Программируем lcd 1602 в arduino 1.6 0. LCD WH1602B компании Winstar

Каждый радиолюбитель после некоторого количества простых самоделок приходит к цели сконструировать что-то грандиозное с использование датчиков и кнопок. Ведь гораздо интереснее выводить данные на дисплей, нежели на монитор порта. Но тогда встает вопрос: какой дисплей выбрать? И вообще, как подключать его, что нужно для подключения? Ответы на эти вопросы будут рассмотрены в этой статье.

LCD 1602

Среди множества вариантов среди дисплеев отдельно хочется отметить именно дисплей LCD1602 на базе контроллера HD4478. Существует этот дисплей в двух цветах: белые буквы на синем фоне, черные буквы на желтом фоне. Подключение LCD 1602 к Arduino также не вызовет никаких проблем, так как есть встроенная библиотека, и ничего скачивать дополнительно не нужно. Дисплеи отличаются не только ценой, но и размером. Зачастую радиолюбителями используется 16 x 2, то есть 2 строки по 16 символов. Но существует также и 20 x 4, где 4 строки по 20 символов. Размеры и цвет не играют никакой роли в подключении дисплея lcd 1602 к Arduno, подключаются они одинаково. Угол обзора составляет 35 градусов, время отклика дисплея - 250 мс. Работать может при температурах от -20 до 70 градусов по Цельсию. При работе использует 4 мА на экран и на подсветку 120 мА.

Где используется?

Данный дисплей имеет свою популярность не только у радиолюбителей, но и у крупных производителей. Например, принтеры, кофейные аппараты так же используют LCD1602. Это обусловлено ее низкой ценой, стоит этот дисплей на китайских площадках 200-300 рублей. Покупать стоит именно там, так как в наших магазинах наценки на этот дисплей очень высокие.

Подключение к Arduino

Подключение LCD 1602 к Arduino Nano и Uno не отличается. С дисплеем можно работать в двух режимах: 4 бита и 8. При работе с 8-битным используются и младшие, и старшие биты, а с 4-битным - только младшие. Работать с 8-битным особого смысла нет, так как добавится для подключения еще 4 контакта, что не целесообразно, ведь скорости выше не будет, предел обновлений дисплея - 10 раз в секунду. Вообще, для подключения lcd 1602 к Arduino используется много проводов, что доставляет некие неудобства, но существует особые шилды, но об этом позже. На фотографии изображено подключение дисплея к Arduino Uno:

Пример программного кода:

#include // Добавляем необходимую библиотеку LiquidCrystal lcd(7, 6, 5, 4, 3, 2); // (RS, E, DB4, DB5, DB6, DB7) void setup(){ lcd.begin(16, 2); // Задаем размерность экрана lcd.setCursor(0, 0); // Устанавливаем курсор в начало 1 строки lcd.print("Hello, world!"); // Выводим текст lcd.setCursor(0, 1); // Устанавливаем курсор в начало 2 строки lcd.print("сайт"); // Выводим текст } void loop(){ }

Что же делает код? Первым делом подключается библиотека для работы с дисплеем. Как уже говорилось выше, эта библиотека уже входит в состав Arduino IDE и дополнительно скачивать и устанавливать ее не надо. Далее определяются контакты, которые подключены к выводам: RS, E, DB4, DB5, DB6, DB7 соответственно. После чего задается размерность экрана. Так как мы работаем с версией, где 16 символов и 2 строки, то пишем такие значения. Устанавливаем курсор в начало первой строки и выводим наш первый текст Hello World. Далее ставим курсор на вторую строку и выводим название сайта. Вот и все! Было рассмотрено подключение lcd 1602 к Arduino Uno.

Что такое I2C и зачем он нужен?

Как уже говорилось выше, подключение дисплея занимает очень много контактов. Например, при работе с несколькими датчиками и дисплеем LCD 1602 контактов может просто не хватить. Зачастую радиолюбителями используются версии Uno или Nano, где не так много контактов. Тогда люди придумали специальные шилды. Например, I2C. Он позволяет подключать дисплей всего в 4 контакта. Это в два раза меньше. Продается модуль I2C как отдельно, где самому нужно припаивать, так и уже припаянный к дисплею LCD 1602.

