Применение dsp. Процессоры и цифровые сигнальные процессоры (DSP)

Рассмотрим теперь функцию x = f(t) , представляющую собой некоторое звуковое или какое-либо иное колебание. Пусть это колебание описано графиком на временном интервале (рис. 16.2).

Для обработки этого сигнала в компьютере нужно выполнить его дискретизацию. С этой целью временной интервал делится на N-1 частей


Рис. 16.2.

и сохраняются значения функции x 0 , x 1 , x 2 , ..., x N-1 для N точек на границах интервалов.

В результате прямого дискретного преобразования Фурье могут быть получены N значений для X k согласно (16.1).

Если теперь применить обратное дискретное преобразование Фурье , то получится исходная последовательность {x n } . Исходная последовательность состояла из действительных чисел, а последовательность {X k } в общем случае комплексная. Если приравнять нулю ее мнимую часть, то получим:

(16.8)

Сопоставив эту формулу с формулами (16.4) и (16.6) для гармоники, увидим, что выражение (16.8) представляет собой сумму из N гармонических колебаний разной частоты, фазы и амплитуды. То есть физический смысл дискретного преобразования Фурье состоит в том, чтобы представить некоторый дискретный сигнал в виде суммы гармоник. Параметры каждой гармоники вычисляются прямым преобразованием Фурье, а сумма гармоник - обратным.

Теперь, например, операция "фильтр нижних частот", которая "вырезает" из сигнала все частоты выше некоторой заданной, может просто обнулить коэффициенты , соответствующие частотам, которые необходимо удалить. Затем, после обработки, выполняется обратное преобразование .

Особенности цифровой обработки сигналов рассмотрим на примере алгоритма нерекурсивной фильтрации. Структура устройства, реализующего данный алгоритм , показана на рис. 16.3 .

Обработка заключается в формировании выходного сигнала Y[k] по значениям N последних входных отсчетов x[k] , которые поступают на вход устройства через определенный интервал времени Т . Принятые отсчеты сохраняются в ячейках циклического буфера. При приеме очередного отсчета содержимое всех ячеек буфера переписывается в соседнюю позицию, самый старый отсчет покидает буфер , а новый записывается в его младшую ячейку.

Аналитически алгоритм работы нерекурсивного фильтра записывается как:

(16.9)

где a i - коэффициенты , определяемые типом фильтра.

Отсчеты с выходов элементов буфера поступают на умножители, на вторые входы которых поступают коэффициенты a i . Результаты произведений складываются и формируют отсчет выходного сигнала Y[k] , после чего содержимое буфера сдвигается на 1 позицию и цикл работы фильтра повторяется. Выходной сигнал Y[k] должен быть вычислен до поступления следующего входного сигнала, то есть за интервал T. В этом заключается суть работы устройства в реальном масштабе времени. Интервал времени T задается частотой дискретизации , которая определяется областью применения фильтра. По следствию из теоремы Котельникова в дискретном сигнале период, соответствующий наивысшей представимой частоте, соответствует двум периодам дискретизации . При обработке звукового сигнала частоту дискретизации можно принять в 40 кГц. В этом случае если необходимо реализовать цифровой нерекурсивный фильтр 50-го порядка, то за время в 1/40 кГц = 25 мкс должно быть выполнено 50 умножений и 50 накоплений результатов умножения. Для обработки видеосигнала интервал времени, за который должны быть выполнены эти действия, будет на несколько порядков меньше.

Если выполнять ДПФ входной последовательности напрямую, строго по исходной формуле, то потребуется много времени. Посчитав по определению (N раз суммировать N слагаемых), получаем величину порядка N 2 .

Тем не менее, можно обойтись существенно меньшим числом операций.

Наиболее популярным из алгоритмов ускоренного вычисления ДПФ является метод Кули-Тьюки (Cooley-Tukey), позволяющий вычислить ДПФ для числа отсчетов N = 2k за время порядка N*log 2 N (отсюда и название - быстрое преобразование Фурье , БПФ, или в английском варианте FFT - Fast Fourier TRansformation ). Основная идея этого метода заключается в рекурсивном разбиении массива чисел на два подмассива и сведении вычисления ДПФ от целого массива к вычислению ДПФ от подмассивов в отдельности. При этом процесс разбиения исходного массива на подмассивы проводится по методу побитовой обратной сортировки (bit- reversal sortINg ).

Сначала входной массив делится на две подмассива - с четными и нечетными номерами. Каждый из подмассивов перенумеровывается и снова делится на два подмассива - с четными и нечетными номерами. Эта сортировка продолжается до тех пор, пока размер каждого подмассива не достигнет 2 элементов. В результате (что можно показать математически) номер каждого исходного элемента в двоичной системе переворачивается. То есть, например, для однобайтных номеров двоичный номер 00000011 станет номером 110000000, номер 01010101 - номером 10101010.

Существуют алгоритмы БПФ для случаев, когда N является степенью произвольного простого числа (а не только двойки), а также в случае, когда число N является произведением степеней простых чисел любого числа отсчетов. Однако БПФ, реализованное по методу Кули-Тьюки для случая N = 2k, получило наиболее широкое распространение. Причина этого в том, что алгоритм , построенный по этому методу, обладает рядом очень хороших технологических свойств:

  • структура алгоритма и его базовые операции не зависят от числа отсчетов (меняется только число прогонов базовой операции);
  • алгоритм легко распараллеливается с использованием базовой операции и конвейеризуется, а также легко каскадируется (коэффициенты БПФ для 2N отсчетов могут быть получены преобразованием коэффициентов двух БПФ по N отсчетов, полученных "прореживанием" исходных 2N отсчетов через один);
  • алгоритм прост и компактен, допускает обработку данных "на месте" и не требует дополнительной оперативной памяти.

Однокристальные микроконтроллеры и даже универсальные микропроцессоры оказываются относительно медленными при выполнении операций, характерных для ЦОС. К тому же требования к качеству преобразования аналоговых сигналов постоянно возрастают. В сигнальных микропроцессорах такие операции поддерживаются на аппаратном уровне и выполняются, соответственно, достаточно быстро. Работа в реальном масштабе времени требует от процессора также поддержки на аппаратном уровне таких действий, как обработка прерываний, программных циклов.

Все это приводит к тому, что DS P-процессоры, архитектурно включая в себя многие черты как универсальных микропроцессоров, особенно с RISC-архитектурой , так и однокристальных микроконтроллеров , в то же время значительно отличаются от них. Универсальный микропроцессор помимо чисто вычислительных операций выполняет функцию объединяющего звена всей микропроцессорной системы , в частности компьютера.

Он должен управлять работой различных компонентов аппаратного обеспечения, таких как дисководы, графические дисплеи, сетевой интерфейс , с тем чтобы обеспечить их согласованную работу. Это приводит к достаточно сложной архитектуре, поскольку она должна поддерживать наряду с целочисленной арифметикой и операциями с плавающей запятой такие базовые функции , как защита памяти , мультипрограммирование , обработка векторной графики и т. п. В итоге типичный универсальный микропроцессор с CISC -, а зачастую и RISC -архитектурой имеет систему из несколько сотен команд, которые обеспечивают выполнение всех этих функций, и соответствующую аппаратную поддержку. Это ведет к необходимости иметь в составе такого МП десятки миллионов транзисторов .

