Принцип работы полевого транзистора с изолированным затвором. Области применения полевых транзисторов

Как часто вы слышали название МОП, MOSFET, MOS, полевик, МДП-транзистор, транзистор с изолированным затвором ? Да-да… это все слова синонимы и относятся они к одному и тому же радиоэлементу.

Полное название такого радиоэлемента на английский манер звучит как M etal O xide S emiconductor F ield E ffect T ransistors (MOSFET), что в дословном переводе звучит как Металл Оксид Полупроводник Поле Влияние Транзистор. Если преобразовать на наш могучий русский язык, то получается как полевой транзистор со структурой Металл Оксид Полупроводник или просто МОП-транзистор ;-). Почему МОП-транзистор также называют МДП-транзистором и ? С чем это связано? Об этих и других вещах вы узнаете в нашей статье. Не переключайтесь на другую вкладку! ;-)

Виды МОП-транзисторов

В семействе МОП-транзисторов в основном выделяют 4 вида:

1) N-канальный с индуцированным каналом

2) P-канальный с индуцированным каналом

3) N-канальный со встроенным каналом

4) P-канальный со встроенным каналом


Как вы могли заметить, разница только в обозначении самого канала. С индуцированным каналом он обозначается штриховой линией, а со встроенным каналом — сплошной.

В современном мире МОП-транзисторы со встроенным каналом используются все реже и реже, поэтому в наших статьям мы их затрагивать не будем, а будем рассматривать только N и P — канальные транзисторы с индуцированным каналом.

Откуда пошло название «МОП»

Начнем наш цикл статей про МОП-транзисторы именно с самого распространенного N-канального МОП-транзистора с индуцированным каналом. Go!

Если взять тонкий-тонкий нож и разрезать МОП-транзистор вдоль, то можно увидеть вот такую картину:


Если рассмотреть с точки зрения еды на вашем столе, то МОП-транзистор будет больше похож на бутерброд. Полупроводник P-типа — толстый кусок хлеба, диэлектрик — тонкий кусок колбасы, а сверху кладем еще слой металла — тонкую пластинку сыра. И у нас получается вот такой бутерброд:


А как будет строение транзистора сверху-вниз? Сыр — металл, колбаса — диэлектрик, хлеб — полупроводник. Следовательно получаем Металл-Диэлектрик-Полупроводник. А если взять первые буквы с каждого названия, то получается МДП — М еталл-Д иэлектрик-П олупроводник, не так ли? Значит, такой транзистор можно назвать по первым буквам МДП-транзистором;-). А так как в качестве диэлектрика используется очень тонкий слой оксида кремния (SiO 2), можно сказать что почти стекло, то и вместо названия «диэлектрик» взяли название «оксид, окисел», и получилось М еталл-О кисел-П олупроводник, сокращенно МОП. Ну вот, теперь все встало на свои места;-)

Строение МОП-транзистора

Давайте еще раз рассмотрим структуру нашего МОП-транзистора:

Имеем «кирпич» полупроводникового материала P-проводимости. Как вы помните, основными носителями в полупроводнике P-типа являются дырки, поэтому их концентрация в данном материале намного больше, чем электронов. Но электроны тоже есть в P-полупроводнике. Как вы помните, электроны в P-полупроводнике — это неосновные носители и их концентрация очень мала, по сравнению с дырками. «Кирпич» P-полупроводника носит название Подложки . Она является основой МОП-транзистора, так как на ней создаются другие слои. От подложки выходит вывод с таким же названием.

Другие слои — это материал N+ типа, диэлектрик, металл. Почему N+, а не просто N? Дело в том, что этот материал сильно легирован, то есть концентрация электронов в этом полупроводнике очень большая. От полупроводников N+ типа, которые располагаются по краям, отходят два вывода: Исток и Сток.

Между Истоком и Стоком через диэлектрик располагается металлическая пластинка, от который идет вывод и называется Затвором. Между Затвором и другими выводами нет никакой электрической связи. Затвор вообще изолирован от всех выводов транзистора, поэтому МОП-транзистор также называют транзистором с изолированным затвором .

Подложка МОП-транзистора

Итак, смотря на рисунок выше, мы видим, что МОП-транзистор на схеме имеет 4 вывода (Исток, Сток, Затвор, Подложка), а в реальности только 3. В чем прикол? Дело все в том, что Подложку обычно соединяют с Истоком. Иногда это уже делается в самом транзисторе еще на этапе разработки. В результате того, что Исток соединен с Подложкой, у нас образуется диод между Стоком и Истоком, который иногда даже не указывается в схемах, но всегда присутствует:


Поэтому, требуется соблюдать цоколевку при подключении МОП-транзистора в схему.

Принцип работы МОП-транзистора

Тут все то же самое как и в . Исток — это вывод, откуда начинают свой путь основные носители заряда, Сток — это вывод, куда они притекают, а Затвор — это вывод, с помощью которого мы контролируем поток основных носителей.