Подключение с помощью I2C модуля

Подключение LCD 1602 к Arduino Nano с I2C занимает мало места, всего 4 контакта: земля, питание и 2 выхода для передачи данных. Питание и землю подключаем на 5V и GND на Arduino соответственно. Оставшиеся два контакта: SCL и SDA подключаем к любым аналоговым пинам. На фотографии можно увидеть пример подключения lcd 1602 к arduino с I2C модулем:

Программный код

Если для работы с дисплеем без модуля необходимо было воспользоваться только одной библиотекой, то для работы с модулем нужно две библиотеки. Одна из них уже есть в составе Arduino IDE - Wire. Другую библиотеку, LiquidCrystal I2C, надо скачивать отдельно и устанавливать. Для установки библиотеки в Arduino содержимое скачанного архива необходимо загрузить в корневую папку Libraries. Пример программного кода с использованием I2C:

#include #include LiquidCrystal_I2C lcd(0x27,16,2); // Устанавливаем дисплей void setup() { lcd.init(); lcd.backlight();// Включаем подсветку дисплея lcd..setCursor(8, 1); lcd.print("LCD 1602"); } void loop() { // Устанавливаем курсор на вторую строку и нулевой символ. lcd.setCursor(0, 1); // Выводим на экран количество секунд с момента запуска ардуины lcd.print(millis()/1000); }

Как можно увидеть, код почти не отличается.

Как добавить свой символ?

Проблемой этих дисплеев является то, что нет поддержки кириллицы и символов. Например, необходимо вам какой-нибудь символ загрузить в дисплей, чтобы он мог его отражать. Для этого дисплей позволяет создать до 7 своих символов. Представьте таблицу:

0 0 0 1 0
0 0 0 0 1
1 1 0 0 1
0 0 0 0 1
1 1 0 0 1
0 0 0 0 1
0 0 0 1 0
0 0 0 0 0

Если 0 - там ничего нет, если 1 - это закрашенный участок. В примере выше можно увидеть создание символа "улыбающийся смайл". На примере программы в Arduino это будет выглядеть следующим образом:

#include #include // Лобавляем необходимую библиотеку // Битовая маска символа улыбки byte smile = { B00010, B00001, B11001, B00001, B11001, B00001, B00010, }; LiquidCrystal lcd(7, 6, 5, 4, 3, 2); // (RS, E, DB4, DB5, DB6, DB7) void setup(){ lcd.begin(16, 2); // Задаем размерность экрана lcd.createChar(1, smile); // Создаем символ под номером 1 lcd.setCursor(0, 0); // Устанавливаем курсор в начало 1 строки lcd.print("\1"); // Выводим смайлик (символ под номером 1) - "\1" } void loop(){ }

Как можно увидеть, была создана битовая маска такая же, как и таблица. После создания ее можно выводить как переменную в дисплей. Помните, что в памяти можно хранить лишь 7 символов. В принципе, этого и бывает достаточно. Например, если нужно показать символ градуса.

Проблемы при которых дисплей может не работать

Бывают такие случаи, когда дисплей не работает. Например, включается, но не показывает символы. Или вовсе не включается. Сначала посмотрите, правильно ли вы подключили контакты. Если вы использовали подключение lcd 1202 к Arduino без I2C, то очень легко запутаться в проводах, что может стать причиной некорректной работы дисплея. Также следует удостовериться в том, что контрастность дисплея увеличена, так как при минимальной контрастности даже не видно, включен ли LCD 1602 или нет. Если это ничего не помогает, то, возможно, проблема может кроется в пайке контактов, это при использовании модуля I2C. Также частой причиной, при которой дисплей может не работать, является неправильная установка I2C адреса. Дело в том, что производителей много, и они могут ставить разный адрес, исправлять нужно тут:

LiquidCrystal_I2C lcd(0x27,16,2);

В скобках можно увидеть два значения, 0x27 и 16,2 (16, 2 - является размером дисплея, а 0x27 как раз таки адрес I2C). Вместо этих значений можно попробовать поставить 0x37 или 0x3F. Ну и еще одной причиной является просто неисправный LCD 1602. Учитывая, что практически все для Arduino изготавливается в Китае, то нельзя быть уверенным на 100%, что приобретенный товар не является браком.

