограничений на неотрицательность некоторых xi ,

то для них можно не вводить множители Лагранжа, записав такие ограничения отдельно:

gj(x) > 0, j = 1, . . . , m, (??)

xi > 0, i 2 P _ {1, . . . , n}. Во внутренней точке (в том смысле, что1 ?x 2 intX) условия первого порядка для i 2 P тогда

будут иметь следующий вид:

Для i /2 P здесь, как и в случае представления задачи в виде (?), производная функции Лагранжа

по той переменной будет иметь вид @L(?x,_)

Кроме того, выполнены также условия дополняющей нежесткости

Из второго из этих условий следует, что при?xi > 0 (i 2 P) выполнено

С другой стороны, если @L(?x,_)/@xi Другая модификация теоремы связана с наличием в задаче ограничений в виде равенств. Обозна-

чим множество соответствующих индексов через E. Задача принимает следующий вид:

gj(x) > 0, j 2 {1, . . . ,m}\E,

gj(x) = 0, j 2 E, (???)

xi > 0, i 2 P _ {1, . . . , n}.

При этом в теореме Джона снимается условие, что все множители Лагранжа неотрицательны -

множители Лагранжа _j при j 2 E могут иметь произвольный знак.

Теорема Джона не гарантирует, что множитель Лагранжа целевой функции, _0 , отличен от нуля.

Однако если _0 = 0, то условия Куна-Таккера характеризуют не решение рассматриваемой задачи, а

структуру множества ограничений в точке?x и теорема не имеет непосредственной связи с интересую-

щей нас задачей максимизации функции f( ), поскольку градиент самой функции f( ) .пропадает. из

условий Куна-Таккера.

Поэтому важно охарактеризовать условия, которые гарантируют, что _0 > 0.

Такие условия называются условиями регулярности.

В случае, когда рассматриваемая задача является выпуклой, одно из условий регулярности, -

так называемое условие Слейтера - имеет вид:

В случае, когда целевая функция и ограничения задачи являются дифференцируемыми, простей-

шее условие регулярности формулируется в терминах градиентов функций-ограничений и имеет вид:

градиенты активных ограничений в точке?x линейно независимы. (В число рассматриваемых ограни-

чений следует включать и ограничения на неотрицательность.)

Обозначим через A множество индексов тех ограничений, которые в точке оптимума?x активны

(в том числе, индексы всех ограничений в виде равенств), т. е.

gj(?x) = 0 , j 2 A.

Тогда если градиенты ограничений - векторы

линейно независимы2, то _0 > 0. Это условие называется условием регулярности Куна-Таккера.

Заметим, что если _0 > 0, то без потери общности можно считать _0 = 1, что обычно и делается.

Соответствующую теорему и называют собственно (прямой) теоремой Куна-Таккера. Теорема 198 (Прямая теорема Куна-Таккера, необходимое условие оптимальности):

Пусть функции f( ), g1( ), . . . , gn( ) дифференцируемы, и?x - решение задачи (?), такое что

X 2 intX и выполнено условие регулярности Куна-Таккера.

Тогда существуют множители Лагранжа _j > 0, j = 1, . . . ,m, такие что при _0 = 1 выполнены

следующие соотношения:

0, i = 1, . . . , n

Несложно переформулировать эту теорему для задач (??) и (???). Здесь требуются такие же мо-

дификации условий Куна-Таккера, как и в теореме Джона.

0, i = 1, . . . , n

можно переписать в виде:

Это соотношение показывает, что в точке оптимума градиент целевой функции является линейной ком-

бинацией антиградиентов ограничений, причем все коэффициенты этой линейной комбинации неотри-

цательны. Рис. 17.1 иллюстрирует это свойство. Интуитивно, идея этого свойства состоит в том, что

если бы какой-нибудь коэффициент линейной комбинации был отрицательным, то можно было бы

увеличить значение целевой функции, двигаясь вдоль этого ограничения. Один из вариантов обратной теорема Куна-Таккера утверждает, что при вогнутости функций

f( ), {gk( )} выполнение этих условий в допустимом решении?x (т. е. точке, удовлетворяющей огра-

ничениям) при некоторых множителях Лагранжа, удовлетворяющих требованиям прямой теоремы,

гарантирует, что?x является решением задачи.

Теорема 199 (Обратная теорема Куна-Таккера /достаточное условие оптимальности/):

Пусть f( ) - дифференцируемая вогнутая функция, g1( ), . . . , gn( ) - дифференцируемые

квазивогнутые функции, множество X выпукло и точка?x допустима в задаче (?), причем?x 2

Пусть, кроме того, существуют множители Лагранжа _j > 0, j = 1, . . . ,m, такие что при

0 = 1 выполнены следующие соотношения:

0, i = 1, . . . , n

Тогда?x - решение задачи (?).