Пусть Затвор у нас пока что никуда не подключен. Для того, чтобы устроить движуху электронов через Исток-Сток, нам потребуется источник питания Bat:


Если рассмотреть наш транзистор с точки зрения и диодов на их основе, то можно нарисовать эквивалентную схемку для нашего рисунка. Она будет выглядеть вот так:

где

И-исток, П-Подложка, С-Сток.

Как вы видите, диод VD2 включен в обратном направлении, так что электрический ток никуда не потечет.

Значит, в этой схеме


никакой движухи электрического тока не намечается.

НО…

Индуцирование канала в МОП-транзисторе

Если подать определенное напряжение на Затвор, в подложке начинаются волшебные превращения. В ней начинает индуцироваться канал .

Индукция, индуцирование — это буквально означает «наведение», «влияние». Под этим термином понимают возбуждение в объекте какого-либо свойства или активности в присутствии возбуждающего субъекта (индуктора), но без непосредственного контакта (например, через электрическое поле). Последнее выражение для нас имеет более глубокий смысл: «через электрическое поле».

Полевой транзистор – электрический полупроводниковый прибор, выходной ток которого управляется полем, следовательно, напряжением, одного знака. Формирующий сигнал подается на затвор, регулирует проводимость канала n или p-типа. В отличие от биполярных транзисторов, где сигнал переменной полярности. Вторым признаком назовем формирование тока исключительно основными носителями (одного знака).

Классификация полевых транзисторов

Начнём классификацией. Разновидности полевых транзисторов многочисленны, каждая работает сообразно алгоритму:

Помимо общей классификации придумана специализированная, определяющая принципы работы. Различают:

  1. Полевые транзисторы с управляющим p-n-переходом.
  2. Полевые транзисторы с барьером Шоттки.
  3. Полевые транзисторы с изолированным затвором:
  • С встроенным каналом.
  • С индуцированным каналом.

В литературе дополнительно упорядочивают структуры следующим образом: применять обозначение МОП нецелесообразно, конструкции на оксидах считают частным случаем МДП (металл, диэлектрик, полупроводник). Барьер Шоттки (МеП) следует отдельно выделять, поскольку это иная структура. Напоминает свойствами p-n-переход. Добавим, что конструктивно в состав транзистора способны входить одновременно диэлектрик (нитрид кремния), оксид (четырехвалентный кремния), как это случилось с КП305. Такие технические решения используются людьми, ищущими методы получения уникальных свойств изделия, удешевления.

Среди зарубежных аббревиатур для полевых транзисторов зарезервировано сочетание FET, иногда обозначает тип управления – с p-n-переходом. В последнем случае наравне с этим встретим JFET. Слова-синонимы. За рубежом принято отделять оксидные (MOSFET, MOS, MOST – синонимы), нитридные (MNS, MNSFET) полевые транзисторы. Наличие барьера Шоттки маркируется SBGT. По-видимому, материал значение, отечественная литература значение факта замалчивает.

Электроды полевых транзисторов на схемах обозначаются: D (drain) – сток, S (source) – исток, G (gate) – затвор. Подложку принято именовать substrate.

Устройство полевого транзистора

Управляющий электрод полевого транзистора называется затвором. Канал образован полупроводником произвольного типа проводимости. Сообразно полярность управляющего напряжения положительная или отрицательная. Поле соответствующего знака вытесняет свободные носители, пока перешеек под электродом затвора не опустеет вовсе. Достигается путем воздействия поля либо на p-n-переход, либо на однородный полупроводник. Ток становится равным нулю. Так работает полевой транзистор.

Ток протекает от истока к стоку, новичков традиционно мучает вопрос различения двух указанных электродов. Отсутствует разница, в каком направлении движутся заряды. Полевой транзистор обратим. Униполярность носителей заряда объясняет малый уровень шумов. Поэтому в технике полевые транзисторы занимают доминирующую позицию.

Ключевой особенностью приборов назовем большое входное сопротивление, в особенности, переменному току. Очевидный факт, проистекающий из управления обратно смещённым p-n-переходом (переходом Шоттки), либо емкости технологического конденсатора в районе изолированного затвора.

Подложки часто выступает нелегированный полупроводник. Для полевых транзисторов с затвором Шоттки — арсенид галлия. В чистом виде неплохой изолятор, к которому в составе изделия предъявляются требования:

Сложно создать значительной толщины слой, отвечающий перечню условий. Поэтому добавляется пятое требование, заключающееся в возможности постепенного наращивания подложки до нужных размеров.

Полевые транзисторы с управляющим p-n-переходом и МеП

В этом случае тип проводимости материала затвора отличается от используемого каналом. На практике встретите разные улучшения. Затвор составлен пятью областями, утопленными в канале. Меньшим напряжением удается управлять протеканием тока. Означая увеличение коэффициента усиления.