Плюсы и минусы LCD 1602

Рассмотрим плюсы и минусы дисплея LCD 1602.

  • Цена. Этот модуль можно приобрести совсем по демократичной цене в китайских магазинах. Цена составляет 200-300 рублей. Иногда продается даже вместе с I2C модулем.
  • Легко подключать. Вероятно, никто сейчас не подключает LCD 1602 без I2C. А с этим модулем подключение занимает всего 4 контакта, никаких "паутин" из проводов не будет.
  • Программирование. Благодаря готовым библиотекам работать с этим модулем легко, все функции уже прописаны. А при необходимости добавить свой символ затрачивается всего пару минут.
  • За время использования тысячами радиолюбителями никаких больших минусов выявлено не было, только бывают случаи покупки брака, так как в основном используются китайские варианты дисплеев.

В этой статье было рассмотрено подключение 1602 к Arduino, а также были представлены примеры программ для работы с этим дисплеем. Он действительно является в своей категории одним из лучших, не просто так его выбирают тысячи радиолюбители для своих проектов!

  • 13.04.2015

    Микросхема серии К1156ЕР5х представляет собой трехвыводной регулируемый прецизионный параллельный стабилизатор с высокой температурной стабильностью. Аналогом микросхемы К1156ЕР5х является микросхема TL431 фирм MOTOROLA, TEXAS INSTRUMENTS. Назначение выводов: 1- опорное напряжение 2- анод 3- катод ОСОБЕННОСТИ Опорное напряжение 2495 мВ ± 1%; Типовое значение изменения опорного напряжения 5 мВ в рабочем диапазоне температур; Типовое значение …

  • 09.10.2014

    Данный микрофонный усилитель подключается к звуковой карте ПК, он работает с двумя монофоническими микрофонами. Основа микрофонного усилителя малошумящие ОУ NE5532 NE5534. Правый левый каналы идентичны. Сигнал с микрофона запитанного через ФНЧ — R2 С1 С2, через разделительный конденсатор С3 поступает на первый каскад усиления. Усилитель на ОУ охвачен петлей нелинейной …

  • 28.09.2014

    В темное время суток иногда необходимо дополнительное освещения в автомобиле (для ремонта, регулировка двигателя и др), предложенная схема позволяет плавно регулировать осветительную 12В/2А лампу от 5% до 90% ее яркости при помощи ШИМ регулятора. Регулятор предназначен для автомобилей с отрицательной массой. Конструкция регулятора основана на микросхеме 40106 которая работает как …

  • 12.03.2015

    На рисунке показана схема простого многоуровневого индикатора воды. Индикатор имеет семь градаций. В схеме использована всего одна микросхема ULN2004 и несколько внешних элементов. В качестве зондов можно использовать медную или алюминиевую проволоку. Провод к которому подключен зонд должен быть экранированным. Используйте светодиоды разного цвета, для удобства восприятия уровня воды в емкости. …

Иногда мы сталкиваемся с проблемой вывода различной информации из Arduino в окружающий мир. Зачастую, использование последовательного порта невозможно, неудобно и невыгодно.

Символьный дисплей является одним из самых простых и дешевых средств для вывода информации, потому что он имеет собственный микроконтроллер, в памяти которого хранятся закодированные символы. Такая система упрощает использование этих дисплеев, но в тоже время ограничивает их использование выводом только текстовой информации, в отличие от графических дисплеях.

В примере мы рассмотрим дисплей Winstar wh1602l1 – один из самых распространенных дисплеев на контроллере hd44780. Кроме того Вы можете подключать LCD 2004 и другие аналогичные.
Первые две цифры обозначают количество символов в строке, а вторые количество строк, таким образом, выбранный дисплей имеет 2 строки по 16 символов.
Данный способ подключения подразумевает занятие минимум 6 портов микроконтроллера Ардуино. В случае необходимости Вы можете подключить текстовый дисплей 1602 через I2C интерфейс (2 порта).

Из дополнительных элементов нам понадобиться переменный резистор, для управления контрастностью. В остальном все подключается по схеме, согласно даташиту и выбранных выходов Arduino в программе.

Выводы 15 и 16 на дисплее отвечают за подсветку, ее можно выключить или сделать автоматическую регулировку яркости при подключения фоторезистора к Arduino , как датчика яркости.