Теорему можно очевидным образом переформулировать для задач (??) и (???). Для задачи (???)

ограничения в виде равенств могут быть только линейными (это связано с тем, что ограничение в виде

равенства, gj(x) = 0, следует представить с помощью двух ограничений в виде неравенств, gj(x) > 0

и?gj(x) > 0, каждое из которых задается квазивогнутой функцией; такое может быть только если

ограничение линейное).

В еще одном варианте достаточного условия оптимальности предположение о вогнутости целевой

функции заменяется на предположение о квазивогнутости с добавлением условия rf(?x) 6= 0.

В предыдущем разделе построены условия Куна -Таккера для задач условной оптимизации. С помощью метода множителей Лагранжа получено интуитивное представление о том, что условия Куна - Танкера тесно связаны с необходимыми условиями оптимальности. В данном разделе рассматриваются строгие формулировки необходимых и достаточных условий оптимальности решения задачи нелинейного программирования.

Теорема 1. Необходимость условий Куна-Таккера

Рассмотрим задачу нелинейного программирования (0) - (2). Пусть - дифференцируемые функции, а х* - допустимое решение данной задачи. Положим. Далее пусть линейно независимы. Если х* - оптимальное решение задачи нелинейного программирования, то существует такая пара векторов, что является решением задачи Куна-Таккера (3) - (7).

Условие, согласно которому должны быть линейно независимыми, известно как условие линейной независимости и по существу представляет собой некоторое условие регулярности допустимой области, которое почти всегда выполняется для встречающихся на практике задач оптимизации. Однако вообще проверка выполнения условия линейной независимости весьма затруднительна, так как требуется, чтобы оптимальное решение задачи было известно заранее. Вместе с тем условие линейной независимости всегда выполняется для задач нелинейного программирования, обладающих следующими свойствами.

  • 1. Все ограничения в виде равенств и неравенств содержат линейные функции.
  • 2. Все ограничения в виде неравенств содержат вогнутые функции, все ограничения-равенства - линейные функции, а также существует, по крайней мере, одна допустимая точка х, которая расположена во внутренней части области, определяемой ограничениями-неравенствами. Другими словами, существует такая точка х, что

Если условие линейной независимости в точке оптимума не выполняется, то задача Куна-Таккера может не иметь решения.

Минимизировать

при ограничениях

На рис. 1 изображена область допустимых решений сформулированной выше нелинейной задачи. Ясно, что оптимальное решение этой задачи есть. Покажем, что условие линейной независимости не выполняется в точке оптимума.

Рис.

Легко видеть, что векторы линейно зависимы, т.е. условие линейной независимости в точке не выполняется.

Запишем условия Куна-Таккера и проверим, выполняются ли они в точке (1, 0). Условия (3), (6) и (7) принимают следующий вид;

При из уравнения (11) следует, что, тогда как уравнение (14) дает, Следовательно, точка оптимума не является точкой Куна - Таккера.

Заметим, что нарушение условия линейной независимости не обязательно означает, что точка Куна-Таккера не существует. Для того чтобы подтвердить это, заменим целевую функцию из этого примера функцией. При этом оптимум по-прежнему достигается в точке (1,0), в которой условие линейной независимости не выполняется. Условия Куна-Таккера (12) - (16) остаются неизменными, а уравнение (11) принимает вид

Нетрудно проверить, что точка является точкой Куна-Таккера, т.е. удовлетворяет условиям Куна-Таккера.

Теорема о необходимости условий Куна-Таккера позволяет идентифицировать неоптимальные точки. Другими словами, теорему 1 можно использовать для доказательства того, что заданная допустимая точка, удовлетворяющая условию линейной независимости, не является оптимальной, если она не удовлетворяет условиям Куна-Таккера. С другой стороны, если в этой точке условия Куна-Таккера выполняются, то нет гарантии, что найдено оптимальное решение нелинейной задачи. В качестве примера рассмотрим следующую задачу нелинейного программирования.

Следующая теорема устанавливает условия, при выполнении которых точка Куна-Таккера автоматически соответствует оптимальному решению задачи нелинейного программирования.

Теорема 2. Достаточность условий Куна-Таккера

Рассмотрим задачу нелинейного программирования (0) - (2). Пусть целевая функция выпуклая, все ограничения в виде неравенств содержат вогнутые функции, а ограничения в виде равенств содержат линейные функции. Тогда если существует решение, удовлетворяющее условиям Куна-Таккера (3) - (7), то х* - оптимальное решение задачи нелинейного программирования.

Если условия теоремы 2 выполняются, то нахождение точки Куна-Таккера обеспечивает получение оптимального решения задачи нелинейного программирования.

Теорему 2 можно также использовать для доказательства оптимальности данного решения задачи нелинейного программирования. В качестве иллюстрации опять рассмотрим пример:

Минимизировать

при ограничениях

С помощью теоремы 2 докажем, что решение является оптимальным. Имеем

Так как матрица положительно полуопределена при всех х, функция оказывается выпуклой. Первое ограничение в виде неравенства содержит линейную функцию, которая одновременно является как выпуклой, так и вогнутой. Для того

чтобы показать, что функция является вогнутой, вычислим

Поскольку матрица отрицательно определена, функция является вогнутой. Функция входит в линейное ограничение в вяде равенства. Следовательно, все условия теоремы 2 выполнены; если мы покажем, что - точка Куна-Таккера, то действительно установим оптимальность решения. Условия Куна-Таккера для примера 2 имеют вид

Точка удовлетворяет ограничениям (24) - (26) и, следовательно, является допустимой. Уравнения (22) и (23) принимают следующий вид:

Положив, получим и. Таким образом, решение х*=(1, 5), удовлетворяет условиям Куна-Таккера. Поскольку условия теоремы 2 выполнены, то оптимальное решение задачи из примера 3. Заметим, что существуют также и другие значения и, которые удовлетворяют системе (22) - (29).

Замечания

  • 1. Для встречающихся на практике задач условие линейной независимости, как правило, выполняется. Если в задаче все функции дифференцируемы, то точку Куна-Таккера следует рассматривать как возможную точку оптимума. Таким образом, многие из методов нелинейного программирования сходятся к точке Куна-Таккера. (Здесь уместно провести аналогию со случаем безусловной оптимизации, когда соответствующие алгоритмы позволяют определить стационарную точку.)
  • 2. Если условия теоремы 2 выполнены, точка Куна-Таккера в то же время оказывается точкой глобального минимума. К сожалению, проверка достаточных условий весьма затруднительна, и, кроме того, прикладные задачи часто не обладают требуемыми свойствами. Следует отметить, что наличие хотя бы одного нелинейного ограничения в виде равенства приводит к нарушению предположений теоремы 2.
  • 3. Достаточные условия, установленные теоремой 2, можно обобщить на случай задач с невыпуклыми функциями, входящими в ограничения в виде неравенств, невыпуклыми целевыми функциями и нелинейными ограничениями-равенствами. При этом используются такие обобщения выпуклых функций, как квазивыпуклые и псевдовыпуклые функции.
Запишем функцию Лагранжа: (4)
где λ i , i=1..m – неопределенные множители Лагранжа; z(X) и q i (X)– выпуклые вверх функции.

Теорема Куна-Таккера . Чтобы план X 0 был решением задачи (1) – (4) необходимо и достаточно, чтобы существовал вектор λ 0 ≥ 0 такой, что пара (X 0 ,λ 0) для всех X ≥ 0 и λ ≥ 0.
L(X, λ 0) ≤ L(X 0 ,λ 0) ≤ L(X 0 ,λ)

Назначение сервиса . Онлайн-калькулятор используется для нахождения экстремума функции через множители Лагранжа в онлайн режиме с проверкой решения в MS Excel . При этом решаются следующие задачи:

  1. составляется функция Лагранжа L(X) в виде линейной комбинации функции F(X) и ограничений g i (x);
  2. находятся частные производные функции Лагранжа, ∂L/∂x i , ∂L/∂λ i ;
  3. составляется система из (n+m) уравнений, ∂L/∂x i = 0.
  4. определяются переменные x i и множители Лагранжа α i .
Количество ограничений, g i (x) 1 2 3 4
Заданы ограничения x i ≥ 0.
.

Чтобы функция двух векторных переменных (4) имела седловую точку , необходимо и достаточно выполнения следующих условий Куна-Таккера :
(5)
(6)
(7)
(8)

Если решается задача минимизации , то имеет место седловая точка (X 0 , Y 0), если выполняются соотношения
L(X, λ 0) ≤ L(X 0 , Y 0) ≤ L(X 0 , Y)
Условия же Куна-Таккера существования седловой точки функции Лагранжа поменяют знак в (5) и (7) на противоположный.

Пример . Проверить выполнение условий Куна-Таккера. Найти точку оптимума задачи линейного программирования с ограничениями:
f(x) = x 1 2 -x 2 → min
g 1 (x) = x 1 - 1 ≥ 0
g 2 (x) = 26 - x 1 2 -x 2 2 ≥ 0
h 1 (x) = x 1 +x 2 - 6 = 0

Решение:
Функция Лагранжа: L(X, λ) = x 1 2 -x 2 - λ 1 (1-x 1) + λ 2 (26-(x 1 2 +x 2 2)) + λ 3 (6-(x 1 +x 2))
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным х i и неопределенным множителям λ.
Проверим выполнение условий Куна-Таккера. Вычислим матрицы вторых производных целевой функции и функций ограничений.

Матрица Гессе H f положительно полуопределена при всех значениях x, следовательно f(x) – выпуклая функция.
Ограничение g 1 (x) – линейная функция, которая одновременно является выпуклой и вогнутой.
Матрица Гессе для функции g 2 (x) имеет вид:

Δ 1 = -2, Δ 2 = 4.
Так как матрица H g 2 отрицательно определена, то g 2 (x) является вогнутой.
Функция h 1 (x) входит в линейное ограничение в виде равенства. Следовательно, условия (а), (б) и (в) Теоремы 1 выполнены. Найдем теперь точку оптимума x * .
Имеем:


Уравнение принимает следующий вид:

Для j=1 и j=2 соответственно можно получить следующие выражения:
j=1, 2x 1 -μ 1 + 2x 2 μ 2 + λ 1 = 0
j=2, -1 + 2x 2 μ 2 + λ 1 = 0
Таким образом, условия Куна-Таккера для нашего примера имеют следующий вид:
2x 1 -μ 1 + 2x 2 μ 2 + λ 1 = 0
-1 + 2x 2 μ 2 + λ 1 = 0
x 1 + x 2 – 6=0
μ 1 (x 1 -1) = 0
μ 2 (26 - x 1 2 – x 2 2) = 0
μ 1 , μ 2 ≥ 0

Из третьего уравнения находим: x 1 = 6-x 2 . Подставив значение x 1 в остальные уравнения, получим:
2(6-x 2) - μ 1 + 2μ 2 (6-x 2)
-1 + 2x 2 μ 2 + λ 1 = 0
μ 1 (6-x 2 -1) = 0 → x 2 = 5, x 1 = 1
μ 2 (26 – (6-x 2) 2 – x 2 2) = 0
Подставим x 2 = 5 в первое и второе уравнения:

Из второго уравнения выразим λ и подставим в первое уравнение:
3 - μ 1 - 8μ 2 = 0
Пусть μ 1 = 0,1 ≥ 0, тогда μ 2 = 2,2 ≥ 0. Таким образом, точка x * = является точкой минимума.

Постановка задачи

Рассмотрим задачу нелинейной оптимизации. Пусть есть функции

При условиях .

Вильям Каруш в своей дипломной работе нашёл необходимые условия в общем случае, когда накладываемые условия могут содержать и уравнения, и неравенства. Независимо от него к тем же выводам пришли Гарольд Кун и Альберт Таккер.

Необходимые условия минимума функции

Если при наложенных ограничениях - решение задачи, то найдётся ненулевой вектор множителей Лагранжа такой, что для функции Лагранжа выполняются условия:

Достаточные условия минимума функции

Перечисленные необходимые условия минимума функции в общем случае не являются достаточными. Существует несколько вариантов дополнительных условий, которые делают их достаточными.

Простая формулировка

Если для допустимой точки выполняются условия стационарности, дополняющей нежёсткости и неотрицательности, а также λ 1 > 0 , то .

Более слабые условия

Если для допустимой точки выполняются условия стационарности, дополняющей нежёсткости и неотрицательности, а также (условие Слейтера ), то .


Wikimedia Foundation . 2010 .

Смотреть что такое "Условия Каруша - Куна - Таккера" в других словарях:

    В теории оптимизации условия Каруша Куна Таккера (англ. Karush Kuhn Tucker conditions, KKT) необходимые условия решения задачи нелинейного программирования. Чтобы решение было оптимальным, должны быть выполнены некоторые… … Википедия

    В теории оптимизации условия Каруша Куна Таккера (англ. Karush Kuhn Tucker conditions, KKT) необходимые условия решения задачи нелинейного программирования. Чтобы решение было оптимальным, должны быть выполнены некоторые условия регулярности.… … Википедия

    Вильям Каруш William Karush Дата рождения: 1 марта 1917(1917 03 01) Место рождения: Чикаго, США Дата смерти … Википедия

    У этого термина существуют и другие значения, см. Оптимизация. Оптимизация в математике, информатике и исследовании операций задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного … Википедия Википедия

    Метод множителей Лагранжа, метод нахождения условного экстремума функции f(x), где, относительно m ограничений, i меняется от единицы до m. Содержание 1 Описание метода … Википедия