Биполярный транзистор

В схемах используется обратное смещение p-n-перехода, чем сильнее, тем уже канал для протекания тока. При некотором значении напряжения транзистор запирается. Прямое смещение опасно использовать по той причине, что мощная управляемая цепь может повлиять на контур затвора. Если переход открыт, потечет большой ток, либо приложится высокое напряжение. Нормальный режим обеспечивается правильным подбором полярности и других характеристик источника питания, выбором рабочей точки транзистора.

Однако в некоторых случаях намеренно используются прямые токи затвора. Примечательно, что этот режим могут использовать те МДП-транзисторы, где подложка образует с каналом p-n-переход. Движущийся заряд истока делится между затвором и стоком. Можно найти область, где получается значительный коэффициент усиления по току. Управляется режим затвором. При росте тока iз (до 100 мкА) параметры схемы резко ухудшаются.

Аналогичное включение используется схемой так называемого затворного частотного детектора. Конструкция эксплуатирует выпрямительные свойства p-n-перехода между затвором и каналом. Прямое смещение мало или вовсе нулевое. Прибор по-прежнему управляется током затвора. В цепи стока получается значительное усиление сигнала. Выпрямленное напряжение для затвора является запирающим, изменяется по входному закону. Одновременно с детектированием достигается усиление сигнала. Напряжение цепи стока содержит компоненты:

  • Постоянная составляющая. Никак не используется.
  • Сигнал с частотой несущей. Заводится на землю путем использования фильтрующих емкостей.
  • Сигнал с частотой модулирующего сигнала. Обрабатывается для извлечения заложенной информации.

Недостатком затворного частотного детектора считают большой коэффициент нелинейных искажений. Причем результаты одинаково плохи для слабых (квадратичная зависимость рабочей характеристики) и сильных (выход в режим отсечки) сигналов. Несколько лучшие демонстрирует фазовый детектор на двухзатворном транзисторе. На один управляющий электрод подают опорный сигнал, на стоке образуется информационная составляющая, усиленная полевым транзистором.

Несмотря на большие линейные искажения эффект находит применение. Например, в избирательных усилителях мощности, дозировано пропускающих узкий спектр частот. Гармоники фильтруются, не оказывают большого влияния на итоговое качество работы схемы.

Транзисторы металл-полупроводник (МеП) с барьером Шоттки почти не отличаются от имеющих p-n-переход. По крайней мере, когда дело касается принципов работы. Но благодаря особым качествам перехода металл-полупроводник, изделия способны работать на повышенной частоте (десятки ГГц, граничные частоты в районе 100 ГГц). Одновременно МеП структура проще в реализации, когда дело касается производства и технологических процессов. Частотные характеристики определяются временем заряда затвора и подвижностью носителей (для GaAs свыше 10000 кв. см/В с).

МДП-транзисторы

В МДП-структурах затвор надежно изолирован от канала, управление происходит полностью за счет воздействия поля. Изоляция ведётся за счет оксида кремния или нитрида. Именно эти покрытия проще нанести на поверхности кристалла. Примечательно, что в этом случае также имеются переходы металл-полупроводник в районе истока и стока, как и в любом полярном транзисторе. Об этом факте забывают многие авторы, либо упоминают вскользь путем применения загадочного словосочетания омические контакты.

В теме про диод Шоттки поднимался этот вопрос. Не всегда на стыке металла и полупроводника возникает барьер. В некоторых случаях контакт омический. Это зависит по большей части от особенностей технологической обработки и геометрических размеров. Технические характеристики реальных приборов сильно зависят от различных дефектов оксидного (нитридного) слоя. Вот некоторые:

  1. Несовершенство кристаллической решетки в поверхностной области обусловлено разорванными связями на границе смены материалов. Влияние оказывают как свободные атомы полупроводника, там и примесей наподобие кислорода, который имеется в любом случае. Например, при использовании методов эпитаксии. В результате появляются энергетические уровни, лежащие в глубине запрещенной зоны.
  2. На границе оксида и полупроводника (толщиной 3 нм) образуется избыточный заряд, природа которого на сегодняшний день еще не объяснена. Предположительно, роль играют положительные свободные места (дырки) дефектных атомов самого полупроводника и кислорода.
  3. Дрейф ионизированных атомов натрия, калия и других щелочных металлов происходит при низких напряжениях на электроде. Это увеличивает заряд, скопившийся на границе слоев. Для блокировки этого эффекта в оксиде кремния используют окись фосфора (ангидрид).

Условные графические обозначения МДП-транзистора индуцированным каналом n-типа (а) и p-типа (б)

У него нет встроенного канала между областями истока и стока. При отсутствии напряжения на затворе ток между истоком и стоком не потечет ни при какой полярности напряжения, так как один из p-n-переходов будет обязательно заперт.