В нашем примере будем считывать данные из последовательного порта и выводить их на дисплей:

#include // Подключаем библиотеку работы с символьными дисплеями LiquidCrystal lcd(13, 11, 5, 4, 3, 2); // (RS, E, D4, D5, D6, D7) подключаем выходы дисплея согласно последовательности, R/W – GND, так как мы будем записывать данные в дисплей, а не считывать void setup() { lcd.begin(16, 2); // Инициализируем LCD 1602 // lcd.begin(20, 4); // Инициализируем LCD 2004 Serial.begin(9600); // Запускаем последовательный порт } void loop() { if (Serial.available()) // Если из порта поступаю данные, то... { delay(100); lcd.clear(); // Полностью очищаем экран while (Serial.available() > 0) // Если из порта поступаю данные больше 0, то... { lcd.write(Serial.read()); // Считываем значения из serial порта и выводим их на дисплей } } }

Вы можете усложнить код и вывести часы реального времени DS1307 на Arduino на Ваш LCD1602.

Теперь по подробнее рассмотрим все функции в библиотеке LiquidCrystal:

Первое и самое главное, что с помощью этой библиотеки нельзя выводить русские буквы, даже если дисплей имеет в памяти эти символы. Эта проблема решается или другими библиотеками, или записью значений при помощи 16-ричного кода.

lcd.print(); - самая простая и часто используемая, используется для вывода информации.

lcd . clear (); - используется для очистки дисплея.

lcd.setCursor(x , y ); - ставит курсор на определенное место.

Х – изменение позиции в строке

Y – изменение строки

Например, lcd.setCursor(0, 0); это верхняя левая ячейка.

lcd.home(); - ставит курсор в позицию 0, 0

lcd.home(); = lcd.setCursor(0, 0);

lcd . scrollDisplayLeft (); - сдвиг влево

lcd . scrollDisplayRight (); - сдвиг вправо

Lcd.createChar(имя , массив ); - создание собственного знака.

Например знак градуса выглядит вот так:

Celc = {B00111, B00101, B00111, B00000, B00000, B00000, B00000, B00000 };

Жидкокристаллический дисплей (LCD) мод. 1602 (даташит) - отличный выбор для ваших проектов.

Первое, что радует - низкая цена. Второе - наличие готовых библиотек под Arduino. Третье - наличие нескольких модификаций, которые в том числе идут с различными подсветками (голубая, зеленая). В этой статье рассмотрим основы подключения данного дисплея к Arduino и приведем пример небольшого проекта для отображения уровня освещенности на дисплее с использованием фоторезистора.

Контакты и схема подключения LCD 1602 к Arduino

Контакты на этом дисплее пронумерованы от 1 до 16. Нанесены они на задней части платы. Как именно они подключаются к Arduino, показано в таблице ниже.

Табл. 1. Подключение контактов LCD 1620 к Arduino

Подключение 1602 к ArduinoЕсли дисплей 1602 питается от Arduino через 5-ти вольтовой USB-кабель и соответствующий пин, для контакта контраста дисплея (3-й коннектор – Contrast) можно использовать номинал 2 кОм. Для Back LED+ контакта можно использовать резистор на 100 Ом. Можно использовать и переменный резистор – потенциометр для настройки контраста вручную.

На основании таблицы 1 и схемы, приведенной ниже, подключите ваш жидкокристаллический дисплей к Arduino. Для подключения вам понадобится набор проводников. Желательно использовать разноцветные проводники, чтобы не запутаться.

Табл. 2. Предпочтительные цвета проводников

Схема подключения LCD дисплея 1602 к Arduino:


Базовый пример программы для работы LCD 1602 с Arduino

В примере используются 0, 1, 2, 3, 4, и 5 пины Arduino для подключения соответствующих пинов 4, 6, 11, 12, 13 и 14 с дисплея 1602 (смотри табл. 1). После этого в коде для Arduino мы инициализируем lcd() следующим образом:

LiquidCrystal lcd(0, 1, 2, 3, 4, 5);

Этот кусок кода объясняет Arduino, как именно подключен LCD дисплей.

Весь соурс файл проекта метеостанции, в которой используется дисплей LCD 1602 можно скачать по этой ссылке .