В то же время DSP-процессор является узкоспециализированным устройством. Его единственная задача - быстро обрабатывать поток цифровых сигналов. Он состоит главным образом из высокоскоростных аппаратных схем, выполняющих арифметические функции и манипулирующих битами, оптимизированных таким образом, чтобы быстро обрабатывать большие объемы данных. В силу этого набор команд у DSP куда меньше, чем у универсального микропроцессора: их число обычно не превышает 80. Это значит, что для DSP требуется облегченный декодер команд и гораздо меньшее число исполнительных устройств. Кроме того, все исполнительные устройства в конечном итоге должны поддерживать высокопроизводительные арифметические операции . Таким образом, типичный DSP-процессор состоит не более чем из нескольких сот тысяч (а не десятков миллионов, как в современных CISC -МП) транзисторов . В силу этого такие МП потребляют меньше энергии, что позволяет использовать их в продуктах, работающих от батарей. Крайне упрощается их производство, поэтому они находят себе применение в недорогих устройствах. Сочетание низкого энергопотребления и невысокой стоимости позволяет использовать их не только в высокой сфере телекоммуникаций , но и в сотовых телефонах и роботах-игрушках.

Отметим основные особенности архитектуры процессоров цифровой обработки сигналов :

  1. Гарвардская архитектура , основу которой составляет физическое и логическое разделение памяти команд и памяти данных. Ключевые команды DSP-процессора являются многооперандными, и ускорение их работы требует одновременного чтения нескольких ячеек памяти. Соответственно на кристалле имеются раздельные шины адреса и данных (в некоторых типах процессоров - несколько шин адреса и данных). Это позволяет совмещать во времени выборку операндов и исполнение команд. Использование модифицированной гарвардской архитектуры предполагает, что операнды могут храниться не только в памяти данных, но и в памяти команд вместе с программами. Например, в случае реализации цифровых фильтров коэффициенты могут храниться в памяти программ, а значения данных - в памяти данных. Поэтому коэффициент и данные могут выбираться в одном машинном цикле. Для обеспечения выборки команды в том же машинном цикле используется либо кэш- память программ , либо двукратное обращение к памяти программ за время машинного цикла.
  2. Для сокращения времени выполнения одной из основных операций цифровой обработки сигнала - умножения - применяется аппаратный умножитель. В процессорах общего назначения эта операция реализуется за несколько тактов сдвига и сложения и занимает много времени, а в DSP-процессорах благодаря специализированному умножителю нужен всего один цикл. Встроенная схема аппаратного умножения позволяет выполнить за 1 такт основную операцию ЦОС - умножение с накоплением ( MultIPly - Accumulate - MAC ) для 16- и/или 32-разрядных операндов.
  3. Аппаратная поддержка циклических буферов. Например, для фильтра, представленного на рис. 16.3 , при каждом вычислении отсчета выходного сигнала используется новый отсчет входного сигнала, который сохраняется в памяти на месте самого старого. Для такого циркулирующего буфера может использоваться фиксированная область ОЗУ . При этом во время вычислений генерируются лишь последовательные значения адресов ОЗУ вне зависимости от того, какая операция - запись или чтение - выполняется в настоящий момент. Аппаратная реализация циклических буферов позволяет установить параметры буфера (адрес начала, длина) в программе вне тела цикла фильтрации, что позволяет сократить время выполнения циклического участка программы.
  4. Сокращение длительности командного такта. Это во многом обеспечивается приемами, характерными для RISC -процессоров. Главными из них являются размещение операндов большинства команд в регистрах, а также конвейеризация на уровне команд и микрокоманд . Конвейер имеет от 2 до 10 ступеней, что позволяет на различных стадиях выполнения одновременно обрабатывать до 10 команд. При этом используется генерация адресов регистров параллельно с выполнением арифметических операций, а также многопортовый доступ к памяти. Сюда же можно отнести и такой прием, характерный для универсальных микропроцессоров с EPIC-архитектурой , как применение команд со сверхбольшой длиной слова ( VLIW ), генерируемых на стадии компиляции программы. Этому же служит и рассмотренная выше гарвардская архитектура процессора, характерная для однокристальных микроконтроллеров.
  5. Наличие на кристалле процессора внутренней памяти, что роднит ЦСП с однокристальными МК. Встроенная в процессор память обычно имеет значительно большее быстродействие, чем внешняя. Наличие встроенной памяти позволяет значительно упростить систему в целом, уменьшить ее размеры, энергопотребление и стоимость. Емкость внутренней памяти является результатом определенного компромисса. Ее увеличение ведет к удорожанию процессора и увеличивает энергопотребление, а ограниченная емкость памяти программ не позволяет хранить сложные алгоритмы. Большинство DS P-процессоров с фиксированной точкой имеют малую емкость внутренней памяти, обычно от 4 до 256 Кбайт, и невысокую разрядность внешних шин данных , связывающих процессор с внешней памятью. В то же время ЦСП с плавающей точкой обычно предполагают работу с большими массивами данных и сложными алгоритмами и имеют либо встроенную память большой емкости, либо большую разрядность адресных шин для подключения внешней памяти (а иногда и то, и другое).
  6. Широкие возможности по аппаратному взаимодействию с внешними устройствами, включающие:
    • большое разнообразие интерфейсов, в том числе контроллеры локальной промышленной сети CAN, встроенные коммуникационные ( SCI ) и периферийные ( SPI ) интерфейсы, I2C , UART ;
    • несколько входов для аналоговых сигналов и, соответственно, встроенный АЦП ;
    • выходные каналы широтно-импульсной модуляции (ШИМ);
    • развитую систему внешних прерываний;
    • контроллеры прямого доступа в память.
  7. В некоторых DSP -семействах предусмотрены специальные аппаратные средства, облегчающие создание мультипроцессорных систем с параллельной обработкой данных для наращивания производительности.
  8. DSP -процессоры широко используются в мобильных устройствах, где потребляемая мощность является основной характеристикой. Для снижения энергопотребления в сигнальных процессорах применяется множество методов, в том числе уменьшение напряжения питания и введение функций управления потреблением, например, динамическое изменение тактовой частоты , переключение в спящий или дежурный режим либо отключение не используемой в данный момент периферии . Следует отметить, что эти меры оказывают значительное воздействие на скорость работы процессора и при некорректном использовании могут привести к неработоспособности проектируемого устройства (в качестве примера можно упомянуть некоторые сотовые телефоны, которые в результате ошибок в программах управления сокращенного набора команд , в DSP -процессорах применяются и такие характерные для MMX -обработки аппаратно поддерживаемые инструкции, как команды поиска минимума и максимума, получения абсолютного значения, сложения с насыщением, при котором в случае переполнения при сложении двух чисел результату присваивается максимально возможное в данной разрядной сетке значение . Это ведет к уменьшению количества конфликтов в конвейере и повышает эффективность работы процессора.

    С другой стороны, ЦСП содержат ряд команд, наличие которых обусловлено спецификой их применения и которые вследствие этого редко присутствуют в микропроцессорах других типов. Прежде всего это, конечно, команда умножения с накоплением суммы бит адреса.

    Программирование микропроцессоров этого класса также имеет свои особенности. Значительное удобство для разработчика, обычно связываемое с использованием языков высокого уровня, в большинстве случаев оборачивается получением менее компактного и быстрого кода. Так как особенности ЦОС предполагают работу в реальном времени, это приводит к необходимости использования для решения тех же задач более мощных и дорогих DSP . Такая ситуация особенно критична для крупносерийной продукции, где разница в стоимости более производительного DSP или дополнительного процессора играет важную роль. В то же время в современных условиях скорость разработки (и, следовательно, выхода нового изделия на рынок) может принести больше выгод, чем затраты времени на оптимизацию кода при написании программы на ассемблере .

    Компромиссным подходом здесь служит использование ассемблера для написания наиболее критичных с точки зрения время- и ресурсоемкости участков программы, в то время как основная часть программы пишется на языке высокого уровня, как правило, Си или Си ++.

Some cookies are required for secure log-ins but others are optional for functional activities. Our data collection is used to improve our products and services. We recommend you accept our cookies to ensure you’re receiving the best performance and functionality our site can provide. For additional information you may view the . Read more about our .

The cookies we use can be categorized as follows:

Strictly Necessary Cookies: These are cookies that are required for the operation of analog.com or specific functionality offered. They either serve the sole purpose of carrying out network transmissions or are strictly necessary to provide an online service explicitly requested by you. Analytics/Performance Cookies: These cookies allow us to carry out web analytics or other forms of audience measuring such as recognizing and counting the number of visitors and seeing how visitors move around our website. This helps us to improve the way the website works, for example, by ensuring that users are easily finding what they are looking for. Functionality Cookies: These cookies are used to recognize you when you return to our website. This enables us to personalize our content for you, greet you by name and remember your preferences (for example, your choice of language or region). Loss of the information in these cookies may make our services less functional, but would not prevent the website from working. Targeting/Profiling Cookies: These cookies record your visit to our website and/or your use of the services, the pages you have visited and the links you have followed. We will use this information to make the website and the advertising displayed on it more relevant to your interests. We may also share this information with third parties for this purpose.

Цифровая обработка сигналов DSP (digital signal processor)

Особенности DSP

DSP представляют собой специализированные процессоры для приложений, требующих интенсивных вычислений.
Если ближе рассмотреть, к примеру, процесс операции умножения двух чисел с сохранением результата в традиционных микропроцессо­рах, то можно увидеть как расходуется машинное время: сначала про­исходит выборка команды (адрес команды выставляется на шину адре­са), затем первого операнда (адрес операнда выставляется на шину адреса), затем операнд переносится в аккумулятор, далее происходит выборка второго операнда и т.д. Ускорение этого процесса в процес­соре общего назначения невозможна из-за наличия единственной шины адреса и единственной шины данных, а также единственного банка данных. Ввиду этого все операции по извлечению операндов из памя­ти, выборки команды и сохранения операнда производится последова­тельно с использованием одной и той же шины данных и шины адреса. Кроме того, если рассмотреть операцию циклического суммирования арифметического ряда, то можно видеть что здесь непроизводительные затраты времени связаны с запоминанием адреса первой команды цик­ла, с проверкой условия цикла (счетчика) и возвратом к первой ко­манде. Также большие непроизводительные затраты существуют при операциях перехода к подпрограмме и возврата (запись и восстанов­ление значений регистров из стека) и при многих других операциях. Если при этом учесть огромное количество математических операций при выполнении цифровой обработки сигналов, то станет ясно, что неизбежны весьма чувствительные потери в точности вычисления при округлениях, которые не могут не сказаться на общем результате. Это происходит по причине одинаковой разрядности всех регистров процессоров общего назначения.
При цифровой обработке сигналов все эти затраты недопустимы. С целью преодоления этого недостатка про­цессоров общего назначения и были разработаны процессоры цифровых сигналов (DSP - Digital Signal Processor).

Трехшинная Гарвардская архитектура

Ее особенность состоит прежде всего в том, что в отличии от привычных нам двух шин: шины адреса и шины данных, а также одного банка памяти, DSP имеет как минимум 6-7 различных шин и 2-3 банка памяти. Эта особенность име­ет своей целью максимально ускорить выполнение операции умножения с сохранением результата, которая, несомненно, является наиболее употребляемой и ресурсоемкой при цифровой обработке сигналов. Ар­хитектура DSP позволяет за один машинный цикл произвести:

  • выборку команды посредством шины адреса программ и шины данных программ;
  • выборку двух операндов для операции умножения посредством двух шин адреса данных;
  • занесение операндов в аккумуляторы посредством двух шин данных;
  • операцию умножения;
  • сохранить результат в аккумуляторе.

Таким образом, трехшинная Гарвардская архитектура позволяет выполнить практически любую операцию за один машинный цикл.
B качестве примера эффективности использования DSP при реали­зации алгоритмов цифровой обработки сигналов можно привести следу­ющий факт: время выполнения комплексного 1024-точечного преобразо­вания Фурье составляет 20 мс для 486DX2 66 МГц (32-разрядный) и 3.23 mc для 24-разрядного 33 МГц DSP56001 фирмы Motorola или 3.1 мс для 32- разрядного 33 МГц DSP TMS320C30 с плавающей арифметикой фирмы Texas Instruments.
Однако, как уже упоминалось, процессоры цифровой обработки сигнала имеют отличием не только высокую производительность, изме­ряемую в быстроте выполнения операций умножения/аккумуляции (MIPS - миллионы команд в секунду), но и такие характеристики, как после­довательность выполнения программ, арифметических операций и адре­сации памяти, позволяющие сократить до минимума непроизводительные затраты времени. В целом DSP отличается от других типов микропро­цессоров и микроконтроллеров по следующим пяти основным признакам:

  • Быстрая арифметика.

DSP - процессор должен осуществлять выполнение за один цикл операций умножения, умножения с аккумуляцией, цикли­ческий сдвиг, а также стандартные арифметические и логи­ческие операции.

  • Расширенный динамический объем для операции умножения/ак­кумуляции.

Операция вычисления суммы некой последовательности значе­ний является фундаментальной для алгоритмов, реализуемых на DSP. Защита от переполнения необходима для избежания потери данных.

  • Выборка двух операндов за один цикл.

Очевидно, что для большинства операций, выполняемых DSP, необходимы два операнда. Таким образом, для достижения максимального быстродействия процессор должен быть спосо­бен производить одновременную выборку двух операндов, что требует также наличия гибкой системы адресации.

  • Наличие аппаратно реализованных циклических буферов(встро­енных и внешних).

Широкий класс алгоритмов, реализуемых на DSP требует ис­пользования циклических буферов. Аппаратная поддержка цик­лического возврата указателя адреса или модульная адреса­ция уменьшает непроизводительные затраты процессорного времени и упрощает реализацию алгоритмов.

  • Организация циклов и ветвлений без потери в производитель­ности.

Алгоритмы DSP включают очень много повторяющихся операций, которые могут быть реализованы в виде циклов. Возможность организации последовательности выполнения программы кодов в цикле без потери производительности отличают DSP от дру­гих процессоров. Аналогично, потеря времени при выполнении операции ветвления по условию также недопустима при цифро­вой обработке сигналов.
Не следует, однако, думать, что DSP могут полностью заменить процессоры общего назначения. Как правило, процессоры цифровых сигналов имеют упрощенную систему команд, не позволяющие выполнить операции, не связанные с математическими вычислениями с такой же эффективностью, как и процессоры общего назначения. Попытка же со­четания в одном процессоре мощность при математических вычислениях и гибкость при операциях другого рода приводит к неоправданному повышению себестоимости. Поэтому DSP используют чаще в виде сопро­цессоров (математических, графических, акселераторов и т.д.) при главном процессоре либо в качестве самостоятельного процессора, если этого достаточно.

DSP фирмы Motorola

Фирмой Motorola в настоящее время выпускается три семейства Цифровых Процессоров Сигналов. Это серии DSP56100, DSP56000 и DSP96000. Все микросхемы приведенных серий основываются на архитектуре DSP56000 и различаются разрядностью (16, 24, 32 бит соответственно) и некоторыми встроен­ными устройствами. Таким образом достигается совместимость микрос­хем всех трех семейств снизу вверх. Все DSP фирмы Motorola постро­ены по идентичной трехшинной Гарвардской архитектуре, описанной ранее, с большим количеством составных частей, портов, контролле­ров, банков памяти и шин, работающих параллельно с целью достиже­ния максимального быстродействия.
Передача данных происходит по двунаправленным шинам данных (одной для DSP56100 (XDB) и двум для DSP56000 и DSP96000 (XDB и YDB)), шине данных программ (PDB) и общей шине данных (GDB). Кроме того, у DSP96000 присутствует отдельная шина прямого доступа к памяти (DDB). Передача данных между шинами про­исходит через внутреннее устройство управления шинами.
Адресация осуществляется по двум однонаправленным шинам: шине адреса данных и шине адреса программ.
Блок манипуляции битами позволяет гибко управлять состоянием любого бита в регистрах и ячейках памяти. Наличие такой возможнос­ти является преимуществом по отношению к DSP других пользователей.
Арифметико-логическое устройство (АЛУ) выполняет все арифме­тические и логические операции и имеет в своем составе входные ре­гистры, аккумуляторы, регистры расширения аккумуляторов (8-битные, допускающие 256 переполнений без потери точности), параллельный одноцикловой блок умножения с сохранением (МАС), а так же сдвиго­вые регистры.Гибкая система команд позволяет выполнить АЛУ за один цикл команды умножения, умножения с сохранением результата, сумми­рования, вычитания, сдвига и логические операции. Характерной осо­бенностью DSP фирмы Motorola является возможность сдваивания вход­ных регистров АЛУ и увеличения таким образом разрядности обрабаты­ваемых чисел. Еще одной важной особенностью является наличие опе­рации деления, зачастую отсутствующей у других производителей и заменяемой операцией умножения на обратное число, что приводит к потере точности.
Блок формирования адреса выполняет все вычисления, связанные с определением адресов в памяти. Этот блок работает независимо от остальных блоков процессора. За один цикл могут производиться две операции считывания из памяти или одна операция записи. DSP фирмы Motorola обладают чрезвычайно мощной мощной системой адресации, позволяющей производить практически любые манипуляции с данными за одну команду. Это важная особенность выгодно отличает DSP, выпус­каемые фирмой, от аналогов. Адресация по модулю удобна для органи­зации кольцевых буферов без проверки выхода за границу, что позво­ляет избегать непроизводительных затрат времени. Возможность адре­сации с инверсией значащих битов облегчает реализацию БПФ.
Блок управления выполнением программ содержит 6 регистров, среди которых Указатель адреса цикла и Счетчика циклов , позволяю­щие организовать аппаратную поддержку организации циклов в DSP фирмы Motorola, при которой не тратятся дополнительные машинные циклы на проверку условия выхода из цикла и изменения счетчика цикла. В команде организации цикла DO явно указывается количество повторений.
Системный стек представляет из себя отдельную часть из 15 слов ОЗУ, и может хранить информацию о 15 прерываниях, 7 циклах или 15 выходах в подпрограмму. Данные из стека читаются за один цикл уменьшая таким образом непроизводительные затраты времени процессора.
Главной отличительной особенностью DSP фирмы Motorola являет­ся наличие у всех микросхем внутрикристального эмулятора , позволяющие производить отладку программ без ис­пользования дополнительных аппаратных средств. Таким образом нет необходимости в покупке дорогостоящих отладочных средств. Эмулятор позволяет производить запись/считывание регистров и ячеек памяти, установку точек останова, пошаговое выполнение программ и дру­гие действия посредством подачи команд по 4- проводной шине.
Для снижения потребления энергии в моменты, когда не произво­дится вычисления, предусмотрены два режима с пониженным энергопот­реблением: STOP и WAIT.
Для работы совместно с другими процессорами и каналами прямо­го доступа к памяти предусмотрен встроенный HOST-интерфейс.
Обладая всеми вышеперечисленными свойствами, необходимыми для цифровой обработки сигналов, DSP фирмы Motorola имеют чрезвычайно мощную и гибкую систему команд, позволяющую пользователю удобно и эффективно работать с процессорами.

Семейство DSP96000

Семейство DSP DSP96000 имеет 32-битную архитектуру и поддер­живает операции с плавающей точкой. Микросхемы семейства предназ­начены для компьютерных систем Multimedia. DSP этой серии могут работать и как самостоятельные микросхемы, и через два независи­мых 32-битных порта могут последовательно обмениваться данными с другими процессорами.
Микросхемы семейства имеют в своем составе 6 банков памяти, 8 шин и 4 автономных вычислительных блока: АЛУ, блок управления программой, двойной блок генерации адреса и встроенный двухка­нальный контроллер прямого доступа к памяти.
Характеристики микросхем семейства DSP96000:

  • 49.5 MIPS при 40 МГц
  • 60 MFLOPS при 40 МГц, цикл 50 нс
  • 32-битная организация
  • 2 банка памяти данных ОЗУ 512х32 бит
  • 2 банка памяти данных ПЗУ 512х32 бит
  • ОЗУ программ 1024х32 бит
  • загрузочное ПЗУ объемом 56 байт
  • адресуемая внешняя память 2х232 32-битных слов памяти дан­ных и программ
  • встроенный эмулятор
  • 2 канала прямого доступа к памяти
  • 2 канала обмена с внешними процессорами
  • корпус с 223 выводами в корпусе PGA или QFP

DSP фирмы Texas Instruments

DSP этой фирмы представлены следующими микропроцессорами: TMS 32010, TMS 320C20, TMS 320C25, TMS 320C30, TMS 320C40, TMS 320C50.

Особенности архитектуры ТMS320C25

Архитектура TMS320C2x основана на архитектуре TMS32010 - пер­вом члене микропроцессорного семейства DSP. Кроме того, набор его команд перекрывает набор команд микропроцессора TMS32010, что сохраняет программную совместимость снизу вверх.
Микропроцессор TMS320C2x имеет один аккумулятор и использует Гарвардскую архитектуру в которой память данных и память программ разнесены в разные адресные пространства. Это позволяет полностью перекрыть во времени вызов и выполнение команды. Система команд включает команды обмена данными между двумя областями памяти. Вне микропроцессора пространства памяти данных и программ объединены на одну и ту же шину для того, чтобы максимально увеличить диапа­зон адресов в обеих областях памяти и одновременно максимально уменьшить количество выводных контактов. Внутри микропроцессора пространства программ и данных выведены на разные шины, чтобы уве­личить мощность процессора и скорость выполнения программ.
Повышенная гибкость конструкции системы обеспечивается распо­ложенными на кристалле двумя большими блоками памяти RAM, один из которых может использоваться и как память программ и как память данных. Большинство команд процессора выполняются за один машинный цикл с использованием как внешней памяти программ с быстрой выбор­кой, так и с использованием внутренней памяти RAM. Гибкость мик­ропроцессора TMS320C2x предусматривает также подключение медленной внешней памяти или периферийных устройств, используя сигнал READY; но в этом случае команды выполняются за несколько машинных циклов.

Организация памяти

На кристалле TMS32020 находится 544 16-разрядных слова памяти RAM, из которых 288 слова (блоки B1 и B2) всегда отведены под дан­ные, а 256 слов (блок B0) в разных конфигурациях процессора могут использоваться либо как память данных, либо как память программ. TMS320C25 кроме того обеспечен маскируемым ПЗУ (ROM), объемом 4К слов, а TMS320E25 - памятью 4К слов с ультрафиолетовым стиранием EPROM.
TMS320C2x обеспечен тремя разделенными адресными пространс­твами - для памяти программ, для памяти данных и для устройств ввода/вывода, как показано на рис. 6.5. Эти пространства вне крис­талла различаются при помощи сигналов -PS, -DS, -IS (для прост­ранств программы, данных, ввода/вывода соответственно). Блоки па­мяти B0, B1, B2, расположенные на кристалле, охватывают в сумме 544 слова памяти с произвольным доступом (RAM). RAM блок B0 (256 слов) располагается на 4 и 5 страницах памяти данных, если он от­веден под данные, или по адресам >FF00 - >FFFF, если он является частью памяти программ. Блок B1 (только для данных) располагается на 6 и 7 страницах, а блок B2 занимает старшие 32 слова 0 страни­цы. Отметим, что оставшуюся часть 0 страницы занимают 6 адресуемых регистров и резервная область; 1 - 3 страницы также представляют собой резервную область. Резервные области нельзя использовать для хранения информации, при чтении их содержимое не определено.
Внутренняя память программ (ROM), расположенная на кристалле процессора может быть использована в качестве младших 4К слов па­мяти программ. Для этого на контакт MP/*MC должен быть подан сиг­нал низкого уровня. Для запрещения использования внутренней облас­ти ROM на MP/*MC надо подать высокий уровень.

Внешняя память и интерфейс ввода/вывода

Микропроцессор TMS32020 поддерживает широкий диапазон интер­фейсных систем. Адресное пространство данных, программ и ввода/вы­вода обеспечивает сопряжение с памятью и внешними устройствами, что увеличивает возможности системы. Интерфейс локальной памяти состоит из:

  • 16-ти разрядной шины данных (D0-D15);
  • 16-ти разрядной шины адреса (A0-A15);
  • адресных пространств данных, программ и ввода/вывода выбираемых сигналами (*DS, *PS и *IS);
  • различных сигналов управления системой.

Сигнал R/*W управляет направлением передачи, а сигнал *STRB управляет передачей.
Пространство ввода/вывода содержит 16 портов для вводы и 16 портов для вывода. Эти порты обеспечивают полный 16-разрядный ин­терфейс со внешними устройствами по шине данных. Одноразовый ввод/вывод с помощью команд IN и OUT выполняется за два командных цикла; однако использование счетчика повторений снижает время од­ного обращения к порту до 1-го цикла.
Использование ввода/вывода упрощается тем, что ввод/ вывод осуществляется также, как и обращение к памяти. Устройства вво­да/вывода отображаются в адресном пространстве ввода/вывода, ис­пользуя внешние адреса процессора и шину данных, таким же образом, как память. При адресации внутренней памяти шина данных находится в третьем состоянии, а управляющие сигналы в пассивном состоянии (высоком).
Взаимодействие c памятью и устройствами ввода/вывода на раз­личных скоростях сопровождается сигналом READY. При связи с мед­ленными устройствами, TMS320C2x ждет, пока устройство не завершит свою работу и просигнализирует процессору об этом через линию REA­DY, после чего процессор продолжит работу.

Центральное арифметико-логическое устройство

Центральное арифметическо-логическое устройство (CALU) содер­жит 16-разрядный масштабирующий регистр сдвига, 16 x 16 парал­лельный умножитель, 32-разрядное арифметическо-логическое устройс­тво (ALU), 32-разрядный аккумулятор и несколько дополнительных сдвиговых регистров, расположенных как на выходе из умножителя, так и на выходе из аккумулятора.
Любая операция ALU выполняется в следующей последовательнос­ти:

  1. данные захватываются из RAM на шину данных,
  2. данные проходят через масштабирующий сдвиговый регистр и через ALU, в котором выполняются арифметические опера­ции,
  3. результат передается в аккумулятор.

Один вход в ALU всегда соединен с выходом аккумулятора, а второй может получать информацию либо из регистра произведения (PR) умножителя, либо загружаться из памяти через масштабирующий сдвиговый регистр.

Конвейерные операции

Конвейер команд состоит из последовательности операций обра­щения ко внешней шине, которые возникают в течении выполнения ко­манд. Конвейер "предвыборка-декодирование-выполнение" обычно неза­метен для пользователя, за исключением некоторых случаев, когда конвейер должен быть прерван (например, при ветвлении). Во время работы конвейера предвыборка, декодирование и выполнение команд независимы друг от друга. Это позволяет командам перекрываться. Так в течении одного цикла две или три команды могут быть активны, каждая на разных этапах работы. Поэтому получается двухуровневый конвейер для TMS32020 и трехуровневый для TMS320C25.
Количество уровней конвейера не всегда влияет на скорость вы­полнения команд. Большинство команд выполняется за одно и то же количество циклов вне зависимости от того, из какой памяти выбира­ются команды: внешней, внутренней RAM или внутренней ROM.
Добавочные аппаратные средства, имеющиеся на процессоре TMS320C25, позволяют расширить количество уровней конвейера до трех, что повышает производительность процессора. К этим средствам относятся счетчик предзахватов (PFC), 16-разрядный стек микровызо­вов (MCS), регистр команд (IR), и регистр очереди команд (QIR).
При трехуровневом конвейере PFC содержит адрес следующей ко­манды, которая должна быть предзахвачена. Как только предзахват осуществлен, команда загружается в IR. Если же IR хранит команду, которая еще не выполнена, то предзахваченная команда помещается в QIR. После этого PFC увеличивается на 1. Как только текущая коман­да будет выполнена, команда из QIR будет перегружена в IR, для дальнейшего исполнения.
Счетчик команд (PC) содержит адрес команды, которая должна быть выполнена следующей, и не используется для операций захвата.
Но обычно PC используется в качестве указателя на текущую позицию в программе. Содержимое PC увеличивается после каждой выполненной команды. Когда возникает прерывание или вызов подпрограммы, содер­жимое PC помещается в стек, чтобы в дальнейшем можно было выпол­нить возврат в нужное место программы.
Циклы предзахвата, декодирования и выполнения конвейера неза­висимы друг от друга, это позволяет перекрываться исполняемым ко­мандам во времени. В течении любого цикла три команды могут быть одновременно активны, каждая на разных стадиях завершения.

DSP процессоры.doc

DSP процессоры

Digital Signal Processing (DSP) - Цифровая Обработка Сигналов (ЦОС) - используется во многих приложениях.

Сначала необходимо пояснить значение слов, составляющих данное понятие:


  • Digital вычисление с использованием дискретных сигналов для представления данных в цифровой форме

  • Signal изменяющийся параметр, посредством которого информация передается по электрической цепи

  • Processing выполнение операций над данными согласно программным инструкциям

  • Digital Signal Processing изменение или анализ информации, которая измеряется дискретными последовательностями чисел
Необходимо отметить две уникальные особенности Цифровой Обработки Сигналов:

  • сигналы поступают из реального мира - эта тесная связь с реальным миром приводит ко многим специальным требованиям, таким как необходимость реагировать на поступающие сигналы в реальном времени, измерять и преобразовывать их в цифровую форму

  • сигналы дискретные - что означает потерю информации между дискретными выборками
Преимущества DSP являются общими для многих цифровых систем и включают в себя:

Универсальность:


  • цифровые системы могут быть перепрограммированы для других приложений (по крайней мере там, где используются программируемые DSP чипы)

  • цифровые системы могут быть перенесены на различную аппаратуру

Воспроизводимость:


  • цифровые системы могут быть легко удвоены

  • цифровые системы не зависят от точных допусков компонентов

  • характеристики цифровых систем не варьируют с температурой

Простота:


  • некоторые вещи могут быть выполнены проще в цифровых, чем в аналоговых системах
DSP находит применение во многих практических приложениях

В каждом приложении DSP процессоры характеризуются общими свойствами:


  • они используют большой объем математических вычислений

  • они имеют дело с сигналами из реального мира

  • исследование сигнала длится конечное время

Архитектуры памяти

Типичные DSP операции требуют выполнения множества простых сложений и умножений.

Сложение и умножение требуют:


  • произвести выборку двух операндов

  • выполнить сложение или умножение (обычно и то и другое)

  • сохранить результат или удерживать его до повторения
Для выборки двух операндов за один командный цикл необходимо осуществить два доступа к памяти одновременно. Но в действительности кроме выборки двух операндов необходимо еще сохранить результат и прочитать саму инструкцию. Поэтому число доступов в память за один командный цикл будет больше двух. Для этой цели DSP процессоры поддерживают множественный доступ к памяти за один и тот же командный цикл. Но невозможно осуществить доступ к двум различным адресам в памяти одновременно, используя для этого одну шину памяти. Существует два вида архитектур DSP процессоров позволяющих реализовать механизм множественного доступа к памяти:

  • Гарвардская архитектура

  • модифицированная архитектура фон Неймана

Подлинная Гарвардская архитектура выделяет одну шину для выборки инструкций (шина адреса), а другую для выборки операндов (шина данных). Но для выполнения DSP операций этого недостаточно, так как в основном все они используют по два операнда. Поэтому Гарвардская архитектура применительно к цифровой обработке сигналов использует шину адреса и для доступа к данным. Важно отметить, что часто необходимо произвести выборку трех компонентов - инструкции с двумя операндами, на что собственно Гарвардская архитектура неспособна. В таком случае данная архитектура включает в себя кэш-память. Она может быть использована для хранения тех инструкций, которые будут использоваться вновь. При использовании кэш-памяти шина адреса и шина данных остаются свободными, что делает возможным выборку двух операндов. Такое расширение - Гарвардская архитектура плюс кэш - называют расширенной Гарвардской архитектурой или SHARC (Super Harvard ARChitecture).

Гарвардская архитектура требует наличия двух шин памяти. Это значительно повышает стоимость производства чипа. Так, например, DSP процессор работающий с 32-битными словами и в 32-битном адресном пространстве требует наличия, по крайней мере, 64 выводов для каждой шины памяти, а в сумме получается 128 выводов. Это приводит к увеличению размеров чипа и к трудностям при проектировании схемы.

Даже простейшая DSP операция - сложение, включающая два операнда и сохраняющая результат в памяти, требует выполнения четырех доступов к памяти (три для выборки двух операндов и инструкции и один для сохранения результата в памяти). Это выходит за рамки возможностей Гарвардской архитектуры. В некоторых процессорах применяется другой тип архитектуры, позволяющей обойти данное препятствие. Это модифицированная архитектура фон Неймана.

Архитектура фон Неймана использует только одну шину памяти:

Данная архитектура обладает рядом положительных черт. Она является более дешевой, требует меньшего количества выводов шины. Архитектура фон Неймана является более простой в использовании, так как программист может размещать и команды и данные в любом месте свободной памяти.
^

Эффект наложения


Выборка сигнала производится через определенные интервалы времени, и при этом неизвестно, что происходит между выборками. Предположим, в некоторый момент времени аналоговый сигнал имеет некий скачок или импульс. И пусть этот скачок приходится на интервал времени между двумя дискретными выборками. Так как при этом не происходит измерение импульса, то после выборки всего аналогового сигнала мы не можем определить, был ли действительно какой-либо импульс.
В менее очевидном случае, сигнал может быть представлен быстро меняющимися компонентами. Но опять же, мы невозможно проследить за этими быстрыми изменениями. Поэтому выборка должна производиться с достаточно большой скоростью, чтобы возможно было зафиксировать наиболее быстрые изменения в сигнале. Иногда мы можем иметь некоторые предварительные сведения о сигнале или сделать некоторые предположения о поведении сигнала между выборками.

Если выборка будет производиться с недостаточной скоростью, то невозможно будет проследить наиболее быстрые изменения в сигнале.

На приведенной схеме выборка высокочастотного сигнала производится менее двух раз за период. В результате получается неверное представление сигнала в дискретной форме, так как если теперь сгладить полученные выборки некоторой кривой, то получим представление низкочастотного сигнала. Такое явление, при котором сигнал с одной частотой после выборки представляется сигналом с другой частотой, называется эффектом наложения.

Важно отметить, что проблема, связанная с наложением частот, состоит в том, что невозможно сказать, с сигналом какой частоты приходится иметь дело. Но иногда мы можем обладать некоторыми предварительными сведениями о сигнале или сделать некоторые предположения о поведении сигнала между выборками.

Найквист (Nyquist) показал, что для четкого представления всех частотных составляющих необходимо производить выборку с такой частотой, которая была бы в два или более раз выше самой высокой частоты в сигнале.
На диаграмме выборка высокочастотного сигнала производится дважды в течение периода. Если теперь провести гладкую кривую, соединив ею выборки, то в результате получится сигнал, похожий на входной аналоговый. Но если дискретная выборка будет производиться в точках, в которых сигнал имеет нулевую амплитуду, то сигнала не будет вообще. Именно поэтому необходимо производить выборку с частотой, превосходящей наивысшую частоту сигнала не менее, чем в два раза. Это позволяет избежать эффекта наложения.

Максимальная частота сигнала, которая позволяет задать скорость выборки, называется частотой Найквиста (Nyquist frequency).
На самом деле Найквист говорит, что выборка должна производиться с частотой, превышающей частоты, которые составляют полосу пропускания сигнала, а не с максимальной.

^ Интерфейс ввода-вывода

На практике DSP главным образом имеет дело с реальным миром. Хотя это часто забывают, именно эта особенность является одним из наиболее существенных различий между DSP процессорами и универсальными микропроцессорами:
В характерном DSP приложении процессор взаимодействует со многими источниками данных в реальном мире. В любом случае процессор может получать и передавать данные в реальном времени, не прерывая при этом выполнение внутренних математических операций. Можно выделить три источника данных для DSP процессоров:


  • входные и выходные сигналы

  • взаимодействие с различными контроллерами системы

  • взаимодействие с подобными DSP процессорами

^

Преобразование аналоговых сигналов


Большинство DSP приложений имеют дело с аналоговыми сигналами, поэтому аналоговый сигнал должен быть преобразован в цифровую форму.
Аналоговый сигнал, являющийся непрерывным и определенным с бесконечной точностью, преобразуется в дискретную последовательность, составляющими которой являются значения, представляемые в цифровой форме.

При преобразовании сигнала из аналоговой формы в дискретную часть информации теряется из-за:


  • погрешностей в измерениях

  • неточностей в синхронизации

  • ограничений на продолжительность измерений
Эти явления называются ошибками дискретизации.

Перед выборкой непрерывный аналоговый сигнал должен быть предварительно сохранен. С другой стороны, при измерении сигнала будет происходить его изменение.

Только после того, как сигнал был предварительно сохранен можно произвести его измерение, а измеренные значения преобразовать в цифровую форму.

Дискретные выборки сигнала, представляющие собой цифрованные измеренные значения аналогового сигнала, производятся обычно через равные промежутки времени.

Важно отметить, что выборка сигнала производится только тогда, когда весь сигнал был предварительно сохранен. Это означает возможность использования более медленных АЦП (ADC). Но схема, отвечающая за предварительное сохранение сигнала должна функционировать достаточно быстро, чтобы сигнал не успевал существенно измениться. После сохранения сигнала АЛУ не требуется высокое быстродействие для преобразования его в цифровую форму.

При измерении аналогового сигнала неизвестно, что действительно измеряется. В процессе измерения сигнала часть информации теряется.
Иногда можно обладать некоторыми предварительными сведениями о сигнале или сделать предположения о возможном его поведении, которые позволят частично восстановить потерянную при дискретизации информацию.

^ Ошибки дискретизации

При преобразовании аналогового сигнала в цифровую форму его точность ограничивается числом доступных разрядов для представления данных.
На диаграмме представлен аналоговый сигнал, который преобразуется в цифровую форму при 8-разрядной точности выборки.
Плавно изменяющийся аналоговый сигнал в дискретном представлении будет иметь ступенчатую форму благодаря ограничению, накладываемому на точность его представления.

Ошибки, появляющиеся в результате оцифровывания аналогового сигнала являются нелинейными и зависящими от сигнала.
Нелинейность ошибок означает невозможность их расчета с помощью обычной математики.
Зависимость от сигнала означает когерентность ошибок невозможность их уменьшения с помощью обычных приемов.

Проблема, связанная с возникновением ошибок, является общей для цифровой обработки сигналов. Эти ошибки появляются из-за ограниченной точности (т.е. длины слова), являются нелинейными (следовательно их невозможно просчитать) и зависящими от сигнала (следовательно когерентными). Возникновение ошибок приводит к невозможности точного расчета DSP алгоритма при ограничении на точность представления данных. Поэтому единственным выходом из такой ситуации является тестирование работы алгоритма при различных входных сигналах. Нелинейность ошибок также приводит к нестабильности работы, особенно при применении IIR (БИХ) фильтров.

Длина машинного слова, используемого в цифровой обработке сигналов определяет точность и динамический диапазон. Неточность в синхронизации приводит к появлению ошибок в выбранном дискретном сигнале.

Ошибки вносимые синхронизацией также являются нелинейными и зависят от сигнала.

Реальные DSP системы подвержены воздействию от трех источников ошибок:


  • ограничение при цифровом преобразовании сигнала его точности конечной длиной машинного слова

  • ограниченная точность арифметических вычислений, выполняемых процессором

  • ограничение точности сигнала длиной машинного слова при его преобразовании из дискретной формы обратно в аналоговую
В совокупности эти ошибки составляют понятие ошибок дискретизации. Ошибки являются нелинейными и зависящими от сигнала. Нелинейность ошибок означает невозможность их расчета c помощью обычной математики. Зависимость от сигнала определяет необходимость расчета эффекта от ошибок, свойственных каждому отдельно взятому сигналу. Простым решением для уменьшения ошибок, накладываемых ограниченной длиной машинного слова, является создание моделей для каждого источника ошибок, которые представляют искажения при дискретизации как случайные шумы.

Модель дискретизации с влиянием случайных шумов является наглядной при понимании сути эффекта. Но в действительности эта модель не является абсолютно правильной, особенно для систем с обратной связью, таких, например, как IIR (БИХ) фильтры.
Эффект, связанный с появлением ошибок, похож на наличие в системе случайных шумов.

Не так давно благодаря большому прогрессу в области обработки звука и компьютерных технологий в наше сознание твердо вошло такое понятие как DSP - Digital Signal Processing (Цифровая Обработка Сигнала). Цифровая обработка сигнала - это область техники, занимающаяся реализацией вычислительных алгоритмов в реальном времени. DSP говорит нам о возможности того или иного трансивера реализовывать этот сервис через свои технические возможности. Некоторые современные трансиверы имеют цифровую обработку как на прием, так и на передачу. Можно с уверенностью сказать, что цифровая обработка обеспечивает качество, которое соответствует новым технологиям и времени, в котором мы живем.

Цифровая обработка применительно к радиолюбительству чаще всего применяется при обработке сигнала из эфира, с целью обеспечения более качественного приема, устранения помех, сопровождающих передачу корреспондента. Это осуществляется при работе любыми видами связи, включая цифровые. Для этой цели часто используют компьютер со встроенной звуковой картой (ЗК) и соответствующее программное обеспечение. Однако в реальном времени сигнал обрабатывается с задержкой, и если в режиме приема это еще терпимо, то при передаче - нет.

Работая SSB и используя аппаратно-программные возможности компьютера в обработке сигнала с микрофона, который подключен к звуковой карте компьютера (с последующей подачей НЧ- сигнала на балансный модулятор трансивера), задержка очень существенна. Речь идет не просто об усилении сигнала с микрофона до определенного уровня с помощью ЗК, а об использовании специальных программ обработки сигнала в реальном времени. Ситуация еще более обостряется при работе такими цифровыми видами как Amtor, Pactor, Packet, когда одновременно программно компьютер используется, скажем, как Notch-фильтр и вместе с имеющимся на станции TNC-контроллером он обеспечивает перечисленные виды работ. Задержка в обработке сигнала в компьютере в таких случаях недопустима. Для того чтобы избавиться от этой проблемы, применяют звуковую карту Audigy-2 (например, AUDIGY-2 24 bit 96 kHz).

Также эта звуковая карта имеет аппаратно встроенный процессор эффектов, что позволяет, используя программно-аппаратные возможности, производить обработку сигнала в реальном времени на достаточно высоком уровне, т.е. в режиме передачи, например, в телефонных видах работ - SSB, AM, ЧМ - иметь хороший эквалайзер, компрессор, лимитер, а в режиме приема - Notch-фильтр, экспандер или что-либо другое.

Все это возможно даже при наличии персонального компьютера с процессором Pentium 200…500 МГц, хотя применение более мощных машин приветствуется, поскольку появляются еще большие возможности обработки сигнала с применением программного обеспечения - Plug In и соответствующих программ, алгоритм обработки которых требует более высокой производительности компьютера.

В этом случае современные технологии позволяют не применять внешние дорогостоящие приборы цифровой обработки, а в той или иной степени имитировать их работу, используя для этого вычислительные мощности центрального процессора компьютера и звуковой карты. Однако зто возможно при действительно очень высоких ресурсах компьютера. Применяя эти технологии, остается лишь установить узел стыковки - интерфейс - между трансивером и компьютером и с успехом использовать возможности последнего.

Отдавая должное цифровой обработке сигнала в трансивере или с помощью компьютера, радиолюбители также используют внешние блоки DSP обработки. Это относительно новое направление в радиолюбительстве.

Речь идет о цифровой обработке сигнала с применением высокотехнологичного, современного оборудования, применяемого в радиовещательных и музыкальных студиях, обеспечивающего абсолютно профессиональное качество и естественность звучания. Это высококачественные микшерные пульты, а также всевозможные аналого-цифровые многополосные (чаще параметрические) эквалайзеры, системы шумоподавления - Noise Gate, компрессоры, лимитеры, процессоры мультиэффектов, позволяющие получить различные алгоритмы звуковой обработки.

Следует отметить, что DSP - это общее понятие. Можно иметь DSP эквалайзер, компрессор, другие устройства и даже предусилитель микрофона. Иметь функцию DSP в трансиве- ре - это одно, иметь целую студию DSP-оборудования - это совершенно другие возможности. Это справедливо, если в обоих случаях упомянутая обработка осуществляется по низкой частоте.

Известные фирмы-производители DSP оборудования - Behringer www.behringer.com, Alesis www.alesis.com и другие - имеют огромный его перечень, и многое из него с успехом может быть применено радиолюбителями.

Каждое из этих устройств выполняет свою задачу и, как правило, содержит в своих двух каналах прецизионные 24-битовые АЦП и ЦАП (аналогово-цифровые и цифро-аналоговые преобразователи), работающие на профессиональной частоте дискредитации и имеющие диапазон рабочих частот 20 Гц…20 кГц.

Краткая справка

Аналогово-цифровой и цифро-аналоговый преобразователи. Первый преобразует аналоговый сигнал в цифровое значение амплитуды, второй выполняет обратное преобразование.

Принцип работы АЦП состоит в измерении уровня входного сигнала и выдаче результата в цифровой форме. В результате работы АЦП непрерывный аналоговый сигнал превращается в импульсный, с одновременным измерением амплитуды каждого импульса. ЦАП получает на входе цифровое значение амплитуды и выдает на выходе импульсы напряжения или тока нужной величины, которые расположенный за ним интегратор (аналоговый фильтр) превращает в непрерывный аналоговый сигнал.

Как всякое новое (особенно требующее вложения денег) направление, оно имеет своих сторонников и противников. Для достижения высокого уровня качества требуется применение на передачу более широкого фильтра в SSB-формирователе трансивера - 3 кГц, а не 2,4 кГц или 2,5 кГц,но это не выходит за рамки регламента радиолюбительской связи в части применяемого оборудования.

Сегодня отвергать право на существование направления в обработке звука с помощью добавочных устройств может только ленивый, завистливый или тот, кто не приветствует прогресс и новые технологии.

«Hi-Fi Audio in SSB» - высокое качество обработки НЧ-сигнала в SSB, или «Extended SSB» - расширенное SSB - фразы, часто слышимые и частично объясняющие уже более чем 10-летнюю активность радиолюбителей со всего мира на частоте 14178 кГц.

Здесь находится «круглый стол» любителей студийных сигналов и способов их получения. Это «круглый стол», который не имеет времени проведения. Работа ведется практически круглые сутки. В мире насчитывается чуть более 100 активных радиолюбителей, использующих эти технологии Их не очень беспокоят QRM, тк они уже достигли значительных успехов в оснащении своих станций и имеют не только высокого класса трансиверы усилители мощности (часто класса High Power), но и, что самое важное, эффективные направленные антенны

Многие слышат при практически любом прохождении, а иногда и при его отсутствии Билла, W2ONV, из Нью-Джерси - старейшего радиолюбителя и большого специалиста в области обработки звука с помощью внешних DSP-устройств Имея мощность 1,5 кВт (максимально разрешенную в США) и два сфазированных четырехэлементных волновых канала, он в течение уже многих лет практически всегда слышен в Европе на частоте 14178 кГц Люди, работающие на этом «круглом столе» - разного возраста, в основном, от 30 до 80 лет, причем тон в работе в большей степени задают радиолюбители старшей возрастной группы И это не дань уважения старшему поколению, это констатация факта Именно они имеют большие успехи в области цифровой обработки, поскольку владеют достаточными знаниями и более серьезным оборудованием.

Радиолюбители на «14178» - выдержанные и спокойные, полностью увлеченные своим делом Начинающим коллегам- энтузиастам всегда рады и оказывают им всяческое содействие Большой вклад в развитие обработки звука вносят сами же радиолюбители, размещая на своих WEB-страницах в Интернете полезную информацию Многие согласятся, что огромный вклад в развитие этого направления внес John, NU9N, создавший сайт в Интернете (www.nu9n.com), где он разместил практически учебник по применению внешних устройств цифровой обработки, последовательности их подключения (очень важный вопрос) установке параметров На сайте NU9N можно также скачать образцы DSP-сигналов многих радиолюбителей Слушать их достаточно интересно.

К сожалению, в количественном плане станции из бывшего Союза представлены на 14178 кГц очень слабо - Василий, ER4DX, Игорь, EW1MM, Сергей, EW1DM, Сергей, RW3PS, Виктор, RA9FIF и Олег, RV3AAJ (других данных нет) Сказывается отсутствие лишних финансов на приобретение аудио- оборудования, а также менталитет людей - когда нет времени и средств всем этим заниматься, значит, это плохо, значит, это не нужно Очевидно, следует остановиться на том, что все направления в радиолюбительстве имеют право на жизнь, будь то соревнования, работа QRP (или QRO), DX’ing И даже отсутствие у некоторых знаний азбуки Морзе, иностранного языка и многого другого - это ведь тоже «направление», и мы, увы, к этому уже вроде как и начинаем привыкать.

Пожелаем же «молодым’ (10 лет для радио - срок небольшой) успехов в их нелегком хобби, а всех кто уже достиг результатов в других областях, приглашаю присоединиться к сообществу любителей студийных сигналов, в конце концов, интереснее дебюта ведь ничего нет.