Если подать на затвор напряжение положительной полярности относительно истока, то под действием возникающего поперечного электрического поля электроны из областей истока и стока, а также из областей кристалла, будут перемещаться в приповерхностную область по направлению к затвору. Когда напряжение на затворе превысит некоторое пороговое значение, то в приповерхностном слое концентрация электронов повысится настолько, что превысит концентрацию дырок в этой области и здесь произойдет инверсия типа электропроводности, т. е. образуется тонкий канал n-типа и в цепи стока появится ток. Чем больше положительное напряжение на затворе, тем больше проводимость канала и больше ток стока.

Таким образом, такой транзистор может работать только в режиме обогащения. Вид его выходных характеристик и характеристики управления показан на рис.

Если кристалл полупроводника имеет электроприводность n-типа, то области истока и стока должны быть p-типа. Такого же типа проводимости будет индуцироваться и канал, если на затвор подавать отрицательное напряжение относительно истока.

51. Мдп- транзистор со встроенным каналом

Условные графические обозначения МДП-транзистора со встроенным каналом n-типа (а) и p-типа (б)

Он представляет собой монокристалл полупроводника; обычно кремния, где создана электропроводность какого-либо типа, в рассматриваемом случае p-типа. В нем созданы две области с электропроводностью противоположного типа (в нашем случае n-типа), которые соединены между собой тонким приповерхностным слоем этого же типа проводимости. От этих двух зон сформированы электрические выводы, которые называют истоком и стоком. На поверхности канала имеется слой диэлектрика (обычно диоксида кремния) толщиной порядка , а на нем методом напыления наносится тонкая металлическая пленка, от которой также делается электрический вывод – затвор. Иногда от основания (называемого подложкой (П)) также делается вывод, который накоротко соединяют с истоком.

При подаче на затвор отрицательного напряжения относительно истока, а следовательно и кристалла, в канале возникает поперечное электрическое поле, которое будет выталкивать электроны из области канала в основание. Канал обедняется основными носителями – электронами, его сопротивление увеличивается, и ток стока уменьшается. Чем больше отрицательное напряжение на затворе, тем меньше этот ток. Такой режим называется режимом обеднения.

При подаче на затвор положительного напряжения, относительно истока, направление поперечного электрического поля изменится на противоположное, и оно будет, наоборот, притягивать электроны из областей истока и стока, а также из кристалла полупроводника. Проводимость канала увеличивается, и ток стока возрастает. Такой режим называется режимом обогащения.

Рассмотренный транзистор, таким образом, может работать как в режиме обеднения, так и режиме обогащения токопроводящего канала, что иллюстрируют его выходные характеристики а) и характеристика управления б).

В отличие от полевых транзисторов с p-n-переходом, в которых затвор имеет непосредственный электрический контакт с близлежащей областью токопроводящего канала, в МДП-транзисторах затвор изолирован от указанной области слоем диэлектрика.

По этой причине МДП-транзисторы относят к классу полевых транзисторов с изолированным затвором.

МДП-транзисторы (структура металл - диэлектрик - полупроводник) выполняют из кремния. В качестве диэлектрика используют окисел кремния SiO2. Отсюда другое название этих транзисторов - МОП-транзисторы (структура металл - окисел - полупроводник). Наличие диэлектрика обеспечивает высокое входное сопротивление рассматриваемых транзисторов (1012-1014 Ом).

Рис. 5.6. Условные обозначения МДП-транзисторов со встроенным каналом n-типа (а), р-типа (б) и выводом от подложки (в); с индуцированным каналом n-типа (г), р-типа (д) и выводом от подложки (е)

Принцип действия МДП-транзисторов основан на эффекте изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля. Приповерхностный слой полупроводника является токопроводящим каналом этих транзисторов. МДП-транзисторы выполняют двух типов - со встроенным и с индуцированным каналом.

МДП-транзисторы представляют собой в общем случае четырех- электродный прибор. Четвертым электродом (подложкой), выполняющим вспомогательную функцию, является вывод от подложки исходной полупроводниковой пластины. МДП-траизисторы могут быть как с каналом п- или р-типа. Условные обозначения МДП-транзистров показаны на рис. 5.6 а-е.

Рассмотрим особенности МДП-транзисторов со встроенным каналом. Конструкция такого транзистора с каналом п-типа показана на рис. 5.7, а. В исходной пластине кремния р-типа с помощью диффузионной технологии созданы области истока, стока и канала п-типа. Слой окисла SiO2 выполняет функции защиты поверхности, близлежащей к истоку и стоку, а также изоляции затвора от канала. Вывод подложки (если он имеется) иногда присоединяют к истоку.