LCD 1602A, Arduino и датчик освещенности (фоторезистор)

В примере мы рассмотрим подключение модификации дисплея - 1602A и фоторезистора. В результате данного проекты мы сможем отображать на дисплее числовые значения, пропорциональные интенсивности освещения.


Данный пример будет хорошим стартом для начинающих разбираться с Arduino. Стоит обратить внимание, что у дисплея 1602 существуют различные модификации. Соответственно, расположение контактов на них могут несколько отличаться.

Необходимые материалы

  • 1 Arduino UNO;
  • 1 макетная плата (63 рельсы);
  • 1 датчик освещенности (фоторезистор);
  • 1 потенциометр на 50 кОм;
  • 1 LCD дисплей 1602A;
  • 1 резистор на 10кОм;
  • 1 рельса коннекторов (на 16 пинов);
  • 1 USB кабель.

LCD Дисплей 1602A

Дисплеи, как правило, продаются без распаянных коннекторов. То есть, паяльник в руках придется подержать. Вам понадобится 16 пинов. Запаивайте со стороны коротких ног, длинные оставляйте для дальнейшего подключения к плате или другим периферийным устройствам.

После распайки можете устанавливать дисплей на макетной плате. Желательно, на самой нижней дорожке, чтобы у вас осталась возможность соединять дисплей через дополнительные коннекторы с платой.

Подключение дисплея 1602A к Arduino

Первое что необходим о – запитать дисплей. Подключите два кабеля от +5 вольт и земли к соответствующим рядам плюс-минус на макетной плате.

Подключите: пин на 5 вольт (5V) с Arduino к одной из дорожек макетной платы.

Подключите: пин Земля (GND) Arduino к другой дорожек (макетной платы).

После этого подключаем питание экрана и его подсветку к дорожкам, на макетной плате, на которых у нас получается 5 вольт и минус.

Подключите: дорожку GND (минус) на макетной плате к 1 пину на LCD экране (он обозначен как VSS).

Подключите: дорожку 5 вольт (плюс) на макетной плате ко 2 пину на LCD экране (он обозначен как VDD).

Подключите: дорожку 5 вольт (плюс) на макетной плате к 15 пину на LCD экране (он обозначен как A).

Подключите: дорожку GND (минус) на макетной плате к 16 пину на LCD экране (он обозначен как K).

Подключаем нашу Arduino к персональному компьютеру через USB-кабель и вуаля! Экран должен включиться.

Следующий шаг – подключение потенциометра для регулировки контрастности дисплея. В большинстве гайдов, используется потенциометр на 10 кОм, но 50 кОм тоже подойдет. Из-за большего диапазона значений сопротивлений на выходе потенциометра, более точная настройка становится сложнее, но для нас в данном случае это не критично. Установите потенциометр на макетной плате и подключите три его пина.

Подключите: первый пин на потенциометре к минусу на макетке.

Подключите: средний пин потенциометра к 3 пину на дисплее (он обозначен как V0).

Подключите: третий пин на потенциометре к плюсу на макетке.

После подачи питания на плату через USB-кабель, на дисплее первый ряд должен заполниться прямоугольниками. Если вы их не увидели, немного проверните ручку потенциометра слева направо, чтобы отрегулировать контраст. В дальнейшем, когда мы будем отображать числовые значения на экране, вы сможете более точно отрегулировать контрастность. Если ваш дисплей выглядит примерно так, вы все делаете верно:

Продолжим. Теперь нам надо обеспечить обмен данными между Arduino и LCD дисплеем 1602A для отображения символов.

Для этого подключите 4 пин дисплея (RS) к 7 пину Arduino (желтый коннектор). 5 пин дисплея (RW) – к ряду пинов земля на макетке (черный кабель).

6 пин дисплея (E) – к 8 пину Arduino (ШИМ).

11 пин дисплея (D4) – к 9 пину Arduino (ШИМ).

12 пин дисплея (D5) – к 10 пину Arduino (ШИМ).

13 пин дисплея (D6) – к 11 пину Arduino (ШИМ).

14 пин дисплея (D7) – к 12 пину Arduino (ШИМ).

Программа для Arduino IDE – отображение надписи на дисплее 1602A

Представленный ниже кусок кода достаточно скопипастить в Arduino IDE и загрузить на плату:

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 8, 9, 10, 11 , 12);

lcd.begin(16, 2);

lcd.setCursor(0,1);

lcd.write("LIGHT: ");

После загрузки программы на плату, на дисплее во второй строке отобразится следующая надпись:

Своеобразный "hello world!" на LCD 1602A запущен. Я вас поздравляю.

Подключаем фоторезистор и заливаем всю программу в Arduino

Теперь подключим фоторезистор. Подключите три провода к свободным рельсам на макетной плате (условно пронумеруем их 1, 2, 3). Оставьте в рельсах немного места для самого датчика освещенности и резистора.

Рельсу GND с макетной платы подключаем к рельсе 1. A0 (аналоговый вход) с Arduino - к рельсе 2. 5 вольт с макетной платы - к рельсе 3.

Дальше подключаем наш датчик и резистор к подготовленным рельсам. Какие именно ноги идут к земле, а какие - к питанию для нашего датчика освещенности и резистора неважно (в отличие от, например, светодиода, в котором есть катод и анод). Так что тут не перепутаете.

Датчик освещенности подключаем к рельсе 1 и рельсе 2. Резистор – к рельсе 2 и к рельсе 3.

Теперь вернемся к нашей программе и добавим несколько строк в пустующее пока что тело функции loop():

int sensorValue = analogRead(A0);

lcd.setCursor(7,1);

lcd.print(sensorValue);

После заливки на Arduino окончательной версии нашей программы, на дисплее будут отображаться текущие значения уровня освещенности.

LCD дисплеи от компании Winstar уже на протяжении нескольких лет являются неотъемлемой частью современной электронной продукции, и не только на российском рынке. Они дешевы, очень распространены (не видел магазинов, где их не было бы), их разнообразие предоставляет разработчику выбирать подходящий в зависимости от эксплуатационных условий. Их различие заключается в диапазонах рабочих температур, количеством строк для отображения информации, количеством знакомест в строке, стандартными из которых являются значения 8, 12, 16, 20, 24 и 40 символов на одну строку, так же различаются размерами символа, его разрешением, размерами самого дисплея и т.д. Winstar выпускает не только буквенно-цифровые знакосинтезирующие LCD-модули, но и графические. Те, в свою очередь, тоже имеют различные параметры, что предоставляет пользователю возможность выбирать подходящий исходя из поставленной задачи.

Многие начинающие радиолюбители, только-только начавшие осваивать цифровую технику, микроконтроллеры, рано или поздно столкнутся с проблемой, связанной с подключением и управлением данного дисплея. Немного упростив ситуацию с даташитом на дисплей WH1602B, я старался описать процесс подключения и управления модулем максимально просто для понимания.

Стандартно дисплей WH1602B выглядит так:

16 выводных линий, из которых 11 – линии управления, расположены в ряд с шагом 2,54мм, что позволяет разработчику напрямую подпаять шлейф или поставить разъем, и отвести шлейф к плате управления, в зависимости от конструкции конечного устройства.

Далеко не редким является дисплей с боковым расположением контактов.

В зависимости от конструктива радиоэлектронного устройства разработчик может использовать любой тип расположения выводов – различия между программными обеспечениями совершенно нет.
Модули могут комплектоваться задней подсветкой экрана, причем тип источника подсветки у разных модулей различен. В некоторых дисплеях используется электролюминесцентная подсветка, обеспечивающая равномерное распределение свечения по всей отображаемой поверхности экрана. Главным недостатком дисплея с таким типом подсветки является, пожалуй, одно: для питания такого дисплея нужен переменный ток высокого напряжения. У светодиодных подсветок недостатков практически нет, модули с применением светодиодной подсветки могут использоваться в приложениях, работающих при широких диапазонах температур. Производитель дает широкий выбор в плане цвета подсветки – поскольку светодиодные матрицы можно установить практически любого цвета.

Существенным недостатком дисплеев WH1602B является ток потребления, поэтому применять данный тип дисплеев в устройствах с автономным питанием совершенно невыгодно.

Дисплеи линейки WH построены на базе специализированного контроллера LCD-модулей HD44780, который как раз и разрабатывался для управления знакосинтезирующими ЖК-панелями.