Стоковые (выходные) характеристики полевого транзистора со встроенным каналом п-типа для случая соединения подложки с истоком показаны на рис. 5.7, б. По виду эти характеристики близки к характеристикам полевого транзистора с p-n-переходом. Рассмотрим характеристику при Uзи = 0, что соответствует соединению затвора с истоком. Внешнее напряжение приложено к участку исток - сток положительным полюсом к стоку. Поскольку Uзи = 0, через прибор протекает ток, определяемый исходной проводимостью канала. На начальном участке 0-а, когда падение напряжения в канале мало, зависимость Ic(Ucи) близка к линейной. По мере приближения к точке б падение напряжения в канале приводит ко все более существенному влиянию его сужения (пунктир на рис. 5.7, а) на проводимость канала, что уменьшает крутизну нарастания тока на участке а-б. После точки б токопроводящий канал сужается до минимума, что вызывает ограничение нарастания тока и появление на характеристике пологого участка II.

Рис. 5.7. Конструкция МДП-транзистора со встроенным каналом п-типа (а); стоко-затворная характеристика (б); стоко-затворная характеристика (в)

Покажем влияние напряжения затвор - исток на ход стоковых характеристик.

В случае приложения к затвору напряжения (Uзи При подаче на затвор напряжения Uзи > 0 поле затвора притягивает электроны в канал из р-слоя полупроводниковой пластины. Концентрация носителей заряда в канале увеличивается, что соответствует режиму обогащения канала носителями. Проводимость канала возрастает, ток Iс увеличивается. Стоковые характеристики при Uзи > 0 располагаются выше исходной кривой (Uзи = 0).

Для транзистора имеется предел повышения напряжения Uсз ввиду наступления пробоя прилежащего к стоку участка сток - затвор. На стоковых характеристиках пробою соответствует достижение некоторой величины Uси.пр. В случае Uзи 0 (режим обогащения).

Конструкция МДП-транзистора с индуцированным каналом п-типа показана на рис. 5.8, с. Канал проводимости тока здесь специально не создается, а образуется (индуцируется) благодаря притоку электронов из полупроводниковой пластины в случае приложения к затвору напряжения положительной полярности относительно истока. За счет притока электронов в приповерхностном слое происходит изменение электропроводности полупроводника, т.е. индуцируется токопроводящий канал п-типа, соединяющий области стока и истока. Проводимость канала возрастает с повышением приложенного к затвору напряжения положительной полярности. Таким образом, транзистор с индуцированным каналом работает только в режиме обогащения.

Стоковые (выходные) характеристики полевого транзистора с индуцированным каналом п-типа приведены на рис. 5.8, б. Они близки по виду аналогичным характеристикам транзистора со встроенным каналом и имеют тот же характер зависимости Iс = F(Uси). Отличие заключается в том, что управление током транзистора осуществляется напряжением одной полярности, совпадающей с полярностью напряжения Uси. Ток Iс равен нулю при Uзи = 0, в то время как в транзисторе со встроенным каналом для этого необходимо изменить полярность напряжения на затворе относительно истока. Вид стоко-затворной характеристики транзистора с индуцированным каналом показан на рис. 5.8, в.

МДП-транзисторы обоих типов выпускаются на тот же диапазон токов и напряжений, что и транзисторы с р-п-переходом. Примерно такой же порядок величин имеют крутизна S и внутреннее сопротивление ri. Что касается входного сопротивления и межэлектродных емкостей, то МДП-транзисторы имеют лучшие показатели, чем транзисторы с p-n-переходом. Как указывалось, входное сопротивление у них составляет 1012-1014 Ом. Значение межэлектродных емкостей не превышает: для Сзи, Сси - 10 пФ, для Сзс - 2 пФ. Схема замещения МДП-транзисторов аналогична схеме замещения полевых транзисторов с p-n-переходом (см. рис. 5.5).

МДП-транзисторы широко применяются в интегральном исполнении. Микросхемы на МДП-транзисторах обладают хорошей технологичностью, низкой стоимостью, способностью работы при более высоком напряжении питания, чем микросхемы на биполярных транзисторах.

Теперь давайте узнаем о том, какие бывают полевые транзисторы. Полевые транзисторы очень распространены как в старой схемотехнике, так и в современной. Сейчас в большей степени используются приборы с изолированным затвором, о типах полевых транзисторов и их особенностях сегодня мы и поговорим. В статье я буду проводить сравнение с биполярными транзисторами, в отдельных местах.

Определение

Полевой транзистор - это полупроводниковый полностью управляемый ключ, управляемый электрическим полем. Это главное отличие с точки зрения практики от биполярных транзисторов, которые управляются током. Электрическое поле создается напряжением, приложенным к затвору относительно истока. Полярность управляющего напряжения зависит от типа канала транзистора. Здесь прослеживается хорошая аналогия с электронными вакуумными лампами.

Другое название полевых транзисторов - униполярные. «УНО» - значит один. В полевых транзисторах в зависимости от типа канала ток осуществляется только одним типом носителей дырками или электронами. В биполярных транзисторах ток формировался из двух типов носителей зарядов - электронов и дырок, независимо от типа приборов. Полевые транзисторы в общем случае можно разделить на:

    транзисторы с управляющим p-n-переходом;

    транзисторы с изолированным затвором.