С небольшим описанием, пожалуй, стоит закончить, и приступить к практической части. Нумерация выводов дисплея, если смотреть на него сверху (т.е. как мы смотрим на него при чтении информации), идет начиная с самого крайнего левого вывода. Это вывод 1.

Подключение 1602:

Итак распиновка 1602 :
1) GND – общий провод
2) Vcc – напряжение питания +5В
3) V0 – контрастность
4) RS – линия выбора регистра
5) RW – линия выбора направления передачи данных (чтение или запись)
6) E – линия синхронизации
7) DB0 – 14) DB7 – линии шины данных
15) A – анод подсветки (подключаем сюда +5В через резистор 100Ом)
16) К – катод подсветки (подключаем к общему проводу)

Дисплей может работать в 2 режимах: в режиме 8-битной передачи данных, когда данные передаются группами по 8 бит (при этом обеспечивается максимальная скорость взаимодействия с дисплеем), и в режиме 4-битной передачи, когда 8-битные данные разбиваются на две группы по четыре разряда и последовательно передаются по четырем старшим линиям данных DB4-DB7.

Для начала работы с дисплеем его нужно инициализировать. Процесс инициализации заключается в последовательной передачи контроллеру HD44780 определенных данных. После их обнаружения, он будет готов принимать данные для отображения на экране.

Мы рассмотрим процесс инициализации дисплея WH1602B в 8-битном режиме с использованием управляющей платы, основанной на микроконтроллере Attiny2313.

Итак, какие действия необходимо выполнить для надежного процесса инициализации :
1) Включить питание дисплея
2) Выдержать паузу 20мс
3) Выдать команду 00110000 при RS=0 RW=0
4) Выдержать паузу не менее 40мкс
5) Выдать команду 00110000 при RS=0 RW=0
6) Выдержать паузу не менее 40мкс
7) Выдать команду 00110000 при RS=0 RW=0
8) Выдержать паузу не менее 40мкс
9) Выдать команду 00111000 при RS=0 RW=0
10) Выдержать паузу не менее 40мкс
11) Выдать команду 00001000 при RS=0 RW=0
12) Выдержать паузу не менее 40мкс
13) Выдать команду 00000001 при RS=0 RW=0
14) Выдержать паузу не менее 1,5мс
15) Выдать команду 00000110 при RS=0 RW=0.

Поясню: RS – как отмечалось выше – линия выбора регистра (0 – адресуется регистр команд, в который мы записываем команды отключения дисплея, сдвига строки, установление курсора и т.д.; 1 – адресуется внутренняя память, куда будет записываться байт и отображаться на дисплее).

RW – линия выбора направления передачи данных (0 – запись в дисплей, 1 – чтение данных из дисплея).
После выдачи данных на линию данных DB0-DB7 и установки значений на линиях RS, RW, необходимо эти данные защелкнуть – для этого нужно установить линию E в 1, и, затем, снова сбросить в исходное положение – в 0.

Подключаем PD0 микроконтроллера к линии RS LCD, вывод PD1 микроконтроллера к RW дисплея, ну а PD2 – соответственно к линии Е дисплея, а линии шины данных DB0-DB7 к соответствующим линиям порта B микроконтроллера. Сам дисплей подключаем согласно схеме вверху.

Теперь дело за программной частью:

Include "tn2313def.inc" ; Attiny2313, 1 MHz clock .cseg .org 0 rjmp reset ;******************************************************************** ;Стандартный переход к инициализированной части программы reset: ldi r16, low (RAMEND) ; Инициализация стека МК out SPL, r16 rcall lcd_init ; Инициализация дисплея;Здесь мы инициализировали стек микроконтроллера и перешли к инициализации LCD-модуля;******************************************************************** lcd_init: ldi r16, 0b10000000 ; сбрасываем все подтягивающие резисторы out MCUCR, r16 ldi r16, 0b11111111 ; Настройка порта B out ddrb, r16 ldi r16, 0b00000111 ; Настройка порта D out ddrd, r16 ;Настраиваем линии портов ввода/вывода: сбрасываем подтягивающие резисторы и определяем;PB0-PB7, PD0-PD2 как линии вывода данных;******************************************************************** ;Исходя из вышеуказанной процедуры инициализации выполняем операции: ldi r16, 0b00000000 ; Адресация IR ldi r17, 0b00110000 ; Установка разрядности Data line rcall delay_20000mks ; Пауза перед инициализацией lcd rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd ldi r17, 0b00111000 ; Установка параметров lcd rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd ldi r17, 0b00001000 ; Выключение дисплея rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd ldi r17, 0b00000001 ; Очистка дисплея rcall write_lcd ; Запись данных в lcd rcall delay_1500mks ; Задержка перед выполнением операций с lcd ldi r17, 0b00000110 ; Установка режима ввода данных rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd ret ; Выход из подпрограммы;******************************************************************** delay_20000mks: ldi r18, 0b10110010 ; Ввод переменной задержки ldi r19, 0b00000101 ; Настройка предделителя rjmp init_delay delay_1500mks: ldi r18, 0b11111010 ; Ввод переменной задержки ldi r19, 0b00000101 ; Настройка предделителя rjmp init_delay delay_40mks: ldi r18, 0b11011000 ; Ввод переменной задержки ldi r19, 0b00000010 ; Настройка предделителя init_delay: out TCNT0, r18 ; Инициализация TCNT0 out TCCR0B, r19 ; Старт T0 test_TIFR: in r18, TIFR ; Чтение TIFR sbrs r18, 1 ; Переход, если "Переполнение T0" rjmp test_TIFR ; Бесконечная проверка TOV0 ldi r20, 0b00000000 ; Остановка T0 out TCCR0B, r20 ldi r20, 0b00000010 ; Загрузка TOV0>>0 out TIFR, r21 ret ; Выход из подпрограммы;******************************************************************** write_lcd: out portd, r16 ; Установка значения линии RS out portb, r17 ; Вывод байта данных DB0-DB7 nop ; Защита от шумов на линии стробирования sbi portd, 2 ; E>>1 nop ; Защита от шумов на линии стробирования cbi portd, 2 ; E>>0 nop ; Защита от шумов на линии стробирования ret ; Выход из подпрограммы;******************************************************************** user_write_IR: ldi r16, 0b00000000 ; Адресация IR rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd ret ; Выход из подпрограммы;******************************************************************** user_write_DR: ldi r16, 0b00000001 ; Адресация DR rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd ret ; Выход из подпрограммы;******************************************************************** lcd_clear: ldi r16, 0b00000000 ; Адресация IR ldi r17, 0b00000001 ; Очистка дисплея rcall write_lcd ; Запись данных в lcd rcall delay_1500mks ; Задержка перед выполнением операций с lcd ret ; Выход из подпрограммы;********************************************************************

Как пользоваться данным кодом. Для занесения символа на экран необходимо записать байт, соответствующий коду этого символа, в регистр R17. В регистр 17 заносим 0х1 – если хотим записать символ на экран, или сбрасываем в 0х0, если хотим записать какую-то команду в регистр команд LCD дисплея.

Мной были предусмотрены подпрограммы, которые вызывает пользователь:
user_write_IR – запись команды в регистр команды LCD;
user_write_DR – запись данных для отображения на LCD;
lcd_clear – подпрограмма/команда, вызов которой осуществляет очистку дисплея.

Как работать с вызовом подпрограмм:

Ldi r17, 0x24; Символ с кодом 0x24 rcall user_write_DR; запись символа на отображение ldi r17, 0x2; команда 0х2 rcall user_write_IR; записываем в регистр.

Отмечу, что при использовании подпрограммы lcd_clear предварительная запись в R17 не требуется.
Где писать свой код? Вот здесь:

Reset: ldi r16, low (RAMEND) ; Инициализация стека МК out SPL, r16 rcall lcd_init ; Инициализация дисплея;ВАШ КОД!!! Например: Ldi r17, 0xC; Включаем изображение ldi r17, 0x24; Символ с кодом 0x24 rcall user_write_DR; запись символа на отображение

Добавлю, что в последнее время появились данные модули с платой последовательного преобразователя, позволяющие подключать LCD дисплеи 1602 по 4-х проводной схеме и работающими по I 2 C-интерфейсу. Т.о. немного упрощается подключение и экономятся выводы контроллера. Модуль можно приобрести отдельно и подключить к уже имеющемуся LCD 1602.

Скачать исходники и прошивку вы можете ниже