И те и другие могут быть n-канальными и p-канальными, к затвору первых нужно прикладывать положительное управляющее напряжение для открытия ключа, а для вторых - отрицательное относительно истока.

У всех типов полевых транзисторов есть три вывода (иногда 4, но редко, я встречал только на советских и он был соединен с корпусом).

1. Исток (источник носителей заряда, аналог эмиттера на биполярном).

2. Сток (приемник носителей заряда от истока, аналог коллектора биполярного транзистора).

3. Затвор (управляющий электрод, аналог сетки на лампах и базы на биполярных транзисторах).

Транзистор с управляющим pn-переходом

Транзистор состоит из таких областей:

4. Затвор.

На изображении вы видите схематическую структуру такого транзистора, выводы соединены с металлизированными участками затвора, истока и стока. На конкретной схеме (это p-канальный прибор) затвор - это n-слой, имеет меньше удельное сопротивление, чем область канала (p-слой), а область p-n-перехода в большей степени расположена в p-области по этой причине.

а - полевой транзистор n-типа, б - полевой транзистор p-типа

Чтобы легче было запомнить, вспомните обозначение диода, где стрелка указывает от p-области в n-область. Здесь также.

Первое состояние - приложим внешнее напряжение.

Если к такому транзистору приложить напряжение, к стоку плюс, а к истоку минус, через него потечет ток большой величины, он будет ограничен только сопротивлением канала, внешними сопротивлениями и внутренним сопротивлением источника питания. Можно провести аналогию с нормально-замкнутым ключом. Этот ток называется Iснач или начальный ток стока при Uзи=0.

Полевой транзистор с управляющим p-n-переходом, без приложенного управляющего напряжения к затвору является максимально открытым.

Напряжение к стоку и истоку прикладывается таким образом:

Через исток вводятся основные носители зарядов!

Это значит, что если транзистор p-канальный, то к истоку подключают положительный вывод источника питания, т.к. основными носителями являются дырки (положительные носители зарядов) - это так называемая дырочная проводимость. Если транзистор n-канальный к истоку подключают отрицательный вывод источника питания, т.к. в нем основными носителями заряда являются электроны (отрицательные носители зарядов).

Исток - источник основных носителей заряда.

Вот результаты моделирования такой ситуации. Слева расположен p-канальный, а справа n-канальный транзистор.

Второе состояние - подаём напряжение на затвор

При подаче положительного напряжения на затвор относительно истока (Uзи) для p-канального и отрицательное для n-канального, он смещается в обратном направлении, область p-n-перехода расширяется в сторону канала. В резльтате чего ширина канала уменьшается, ток снижается. Напряжение затвора, при котором ток через ключ перестает протекать называется, напряжением отсечки.

Достигнуто напряжение отсечки, и ключ полностью закрыт. На картинке с результатами моделирования отображено такое состояние для p-канального (слева) и n-канального (справа) ключа. Кстати на английском языке такой транзистор называется JFET.

Рабочий режим транзистора при напряжение Uзи либо нулевое, либо обратное. За счет обратного напряжения можно «прикрывать транзистор», используется в усилителях класса А и прочих схемах где нужно плавное регулирование.

Режим отсечки наступает, когда Uзи=Uотсечки для каждого транзистора оно своё, но в любом случае прикладывается в обратном направлении.

Характеристики, ВАХ

Выходной характеристикой называют график, на котором изображена зависимость тока стока от Uси (приложенного к выводам стока и истока), при различных напряжениях затвора.

Можно разбить на три области. Вначале (в левой части графика) мы видим омическую область - в этом промежутке транзистор ведет себя как резистор, ток возрастает почти линейно, доходя до определенного уровня, переходит в область насыщения (в центре графика).

В правой части график мы видим, что ток опять начинает расти, это область пробоя, здесь транзистор находиться не должен. Самая верхняя ветвь изображенная на рисунке - это ток при нулевом Uзи, мы видим, что ток здесь самый большой.

Чем больше напряжение Uзи, тем меньше ток стока. Каждая из ветвей отличается на 0.5 вольта на затворе. Что мы подтвердили моделированием.

Здесь изображена стоко-затворная характеристика, т.е. зависимость тока стока от напряжения на затворе при одинаковом напряжении стока-исток (в данном примере 10В), здесь шаг сетки также 0.5В, мы опять видим что чем ближе напряжение Uзи к 0, тем больший ток стока.

В биполярных транзисторах был такой параметр как коэффициент передачи тока или коэффициент усиления, он обозначался как B или H21э или Hfe. В полевых же для отображения способности усиливать напряжение используется крутизна обозначается буквой S

То есть крутизна показывает, насколько миллиАмпер (или Ампер) растёт ток стока при увеличении напряжения затвор-исток на количество Вольт при неизменяемом напряжении сток-исток. Её можно вычислить исходя из стоко-затворной характеристики, на приведенном выше примере крутизна равняется порядка 8 мА/В.

Схемы включения

Как и у биполярных транзисторов есть три типовых схемы включения:

1. С общим истоком (а). Используется чаще всех, даёт усиление по току и мощности.

2. С общим затвором (б). Редко используется, низкое входное сопротивления, усиления нет.

3. С общим стоком (в). Усиление по напряжению близко к 1, большое входное сопротивление, а выходное низкое. Другое название - истоковый повторитель.

Особенности, преимущества, недостатки

    Главное преимущество полевого транзистора высокое входное сопротивление . Входное сопротивление это отношения тока к напряжению затвор-исток. Принцип действия лежит в управлении с помощью электрического поля, а оно образуется при приложении напряжения. То есть полевые транзисторы управляются напряжением .

  • практически не потребляет тока управления, это снижает потери управления, искажения сигнала, перегрузку по току источника сигнала…
  • В среднем частотные характеристики полевых транзисторов лучше, чем у биполярных , это связано с тем, что нужно меньше времени на «рассасывание» носителей заряда в областях биполярного транзистора. Некоторые современные биполярные транзисторы могут и превосходить полевые, это связано с использованием более совершенных технологий, уменьшения ширины базы и прочего.

    Низкий уровень шумов у полевых транзисторов обусловлен отсутствием процесса инжекции зарядов, как у биполярных.

    Стабильность при изменении температуры.

    Малое потребление мощности в проводящем состоянии - больший КПД ваших устройств.

Простейший пример использования высокого входного сопротивление - это приборы согласователи для подключения электроакустических гитар с пьезозвукоснимателями и электрогитар с электромагнитными звукоснимателями к линейным входам с низким входным сопротивлением.

Низкое входное сопротивление может вызвать просадки входного сигнала, исказив его форму в разной степени в зависимости от частоты сигнала. Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Вот простейшая схема такого устройства. Подойдет для подключения электрогитар в линейный вход аудио-карты компьютера. С ней звук станет ярче, а тембр богаче.

Главным недостатком является то, что такие транзисторы боятся статики. Вы можете взять наэлектризованными руками элемент, и он тут же выйдет из строя, это и есть следствие управления ключом с помощью поля. С ними рекомендуют работать в диэлектрических перчатках, подключенным через специальный браслет к заземлению, низковольтным паяльником с изолированным жалом, а выводы транзистора можно обвязать проволокой, чтобы закоротить их на время монтажа.

Современные приборы практически не боятся этого, поскольку по входу в них могут быть встроены защитные устройства типа стабилитронов, которые срабатывают при превышении напряжения.

Иногда у начинающих радиолюбителей опасения доходят до абсурда, типа надевания на голову шапочек из фольги. Всё описанное выше хоть и является обязательным к исполнению, но не соблюдение каких либо условий не гарантирует выход из строя прибора.

Полевые транзисторы с изолированным затвором

Этот вид транзисторов активно используется в качестве полупроводниковых управляемых ключей. Причем работают они чаще всего именно в ключевом режиме (два положения «вкл» и «выкл»). У них есть несколько названий:

1. МДП-транзистор (метал-диэлектрик-полупроводник).

2. МОП-транзистор (метал-окисел-полупроводник).

3. MOSFET-транзистор (metal-oxide-semiconductor).

Запомните - это лишь вариации одного названия. Диэлектрик, или как его еще называют окисел, играет роль изолятора для затвора. На схеме ниже изолятор изображен между n-областью около затвора и затвором в виде белой зоны с точками. Он выполнен из диоксида кремния.

Диэлектрик исключает электрический контакт между электродом затвора и подложкой. В отличие от управляющего p-n-перехода он работает не на принципе расширения перехода и перекрытия канала, а на принципе изменения концентрации носителей заряда в полупроводнике под действием внешнего электрического поля. МОП-транзисторы бывают двух типов:

1. Со встроенным каналом.

2. С индуцированным каналом

На схеме вы видите транзистор с встроенным каналом. Из неё уже можно догадаться, что принцип его работы напоминает полевой транзистор с управляющим p-n-переходом, т.е. когда напряжение затвора равно нулю - ток протекает через ключ.

Около истока и стока созданы две области с повышенным содержанием примесных носителей заряда (n+) с повышенной проводимостью. Подложкой называется основание P-типа (в данном случае).

Обратите внимание, что кристалл (подложка) соединена с истоком, на многих условных графических обозначениях он так и рисуется. При повышении напряжения на затворе в канале возникает поперечное электрическое поле, оно отталкивает носители зарядов (электроны) и канал закрывается при достижении порогового Uзи.

При подаче отрицательного напряжения затвор-исток ток стока падает, транзистор начинает закрывать - это называется режим обеднения.

При подаче положительного напряжения на затвор-исток происходит обратный процесс - электроны притягиваются, ток возрастает. Это режим обогащения.

Всё вышесказанное справедливо для МОП-транзисторов со встроенным каналом N-типа. Если канал p-типа все слова «электроны» заменяются на «дырки», полярности напряжения изменяются на противоположные.

Согласно datasheet на этот транзистор пороговое напряжение затвор-исток у нас в районе одного вольта, а типовое его значение - 1.2 В, проверим это.

Ток стал в микроамперах. Если еще немного повысить напряжение, он исчезнет полностью.

Я выбрал транзистор наугад, и мне попался достаточно чувствительный прибор. Попробую изменить полярность напряжения, чтобы на затворе был положительный потенциал, проверим режим обогащения.

При напряжении на затворе 1В ток увеличился в четыре раза, по сравнению с тем, что был при 0В (первая картинка в этом разделе). Отсюда следует, что в отличие от предыдущего типа транзисторов и биполярных транзисторов он без дополнительной обвязки может работать как на повышение тока, так и на понижение. Это заявление весьма грубо, но в первом приближении имеет право на существование.

Здесь всё практически так же как и в транзисторе с управляющим переходом, за исключением наличия режима обогащения в выходной характеристике.

На стоко-затворной характеристике четко видно, что отрицательное напряжение вызывает режим обеднение и закрытие ключа, а положительное напряжение на затворе - обогащение и большее открытие ключа.

МОП-транзисторы с индуцированным каналом не проводят ток при отсутствии напряжения на затворе, вернее ток есть, но он крайне мал, т.к. это обратный ток между подложкой и высоколегированными участками стока и истока.

Полевой транзистор с изолированным затвором и индуцированным каналом аналог нормально-разомкнутого ключа, ток не протекает.

При наличии напряжения затвор-исток, т.к. мы рассматриваем n-тип индуцируемого канала то напряжение положительное, под действием поля притягиваются отрицательные носители зарядов в область затвора.

Так появляется «коридор» для электронов от истока к стоку, таким образом, появляется канал, транзистор открывается, и ток через него начинает протекать. Подложка у нас p-типа, в ней основными являются положительные носители зарядов (дырки), отрицательных носителей крайне мало, но под действием поля они отрываются от своих атомов, и начинается их движение. Отсюда отсутствие проводимости при отсутствии напряжения.

Выходная характеристика в точности повторяет такую же у предыдущих разница заключается лишь в том, что напряжения Uзи становятся положительными.

Стоко-затворная характеристика показывает то же самое, отличия опять-таки в напряжениях на затворе.

При рассмотрении вольтамперных характеристик крайне важно внимательно смотреть на величины, прописанные по осям.

На ключ подали напряжение 12 В, а на затворе у нас 0. Ток через транзистор не протекает.

Это значит, что транзистор полностью открыт, если бы его не было, ток в этой цепи составил бы 12/10=1.2 А. В дальнейшем я изучал как работает этот транзистор, и выяснил, что на 4-х вольтах он начинает открываться.

Добавляя по 0.1В, я заметил, что с каждой десятой вольта ток растёт всё больше и больше, и уже к 4.6 Вольта транзистор практически полностью открыт, разница с напряжением на затворе в 20В в токе стока всего лишь 41 мА, при 1.1 А - это чепуха.

Этот эксперимент отражает то, что транзистор с индуцированным каналом открывается только при достижении порогового напряжения, что позволяет ему отлично работать в качестве ключа в импульсных схемах. Собственно, IRF740 - один из наиболее распространенных .

Результаты измерений тока затвора показали, что действительно полевые транзисторы почти не потребляют управляющего тока. При напряжении в 4.6 вольта ток был, всего лишь, 888 нА (нано!!!).

При напряжении в 20В он составлял 3.55 мкА (микро). У биполярного транзистора он был бы порядка 10 мА, в зависимости от коэффициента усиления, что в десятки тысяч раз больше чем у полевого.

Не все ключи открываются такими напряжениями, это связано с конструкцией и особенностями схемотехники устройств где они применяются.

Разряженная ёмкость в первый момент времени требует большого зарядного тока, да и редкие управляющие устройства (шим-контроллеры и микроконтроллеры) имеют сильные выходы, поэтому используют драйверы для полевых затворов, как в полевых транзисторах, так и в (биполярный с изолированным затвором). Это такой усилитель, который преобразует входной сигнал в выходной такой величины и силы тока, достаточный для включения и выключения транзистора. Ток заряда также ограничивается последовательно соединенным с затвором резистором.

При этом некоторые затворы могут управляться и с порта микроконтроллера через резистор (тот же IRF740). Эту тему мы затрагивали .

Они напоминают полевые транзисторы с управляющим затвором, но отличаются тем, что на УГО, как и в самом транзисторе, затвор отделен от подложки, а стрелка в центре указывает на тип канала, но направлена от подложки к каналу, если это n-канальный mosfet - в сторону затвора и наоборот.

Для ключей с индуцированным каналом:

Может выглядеть так:

Обратите внимание на англоязычные названия выводов, в datasheet’ах и на схемах часто указываются они.

Для ключей со встроенным каналом: