Работает жк матрица. Как устроен жк дисплей

LCD (Liquid crystal display) или ЖК (жидкокристаллический) телевизор, как их называют в народе - это телевизор с ЖК дисплеем и ламповой подсветкой. Жидкокристаллический , означает, что сам дисплей (монитор) сделан на основе жидких кристаллов

LCD TFT (англ. Thin film transistor - тонкоплёночный транзистор) - разновидность жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами . Усилитель для каждого субпикселя (элемента матрицы) применяется для повышения быстродействия, контрастности и чёткости изображения дисплея

  • Немного истории:
  • Жидкие кристаллы впервые были обнаружены австрийским ботаником Райнитцером в 1888 г., но только в 1930 -м году исследователи из британской корпорации Marconi получили патент на их промышленное применение, однако, слабость технологической базы не позволяла в то время активно развивать это направление.

    Первый настоящий прорыв совершили ученые Фергесон и Вильямс из американской корпорации RCA . Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы. И вот, в конце 1966 г., корпорация RCA продемонстрировала прототип LCD-монитора - цифровые часы . Первый в мире калькулятор - CS10A был произведен в 1964 году корпорацией Sharp , она же, в октябре 1975 года, выпустила первые компактные цифровые часы с ЖК дисплеем. К сожалению, фоток не нашёл, а вот эти часы и калькулятор - ещё помнят многие

    Во второй половине 70-х начался переход от восьмисегментных ЖК индикаторов к производству матриц с адресацией (возможностью управления) каждой точки. Так, в 1976 году, компания Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.

    Следующий этап в развитии LCD-технологии начался в 80-х годах, когда в устройствах стали применяться STN-элементы с повышенной контрастностью. Затем на смену им пришли многослойные структуры, позволяющие устранить ошибки при воспроизведении цветного изображения. Примерно тогда же появились активные матрицы на базе технологии a-Si TFT . Первый прототип монитора a-Si TFT LCD был создан в 1982 году корпорациями Sanyo , Toshiba и Cannon , ну а мы, в это время, любили играться вот такими игрушками с ЖК дисплеем

    Сейчас ЖК дисплеи практически полностью вытеснили с рынка кинескопные телевизоры, предлагая покупателю любые размеры: от переносных и небольших "кухонных", до огромных, с диагоналями более метра. Ценовой диапазон так же весьма велик и позволяет каждому подобрать телевизор по своим потребностям и финансовым возможностям

    Схемотехника LCD телевизоров гораздо сложнее, чем у простых кинескопных ТВ: миниатюрные детали, многослойные платы, дорогостоящие блоки... Вот, кому интересно, телевизор с ЖК панелью без задней крышки, а если снять специальные защитные экраны, можно будет увидеть другие участки схемы, только лучше этого не делать, оставьте это мастерам

  • Устройство и принцип работы:
  • Работа ЖК дисплея (ЖКД) основана на явлении поляризации светового потока . Известно, что так называемые кристаллы-поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Этот эффект называется поляризацией света .

    Если совсем по простому , представьте "свет" в виде маленьких круглых шариков, если на его пути поставить сетку с продольными вырезами (поляризатор), то, после неё, из "шариков" останутся только плоские "блинчики" (поляризованный свет). Теперь, если вторая сетка будет с такими же продольными вырезами, блинчики смогут "проскочить" через неё и "светить" дальше, если же вторая сетка будет иметь вертикальные прорези, то световые горизонтальные "блинчики" не смогут пройти сквозь неё и "застрянут"

    Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами

    Конструктивно дисплей состоит из ЖК-матрицы (стеклянной пластины, между слоями которой и располагаются жидкие кристаллы), источников света для подсветки, контактного жгута и обрамления (корпуса ), чаще пластикового, с металлической рамкой жёсткости.

    Каждый пиксель ЖК-матрицы состоит из слоя молекул между двумя прозрачными электродами , и двух поляризационных фильтров , плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

    Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света, ячейку можно считать прозрачной, хотя уроверь потерь - немалый.

    Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры, степенью прозрачности можно управлять, изменяя приложенное напряжение.

    В качестве источника света (подсветки ЖК-матрицы) используются флуоресцентные лампы с холодным катодом (называются они так, потому что катод, испускающий электроны (отрицательный электрод) внутри лампы необязательно нагревать выше окружающей температуры, чтобы лампочка зажглась). Вот так может выглядеть лампа для LCD телевизора, на правом фото - "ламповая сборка в работе" для телевизора с большой диагональю ЖК-дисплея:

    Сами лампы (белого яркого свечения) располагаются в специальных корпусных фиксаторах , позади их - отражатель , для уменьшения потерь светового потока. Для того, чтобы ЖК-матрица засветилась равномерно (а не полосато, как лампы установлены ), перед экраном находится рассеиватель , который равномерно распределяет световой поток по всей своей площади. К сожалению, в этом месте так же происходит немалая потеря "яркости" свечения ламп

    Современные ЖК-матрицы имеют достаточно хороший угол обзора (около 160 градусов) без потери качества изображения (красок, яркости), самое неприятное, что на них можно увидеть - это вот такие битые пиксели , однако, учитывая то, что их размер очень мал, один-два таких "прогоревших" пикселя не сильно будут мешать просмотру фильмов и передач, а вот на экране монитора - это уже может быть достаточно неприятно

  • Преимущества и недостатки:
  • По сравнению с кинескопными телевизорами, ЖК-панели имеют отличную фокусировку и чёткость, нет ошибок сведения лучей или нарушения геометрии изображения, экран никогда не мерцает, они легче и занимают меньше места К минусам можно отнести слабоватую (по сравнению с кинескопными) яркость и контрастность, матрица не такая прочная, как экран кинескопа, набор цифровых тормозов и глюков при аналоговом или слабом сигнале, а так же плохой обработке исходного материала

    Представляет собой тонкое плоское устройство отображения, составленное из некоторого числа цветных или монохромных пикселей, расположенных перед источником света или зеркалом.

    В чем преимущество ЖК-монитора? Его высоко ценят инженеры, потому что он потребляет незначительное количество электроэнергии, что делает его пригодным для использования в электронных устройствах, питающихся от батареек. Кроме того, он может иметь практически любую форму и размеры, мало нагревается и не выделяет вредного электромагнитного излучения.

    Также он является одной из причин успеха портативных компьютеров - иначе они бы не были такими компактными. Некоторые из ранних моделей переносных ПК включали небольшой ЭЛТ-монитор и были довольно громоздкими. Впоследствии ЖК-дисплеи стали использоваться не только в ноутбуках, но и в телевизорах высокой четкости. Поскольку со временем технология и производство становятся более дешевыми, стоимость мониторов с плоским экраном или HD-телевизоров продолжала снижаться. В конечном итоге ЖК-панели полностью заменили традиционные электронно-лучевые трубки, так же, как транзисторы сменили вакуумные лампы.

    Принцип работы ЖК-монитора

    Пиксели дисплея состоят из ЖК-молекул, выстроенных между прозрачными электродами, а также из пары поляризационных фильтров с перпендикулярными друг другу осями полярностей. В отсутствие жидкого кристалла свет, проходя через один поляризатор, блокируется другим.

    Поверхность электродов, контактирующих с веществом, находящимся в ЖК-фазе, обработана так, чтобы молекулы выстраивались в определенном направлении. Как правило, они покрываются тонким слоем полимера, направленного в одну сторону методом протирания его тканью (жидкие кристаллы выстраиваются в том же направлении).

    Принцип работы ЖК-монитора следующий. До наложения электрического поля ЖК-молекулы выстроены согласно направлению выравнивания поверхностей. В наиболее распространенном типе ЖК-экрана - крученном нематическом - направления выстраивания поверхностей электродов перпендикулярны, благодаря чему молекулы образуют спиралевидную структуру, т. е. скручиваются. Так как свойством жидких кристаллов является разная скорость движения света с разной поляризацией, луч, который проходит через один поляризационный фильтр, вращается ЖК-спиралью так, что может пройти сквозь второй. При этом половина света поглощается в первом поляризаторе, но в остальном вся сборка прозрачна.

    Когда на электроды подается напряжение, начинает действовать крутящий момент, который выравнивает молекулы скрученного нематического кристалла вдоль электрического поля и выпрямляет спиралевидную структуру. Этому препятствуют упругие силы, так как молекулы на поверхностях не свободны. Вращение поляризации уменьшается, и пиксель выглядит серым. Но благодаря свойству жидких кристаллов выравниваться при достаточно высокой разности потенциалов, проходящий сквозь них свет не вращается. В результате направление поляризации становится перпендикулярным второму фильтру, он полностью блокируется, и пиксель выглядит черным. Изменение напряжения между электродами по обе стороны ЖК-слоя каждого элемента изображения регулирует количество проходящего света и, соответственно, его яркость.

    Скрученные нематические жидкие кристаллы помещаются между скрещенными поляризационными фильтрами для того, чтобы свет был максимально ярким без расхода электроэнергии, а получаемое при подаче напряжения затемнение - являлось равномерным. Возможен случай использования параллельных поляризационных фильтров. При этом темные и яркие состояния изменяются на противоположные. Однако в такой конфигурации черный не будет равномерным.

    Вещество жидкого кристалла и выравнивающий слой содержат ионные соединения. Если длительное время действует электрическое поле определенной полярности, ионный материал притягивается поверхностями, ухудшая характеристики ЖК-монитора. Избежать этого можно, применяя либо переменный ток, либо изменяя полярность электрического поля во время обращения к устройству (реакция ЖК-слоя не зависит от полярности).

    Мультиплексорный экран

    Когда дисплей составлен из большого числа пикселей, управлять каждым из них напрямую невозможно, поскольку всем им понадобятся независимые электроды. Вместо этого монитор мультиплексируется. При этом электроды группируются и соединяются (как правило, по столбцам), и каждая группа питается отдельно. С другой стороны ячейки электроды также сгруппированы (как правило, по рядам) и подключены отдельно. Группы создаются таким образом, чтобы каждый пиксель обладал уникальной комбинацией источника и приемника. Электроника или программное обеспечение, управляющее ею, последовательно включает группы и управляет ими.

    Важными факторами, которые следует учитывать при оценке ЖКД, являются разрешение, видимый размер, время отклика (скорость синхронизации), тип матрицы (пассивный или активный), угол обзора, поддержка цвета, коэффициент яркости и контрастности монитора, соотношение сторон и входные порты (например, DVI или VGA).

    Цветные экраны

    В цветных ЖК-дисплеях каждый отдельный пиксель делится на три ячейки или субпикселя, которые с помощью дополнительных фильтров (пигментных и металл-оксидных) окрашены в красный, синий и зеленый цвета. Каждым субпикселем можно управлять независимо, чтобы получить тысячи или миллионы возможных цветов. В старых ЭЛТ используется аналогичный метод.

    В зависимости от использования монитора, цветовые компоненты могут размещаться в различных пиксельных геометриях. Если программное обеспечение знает, какой тип геометрии используется на данном дисплее, это может быть использовано для увеличения видимого разрешения посредством субпиксельной визуализации. Этот метод особенно полезен для сглаживания текста.

    Пассивная матрица

    Устройство ЖК-мониторов с небольшим количеством сегментов, например, используемых в карманных калькуляторах и цифровых часах, предусматривает для каждого элемента один электрический контакт. Внешняя выделенная схема обеспечивает электрический заряд, необходимый для управления каждым сегментом. При большом количестве экранных элементов такая структура становится слишком громоздкой.

    Малые монохромные дисплеи, используемые, например, в старых ноутбуках, имеют структуру пассивной матрицы, в которой используется технология суперскрученных нематических элементов (STN) или двухслойная STN (DSTN), которая корректирует проблему смещения цвета. Каждая строка или столбец имеют одну электрическую цепь. Адресация каждого пикселя производится поочередно по адресу строки и столбца. Такой тип дисплея называют пассивной матрицей, поскольку состояние каждой ячейки должно сохраняться без электрического заряда. С ростом числа элементов (а также строк и столбцов) отображение становится все более сложным. Дисплеи с пассивной матрицей характеризуются слишком медленным откликом и плохой контрастностью.

    Активные матричные технологии

    В цветных экранах высокого разрешения, которыми оборудуются современные телевизоры и мониторы, применяется активная матрица. В ней к цветным и поляризационным фильтрам добавлен слой тонкопленочных транзисторов (TFT). При этом каждый пиксель управляется своим собственным выделенным полупроводниковым элементом. Транзистор обеспечивает доступ в каждом столбце только к одному пикселю. При активации строки к ней подключаются все столбцы, и на них подается напряжение. Затем строка деактивируется, и активируется следующая. При обновлении дисплея последовательно активируются все строки. Активно-матричные экраны значительно четче и ярче пассивных того же размера, и обычно отличаются более быстрым откликом, который обеспечивает гораздо лучшее качество изображения.

    Скрученный нематик (TN)

    TN-экраны содержат ЖК-элементы, которые для регулирования количества пропускаемого света в разной степени скручиваются и раскручиваются. Если напряжение на электроды ЖК-ячейки TN-матрицы не подается, то луч поляризуется таким образом, что может пройти сквозь нее. Жидкие кристаллы скручиваются пропорционально приложенной разнице потенциалов до 90°, изменяют поляризацию и блокируют подсветку. При подаче напряжения определенного уровня можно добиться практически любого оттенка серого.

    3LCD-технология

    Представляет собой систему видеопроекции, в которой для создания изображения используются 3 микродисплейные панели. В 1995 г. благодаря компактности и высокому качеству технология начала применяться многими производителями фронтальных проекторов, а с 2002 г. - и в Активная матрица обеспечивает отличную цветопередачу, высокую яркость и четкое изображение, а использование высокотемпературного поликремния позволяет получить большую глубину черного.

    IPS-технология

    Аббревиатура IPS расшифровывается как «плоскостное переключение». Принцип работы ЖК-монитора данного типа основан на выравнивании жидкокристаллических ячеек в горизонтальной плоскости. Метод заключается в том, что электрическое поле проходит через оба конца кристалла, но требует двух транзисторов на каждый пиксель вместо одного, как в стандартном TFT-экране. Следствием этого является большая блокировка участка дисплея, что требует более яркой подсветки, которая расходует больше энергии. Это накладывает ограничения в использовании данного в ноутбуках.

    Экраны нулевой мощности

    Зенитальные элементы с двумя устойчивыми состояниями (ZBD), разработанные компанией QinetiQ, способны сохранять свою ориентацию без внешнего электрического поля. Принцип работы ЖК-монитора данного типа основан на том, что кристаллы могут находиться в одном из двух положений - «черном» или «белом». Питание требуется лишь для изменения состояния ЖК-элемента на противоположное. Созданные на основе данной технологии экраны производит компания ZBD Displays. Она предлагает как черно-белые, так и цветные ZBD-дисплеи.

    Французская компания Nemoptic разработала еще одну технологию, не требующую питания для сохранения изображения. Похожие на бумагу ЖК-экраны производятся на Тайване с июля 2003 года. Данная технология ориентирована на такие маломощные мобильные устройства, как переносные компьютеры и электронные книги. ЖКД с нулевой мощностью потребления составляют конкуренцию электронной бумаге.

    Компания Kent Displays тоже разработала экран с нулевым энергопотреблением, в котором используются стабилизированные полимерные жидкие кристаллы ChLCD. Основным недостатком этой технологии является невысокая частота обновления, которая еще больше замедляется при низких температурах.

    Контроль качества

    ЖК-экраны могут иметь дефектные транзисторы, результатом чего являются постоянно открытые или закрытые участки, на которых пиксели остаются либо ярко освещенными, либо черными. Если в случае интегральных схем это бы означало брак, то дисплеи с несколькими неработающими точками, как правило, используются. Это невозможно запретить по экономическим соображениям, поскольку ЖК-панели значительно больше микросхем. Для определения максимально допустимого числа дефектных пикселей производители используют разные стандарты. Например, в ноутбуках ThinkPad для панели разрешением 2048 х 1536 оно равно 16. Из них яркими могут быть 15 пикселей, а темными - 16.

    Дефект ЖК-экрана более вероятен, чем для большинства микросхем. Например, 12” SVGA-дисплей может иметь 8 дефектов, а 6” пластина - только 3. Вместе с тем из 137 штампов приемлемыми будут 134 при практически нулевом браке ЖКД. Стандарты качества сегодня намного выше, чем раньше, благодаря жесткой конкуренции между производителями и улучшенному контролю. SVGA-экран с 4 дефектными пикселями теперь считается дефектным, и клиенты имеют возможность обменять его на новый.

    100% гарантия

    Ряд производителей, особенно южнокорейских, поскольку там находятся одни из крупнейших фабрик по производству ЖК-панелей (например, LG), сегодня гарантируют отсутствие неисправных пикселей и производят замену экрана даже с единственным дефектом. Даже если такая гарантия не предоставляется, важно расположение дефектных участков. Экраны с несколькими неисправными ячейками могут быть непригодны, если они расположены рядом друг c другом. Кроме того, производители могут произвести замену панели в том случае, если дефект расположен в центре дисплея.

    Диагностика и ремонт мониторов

    Ниже приведены наиболее часто встречающиеся неисправности и методы их устранения.

    Индикатор питания горит постоянно, но изображение отсутствует. Вероятна поломка подсветки или ее инвертора. Простейший способ диагностики ЖК-монитора - включить воспроизведение видео и направить яркий луч либо почти параллельно экрану, либо перпендикулярно. Это позволит увидеть изображение даже без подсветки. Ремонт монитора заключается в замене лампы подсветки или, скорее всего, ее инвертора.

    Индикатор питания мигает. В этом случае необходимо проверить, поступает ли в дисплей сигнал - вероятно повреждение кабеля либо разъема. Если все в порядке, то основную причину неисправности для конкретной марки монитора следует поискать в интернете. Например, для Dell 1702FP - это выход из строя некоторых конденсаторов. Простейший выход в этом случае - заменить все емкости. Также можно шунтировать неисправный конденсатор заведомо исправным.

    Индикатор питания не загорается. Вероятная причина - поломка блока питания монитора. Можно попробовать его заменить, купив новый или воспользовавшись запчастями от старого дисплея. Другая возможная причина - КЗ конденсатора (его легко найти визуально) и перегорание предохранителя. В этом случае их следует заменить.

    Вертикальные или горизонтальные линии. Если монитор работает, но имеет линии, простирающиеся на всю ширину или высоту экрана или раздваивание изображения по вертикали или горизонтали, то вероятным виновником является транзистор или соединение дисплея. Если один из сотен разъемов неисправен или закорочен, то это сказывается на всем ряду пикселей. Для ноутбуков иногда достаточно сжать проблемный участок и проблема уйдет на годы. Для дисплея ПК потребуется снять заднюю панель, чтобы добраться до неисправного соединения и приложить к нему давление.

    Особенности ухода

    Иногда качество изображения можно восстановить с помощью простой салфетки для ЖК-мониторов. Она устранит пыль, пятна от еды, отпечатки пальцев, следы насекомых, грязь и разводы.

    Лучше использовать профессиональные средства, такие как чистящие спреи и пены-аэрозоли, но их можно заменить разведенным в равных пропорциях изопропиловым спиртом или уксусом.

    Не следует использовать средства на основе спирта, аммиака или ацетона, поскольку они способны нанести вред экрану, особенно антибликовому покрытию.

    Чистящее средство следует наносить на салфетку, а не на загрязнение.

    Протирая дисплей, нельзя применять силу.

    Нельзя включать монитор до полного его высыхания.

    Недостатки

    ЖК-технология по-прежнему отличается некоторыми недостатками в сравнении с другими подходами:

    • Если электро-лучевые трубки могут работать с разным разрешением, не привнося искажений, ЖКД обеспечивают четкость только в случае их «родного разрешения». При попытке установить неподдерживаемые параметры экрана, изображение масштабируется, становится размытым или «блочным».
    • ЖК-панели обеспечивают более низкую контрастность, чем плазменные или светодиодные. Причиной этого является то, что свет часто проникает через поляризационный фильтр и вместо черного цвета отображается серый. Однако при ярком внешнем освещении контрастность ЖКД может превышать данный показатель некоторых других дисплеев по причине большей максимальной яркости.
    • ЖК-экраны отличаются большим временем отклика, чем плазменные аналоги, создавая видимые ореолы при быстром движении изображения, хотя этот показатель по мере развития технологии постоянно улучшается и в современных ЖК-панелях практически незаметен. Большинство TN- и IPS-дисплеев имеют время отклика 5-8 мс.
    • Овердрайв, применяемый в некоторых панелях, приводит к тому, что на участках изменяющегося изображения возникают артефакты в виде повышенного шума или ореолов. Причиной этого побочного эффекта является стремление пикселей достичь предполагаемой яркости (или напряжения, которое требуется для прохождения нужного количества света), после чего они возвращаются к целевому уровню, обеспечивая лучшее время отклика.
    • ЖК-дисплеи отличаются ограниченными углами обзора, из-за чего одновременно смотреть на экран может меньшее число зрителей. При достижении предельного угла контрастность и цветопередача ухудшаются. Но некоторые производители используют этот эффект, предлагая намеренно ограниченный обзор ЖК-монитора с целью обеспечения большей конфиденциальности, например, при пользовании ноутбуком в общественных местах. Кроме того, это позволяет создать для одного наблюдателя 2 различных изображения, создавая стереоскопический эффект.
    • Некоторые старые ЖК-мониторы могут вызвать мигрени и проблемами со зрением по причине мерцания ламп подсветки, работающих с частотой сети 50 Гц. В современных экранах это устранено с переходом на питание высокочастотным током.
    • ЖК-дисплеи иногда страдают от выгорания. По мере развития технологии данная проблема снижается, поскольку появляются новые методы ее устранения. Иногда экран можно восстановить путем длительного отображения белого изображения.
    • Некоторые ЖКД не способны работать в режиме низкого разрешения (например, 320 х 200). Но это связано со схемой управления, а не особенностями ЖК-монитора.
    • Плоские дисплеи очень уязвимы. Но их легкий вес снижает вероятность повреждения, а некоторые модели защищены стеклом.

    Большинство современных LCD мониторов имеют достаточно простое построение, если рассматривать его на уровне чипов, т.е. в мониторе мы видим сейчас две или три крупных микросхемы. Функциональное назначение этих микросхем в большинстве случаев является типовым, несмотря на то, что выпускаются они разными производителями и имеют различную маркировку. А так как микросхемы выполняют одинаковые функции, то их входные/выходные сигналы будут практически идентичными, т.е. основное отличие микросхем заключается в их характеристиках и цоколевке корпуса. Именно поэтому к большинству современных LCD мониторов, невзирая на множество их торговых марок и множество различных моделей, можно применять одинаковые подходы при диагностике неисправностей и ремонте. Кроме идентичной функциональной схемы, почти все LCD мониторы имеют одну и ту же схему компоновки, т.е. практически все производители пришли к одинаковой схеме распределения электронных компонентов монитора по различным печатным платам.

    Итак, если посмотреть на современный LCD монитор, то внутри него мы найдем, как правило, саму LCD-панель и три печатные платы (рис.1):

    Рис.1

    - основную плату управления и обработки сигналов (Main PCB );

    - плату блока питания и инвертора задней подсветки (Power PCB );

    - плату лицевой панели управления.

    Межблочные связи при такой компоновке монитора демонстрирует рисунок 2.

    Рис.2

    Многие современные мониторы могут использоваться как USB-хаб, к которому могут подключаться различные USB устройства. Поэтому в составе монитора может появиться еще одна печатная плата, соответствующая USB-хабу, но наличие этой платы, естественно, является опциональным.

    На основной плате управления располагаются микропроцессор монитора и скалер. Этой платой осуществляется обработка входных сигналов монитора и преобразование их в сигналы управления LCD-панелью. Именной этой платой во многом определяется качество изображения, воспроизводимого на экране монитора. Основное отличие моделей мониторов друг от друга заключается в конфигурации этой печатной платы, в типе установленных на ней микросхем и в их "прошивке".

    Плата лицевой панели управления представляет собой узкую печатную плату, на которой расположены только лишь кнопки и светодиод.

    Плата источников питания (в документации LG ее обозначают, как LIPS ), представляет собой комбинированный источник питания, который состоит из двух импульсных преобразователей: основного блока питания и инвертора задней подсветки. Этой платой формируются все основные напряжения, необходимые для работы и основной платы, и LCD-панели, а также формируется высоковольтное напряжение для ламп задней подсветки. Именно эта печатная плата дает наибольшее количество различных проблем и отказов LCD-мониторов.

    Но существует и второй вариант компоновки, при котором кроме LCD-матрицы в мониторе имеется четыре печатные платы:

    - основная плата управления и обработки сигналов (Main PCB );

    - плата блока питания (Power PCB );

    - плата инвертора задней подсветки (Back Light Inverter PCB );

    - плата лицевой панели управления.

    В данном варианте компоновки блок питания и инвертор задней подсветки представляют собой отдельные печатные платы (рис.3).

    Рис.3

    Межблочные связи, характерные для такой компоновки монитора, представлены на рис.4. В качестве примера здесь можно представить мониторы LG FLATRON L1810B и L1811B.

    Рис.4

    Прежде чем говорить о различных вариантах схемотехники LCD дисплеев, дадим краткие характеристики основным компонентам, из которых они состоят.

    Микропроцессор

    Микропроцессором, который в различных источниках может обозначаться как CPU, MCU и MICOM , осуществляется общее управление монитором. Основными его функциями являются:

    - формирование сигналов для включения и выключения задней подсветки;

    - управление яркостью ламп задней подсветки;

    - настройка режима работы скалера;

    - формирование сигналов управляющих работой скалера;

    - обработка и контроль входных синхросигналов HSYNC и VSYNC;

    - определение режима работы монитора;

    - определение типа входного интерфейса (D-SUB или DVI);

    - обработка сигналов от лицевой панели управления.

    Управляющая программа микропроцессора, как правило, находится в его внутреннем ПЗУ, т.е. эта программ "прошита" в микропроцессоре. Однако часть управляющего кода, и особенно различные данные и переменные хранятся во внешней энергонезависимой памяти, которая представляет собой электрически перепрограммируемое ПЗУ – EEPROM. Микропроцессор имеет прямой доступ к микросхемам EEPROM.

    Микропроцессор, как правило, является 8-разрядным и работает на тактовых частотах порядка 12 – 24 МГц. Микропроцессор, на самом деле, является однокристальным микроконтроллером, в составе которого, кроме CPU имеются еще:

    - многоцелевые цифровые порты ввода/вывода с программируемыми функциями;

    - аналоговые входные порты и цифро-аналоговый преобразователь;

    - тактовый генератор;

    - ПЗУ;

    - ОЗУ и другие элементы.

    EEPROM

    В энергонезависимой памяти, в первую очередь, хранятся данные о настройках монитора и заданные пользователем установки. Эти данные извлекаются из EEPROM в момент включения монитора и инициализации микропроцессора. При каждой настройке монитора и установке нового пользовательского значения какого-либо параметра изображения, эти новые значения переписываются в EEPROM, что позволяет их сохранить. В современных мониторах в качестве EEPROM , в основном, применяются микросхемы с последовательным доступом по шине I2C (сигналы SDA и SCL ). Это микросхемы типа 24C02, 24C04, 24C08 и т.д.

    DDC- EEPROM

    Все современные мониторы поддерживают технологию Plug&Play, которая предполагает передачу от монитора в сторону ПК паспортной и конфигурационной информации о мониторе. Для передачи этих данных используется последовательный интерфейс DDC, которому на интерфейсе соответствую сигналы DDC-DATA (DDC-SDA) и DDC-CLK (DDC-SCL) . Сама паспортная информация хранится в еще одном EEPROM, который, практически, напрямую соединен с интерфейсным разъемом. В качестве EEPROM используются те же микросхемы 24C02, 24C04, 24C08 , а также может использоваться и более специализированная – 24C21 .

    Формирователь RESET

    Схема формирования сигнала RESET обеспечивает контроль питающего напряжения микропроцессора. Если это напряжение становится ниже допустимого значения, работа микропроцессора блокируется установкой сигнала REST в низкий уровень. В качестве формирователя сигнала чаще всего используется микросхема Low Drop стабилизатора, типа KIA7042 или KIA7045.

    Скалер

    Микросхемой скалера осуществляется обработка сигналов, приходящих от ПК. Скалер в большинстве случаев представляет собой многофункциональную микросхему, в состав которой обычно входят:

    - микропроцессор;

    - ресивер (приемник) TMDS, которым обеспечивается прием и преобразование в параллельный вид данных, передаваемых по интерфейсу DVI;

    - аналого-цифровой преобразователь – АЦП (ADC), которым осуществляется преобразование входных аналоговых сигналов R/G/B;

    - блок ФАПЧ (PLL), который необходим для корректного аналого-цифрового преобразования и синхронного формирования сигналов на выходе АЦП;

    - схема масштабирования (Scaler), которая обеспечивает преобразования изображения с входным разрешением (например, 1024х768) в изображение с разрешением LCD-панели (например, 1280х1024);

    - формирователь OSD;

    - трансмиттер (LVDS), который осуществляет преобразование параллельных данных о цвете в последовательный код, передаваемый на LCD-панель по шине LVDS.

    Кроме этих основных элементов, в составе некоторых скалеров можно выделить еще схему гамма-коррекции, интерфейс для работы с динамической памятью, схему фрейм-граббера, схемы конвертации форматов (например, YUV в RGB) и т.п.

    Фактически, скалер является микропроцессором, оптимизированным под выполнение вполне определенных задач – обработку изображения. Скалер настраивается на формат входных сигналов, получая соответствующие команды от центрального процессора монитора.

    Если в составе монитора имеется фрейм-буфер (оперативная память), то работа с ним является функцией именно скалера. Для этого многие скалеры оснащаются интерфейсом для работы с динамической памятью.

    Пример функциональной схемы скалера GM5020, используемого в мониторе LG FLATRON L1811B, представлен на рис.5. Особенностью этого скалера является то, не содержит внутреннего LVDS-трансмиттера, и формирует сигналы цвета в виде параллельного 48-разрядного потока цифровых данных. При использовании скалера GM5020 требуется еще и внешний LVDS-трансмиттер, представляющий собой специализированную микросхему.

    Рис.5

    Фрейм-буфер

    Фрейм-буфер – это оперативная память достаточно большой емкости, которая используется для сохранения образа изображения, выводимого на экран. Эта память требуется при преобразовании (масштабировании) изображения, т.е. когда входное разрешение не совпадает с разрешением LCD-панели. В качестве фрейм-буфера используется память динамического типа, чаще всего SDRAM. Емкость этой памяти определяет разработчиком, исходя из формата LCD-панели и ее цветовых характеристик.

    DC-DC преобразователь

    Этим модулем обеспечивается формирование всех постоянных напряжений, необходимых для работы монитора. Этими напряжениями являются: +5V, +3.3V, +2.5V или +1.8V. Преобразователи представляю собой либо линейные, либо импульсные преобразователи постоянного напряжения.

    Буфер синхросигналов

    Буфер синхросигналов, представляют собой усилители, выполненные либо на транзисторах, либо на микросхемах мелкой логики. Буфером обеспечивается усиление и буферизация входных сигналов синхронизации HSYNC и VSYNC . Часто буферы управляются микропроцессором, что позволяет выбрать источник сигнала, а также выбрать тип синхронизации (раздельная, композитная или SOG ).

    Инвертор

    Инвертор формирует высоковольтное и высокочастотное напряжение для ламп задней подсветки. Представляет собой импульсный высокочастотный преобразователь, который из напряжения +12V создает импульсное напряжение амплитудой около 800В .

    Блок питания

    Блоком питания из переменного напряжения сети формируются постоянные напряжения +12В и +5В, используемые для питания всех каскадов монитора. Блок питания является импульсным и может представлять собой как внешний сетевой адаптер, так и внутренний модуль монитора, хотя в мониторах, представленных в данном обзоре, блок питания является внутренним.

    Подавляющее большинство LCD мониторов можно отнести к одному из трех базовых вариантов схемотехники, которые попытаемся охарактеризовать.

    1) Первый вариант характеризуется наличием на MAIN BOARD двух основных микросхем: микросхемы микропроцессора и микросхемы скалера. Микропроцессором осуществляется общее управление компонентами монитора, а скалер осуществляет преобразование цветовых сигналов, т.е. осуществляет подстройку изображения под разрешение LCD-панели. При этом скалер обрабатывает данные "на лету", т.е. без предварительного сохранения образа изображения в промежуточной памяти. Поэтому микросхемы памяти в таком варианте схемотехники не используются. Блок-схема такого LCD-монитора демонстрируется на рис.6.

    Рис.6

    2) Второй вариант (рис.7)отличается от первого наличием в мониторе микросхем памяти, которые часто называют буфером фрейма (Frame Buffer). Наличие микросхем памяти характерно для мониторов более высокого класса, которые способны работать с изображениями различных входных форматов, в том числе и телевизионных. К этому классу мониторов в большей степени относятся 18-дюймовые мониторы, например FLATRON L1811B.

    Рис.7

    3) Третий вариант характеризуется наличием на основной плате MAIN BOARD всего одной "активной" микросхемы. Под термином" активная микросхема" мы подразумеваем микросхему, имеющую собственную систему команд, программируемую под выполнение различных функций и способную выполнять какую-либо обработку сигналов. В некоторых мониторах (например, в FLATRON L1730B и L1710S), мы видим всего одну такую микросхему, которая совмещает в себе и функции микропроцессора и функции скалера. Так как подобные микросхемы могут использоваться в различных моделях мониторов, и так как в составе микросхемы имеется микропроцессор, для работы которого требуется наличие управляющих кодов, то на плате MAIN BOARD мы найдем еще и микросхему постоянного запоминающего устройства – ПЗУ (ROM). Эта микросхема, которая чаще всего является 8-разрядным ПЗУ с параллельным доступом, содержит управляющую программу для работы комбинированной микросхемы скалера-микропроцессора. Часто микросхема ПЗУ является электрически перепрограммируемой, и поэтому ее часто обозначают, как FLASH. Практически во всех мониторах LG в качестве ПЗУ используются микросхема семейства AT49HF. Блок-схема мониторов с такой схемотехникой представлена на рис.8.

    Рис.8

    Кроме этих трех вариантов построения монитора можно ввести и еще один вариант. Он отличается тем, что в мониторе используется такой скалер, который не имеет встроенного LVDS-трансмиттера. В этом случае трансмиттеру соответствует отдельная микросхема, которая устанавливается на основной плате между скалером и LCD-панелью. LVDS-трансмиттер осуществляет преобразование параллельного (24 или 48 разрядного) цифрового потока данных, сформированного скалером, в последовательные данные шины LVDS. LVDS-трансмиттер представляет собой микросхему общего применения, которая может использоваться в любых мониторах. Такая схемотехника, с внешним LVDS-трансмиттером, также характерна, в большей степени, для мониторов более высокого класса, т.к. в них применяются специализированные скалеры с меньшим количеством дополнительных функций. Пример блок-схемы монитора с подобной схемотехникой представлен на рис.9. В качестве примере монитора с таким построением, можно назвать модель LG FLATRON L1811B .

    Рис.9

    Здесь были рассмотрены лишь базовые варианты современной схемотехники, хотя во всем многообразии моделей и торговых марок LCD-мониторов можно встретить самые различные комбинации представленных блок-схем. В сводной таблице 1 отражены типы применяемых микросхем и особенности схемотехники наиболее массовых моделей мониторов LG.

    Таблица 1. Особенности схемотехники TFT-мониторов компании LG

    Модель монитора

    Вариант компоновки

    Вариант схемотехники

    Типы основных микросхем

    Тип используемой

    LCD панели

    CPU

    Скалер

    LVDS

    L1510S

    см. рис.1

    см. рис.6

    MTV312

    MST9011

    LM150X06-A3M1

    L1510P

    см. рис.1

    см. рис.6

    MTV312

    MST9051

    LM150X06-A3M1

    L1511S

    см. рис.1

    см. рис. 9

    MTV312

    GMZAN2

    THC63LVDM83R

    1) LM150X06-A3M1

    2) LM150X07-B4

    L1520B

    см. рис.1

    см. рис.6

    MTV312

    MST9011

    LM150X06-A4C3

    L1710S

    см. рис.1

    см. рис. 8

    GM2121

    1) HT17E12-100

    2) M170EN05

    L1710B

    см. рис.1

    см. рис.6

    MTV312

    MST9151

    1) LM170E01-A4

    2) HT17E12-100

    3) M170EN05V1

    L1715 /16 S

    см. рис.1

    см. рис.6

    MTV312

    MST9111

    LM170E01-A4

    L1720B

    см. рис.1

    см. рис.6

    MTV312

    MST9111

    1) LM170E01-A4

    2) LM170E01-A5K6

    3) LM170E01-A4K4

    4) LM170E01-A5

    L1730B

    см. рис.1

    см. рис. 8

    GM5221

    1) LM170E01-A5K6

    2) LM170E01-A5N5

    3) LM170E01-A5KM

    L1810B

    см. рис. 3

    см. рис.6

    MTV312

    MST9151

    1) LM181E06-A4M1

    2) LM181E06-A4C3

    L1811B

    см. рис. 3

    см. рис. 9

    68HC08

    GM5020

    THC63LVD823

    1) LM181E05-C4M1

    2) LM181E05-C3M1

    L1910PL

    см. рис.1

    см. рис.6

    MTV312

    MST9151

    FLC48SXC8V-10

    L1910PM

    см. рис.1

    см. рис.6

    MTV312

    MST9151

    FLC48SXC8V-10

    Аналитический обзор данных, представленных в таблице 1, позволяет сделать несколько интересных выводов.

    Во-первых , практически все, представленные в таблице 1 мониторы, имеют одинаковую схему компоновки, которая, кстати, характерна практически для всех современных мониторов, независимо от фирмы-производителя.

    Во-вторых , LG в своих мониторах в качестве управляющего процессора использует, преимущественно, микроконтроллер MTV312 , разработанный фирмой MYSON TECHNOLOGY . Этот микроконтроллер в своей основе имеет известнейший микропроцессор 8051. Кроме того, в состав микроконтроллера входят ОЗУ, Flash-ПЗУ, АЦП, процессор синхронизации, цифровые порты и целый ряд других элементов.

    В-третьих, необходимо отметить, что в некоторых моделях мониторов могут использоваться различные типы LCD-панелей. Так, например, под крышкой мониторов, продаваемых под торговой маркой FLATRON 1710B , можно встретить LCD-панели трех разных типов: LM170E01-A4, HT17E12-100, M170EN05V1 , и это является весьма распространенной практикой практически всех производителей мониторов. Но интересным является тот факт, что иногда фирма LG в своих мониторах использует панели других производителей, являясь при этом крупнейшим мировым их производителем. Принадлежность LCD-панели можно определить по ее маркировке, первые буквы которой и определяют производителя:

    LM – панели производства LG-PHILIPS

    HT – панели производства HITACHI

    M – панели производства AUO

    FLC – панели производства FUJITSU

    "Сердцем" любого жидкокристаллического монитора является LCD-матрица (Liquid Cristall Display). ЖК-панель представляет из себя сложную многослойную структуру. Упрощенная схема цветной TFT LCD-панели представлена на Рис.2.

    Принцип работы любого жидкокристаллического экрана основан на свойстве жидких кристаллов изменять (поворачивать) плоскость поляризации проходящего через них света пропорционально приложенному к ним напряжению. Если на пути поляризованного света, прошедшего через жидкие кристаллы, поставить поляризационный светофильтр (поляризатор), то, изменяя величину приложенного к жидким кристаллам напряжения, можно управлять количеством света, пропускаемого поляризационным светофильтром. Если угол между плоскостями поляризации прошедшего сквозь жидкие кристаллы света и светофильтра составляет 0 градусов, то свет будет проходить сквозь поляризатор без потерь (максимальная прозрачность), если 90 градусов, то светофильтр будет пропускать минимальное количество света (минимальная прозрачность).

    Рис.1. ЖК-монитор. Принцип работы LCD-технологии.

    Таким образом, используя жидкие кристаллы, можно изготавливать оптические элементы с изменяемой степенью прозрачности. При этом уровень светопропускания такого элемента зависит от приложенного к нему напряжения. Любой ЖК-экран у монитора компьютера, ноутбука, планшета или телевизора содержит от нескольких сотен тысяч до нескольких миллионов таких ячеек, размером долей миллиметра. Они объединены в LCD-матрицу и с их помощью мы можем формировать изображение на поверхности жидкокристаллического экрана.
    Жидкие кристаллы были открыты еще в конце XIX века. Однако первые устройства отображения на их основе появились только в конце 60-х годов XX века. Первые попытки применить LCD-экраны в компьютерах были предприняты в восьмидесятых годах прошлого века. Первые жидкокристаллические мониторы были монохромными и сильно уступали по качеству изображения дисплеям на электронно-лучевых (ЭЛТ) трубках. Главными недостатками LCD-мониторов первых поколений были:

    • - низкое быстродействие и инерционность изображения;
    • - «хвосты» и «тени» на изображении от элементов картинки;
    • - плохое разрешение изображения;
    • - черно-белое или цветное изображение с низкой цветовой глубиной;
    • - и т.п.

    Однако, прогресс не стоял на месте и, со временем, были разработаны новые материалы и технологии в изготовлении жидкокристаллических мониторов. Достижения в технологиях микроэлектроники и разработка новых веществ со свойствами жидких кристаллов позволило существенно улучшить характеристики ЖК-мониторов.

    Устройство и работа TFT LCD матрицы.

    Одними из главных достижений стало изобретение технологии LCD TFT-матрицы – жидкокристаллической матрицы с тонкопленочными транзисторами (Thin Film Transistors). У TFT-мониторов кардинально возросло быстродействие пикселей, выросла цветовая глубина изображения и удалось избавиться от «хвостов» и «теней».
    Структура панели, изготовленной по TFT технологии, приведена на Рис.2

    Рис.2. Схема структуры TFT LCD матрицы.
    Полноцветное изображение на ЖК-матрице формируется из отдельных точек (пикселей), каждая из которых состоит обычно из трех элементов (субпикселей), отвечающих за яркость каждой из основных составляющих цвета - обычно красной (R), зеленой (G) и синей (B) - RGB. Видеосистема монитора непрерывно сканирует все субпиксели матрицы, записывая в запоминающие конденсаторы уровень заряда, пропорциональный яркости каждого субпикселя. Тонкопленочные транзисторы (Thin FilmTrasistor (TFT) - собственно, поэтому так и называется TFT-матрица) подключают запоминающие конденсаторы к шине с данными на момент записи информации в данный субпиксель и переключают запоминающий конденсатор в режим сохранения заряда на все остальное время.
    Напряжение, сохраненное в запоминающем конденсаторе TFT- матрицы, действует на жидкие кристаллы данного субпикселя, поворачивая плоскость поляризации проходящего через них света от тыловой подсветки, на угол, пропорциональный этому напряжению. Пройдя через ячейку с жидкими кристаллами, свет попадает на матричный светофильтр, на котором для каждого субпикселя сформирован свой светофильтр одного из основных цветов (RGB). Рисунок взаиморасположения точек разных цветов для каждого типа ЖК-панели разный, но это отдельная тема. Далее, сформированный световой поток основных цветов поступает на внешний поляризационный фильтр, коэффициент пропускания света которого зависит от угла поляризации падающей на него световой волны. Поляризационный светофильтр прозрачен для тех световых волн, плоскость поляризации которых параллельна его собственной плоскости поляризации. С возрастанием этого угла, поляризационный фильтр начинает пропускать все меньше света, вплоть до максимального ослабления при угле 90 градусов. В идеале, поляризационный фильтр не должен пропускать свет, поляризованный ортогонально его собственной плоскости поляризации, но в реальной жизни, все-таки небольшая часть света проходит. Поэтому всем ЖК-дисплеям свойственна недостаточная глубина черного цвета, которая особенно ярко проявляется при высоких уровнях яркости тыловой подсветки.
    В результате, в LCD-дисплее световой поток от одних субпикселей проходит через поляризационный светофильтр без потерь, от других субпикселей - ослабляется на определенную величину, а от какой-то части субпикселей практически полностью поглощается. Таким образом, регулируя уровень каждого основного цвета в отдельных субпикселях, можно получить из них пиксель любого цветового оттенка. А из множества цветных пикселей составить полноэкранное цветное изображение.
    ЖК-монитор позволил совершить серьезный прорыв в компьютерной технике, сделав ее доступной большому количеству людей. Более того, без LCD-экрана невозможно было бы создать портативные компьютеры типа ноутбуков и нетбуков, планшеты и сотовые телефоны. Но так ли все безоблачно с применением жидкокристаллических дисплеев? Читаем дальше про их достоинства и недостатки...

    Устройство LCD модуля 19-ти дюймового монитора рассмотрим на примере LCD модуля с матрицей TN+Film известного тайваньского производителя HannStar. Эти модули использовались в мониторах под торговыми марками Acer, LG, HP и др.

    Под защитной металлической крышкой находятся элементы управления матрицей, расположенные на одной плате.

    через разъем, обозначенный CN1 на плату управления матрицей поступают сигналы LVDS low-voltage differential signaling, и напряжение питания +5В

    за обработку сигналов LVDS от скалера на плате управления матрицей отвечает контроллер

    контроллер формирует сигналы, которые, через вплавленные в шлейфы дешифраторы управляют TFT (Thin film transistor) полевыми транзисторами субпикселов матрицы

    на следующем изображении можно разглядеть как расположены субпикселы матрицы, чередующиеся в порядке R-G-B (red-green-blue)

    жидкими кристаллами каждого субпиксела управляет отдельный полевой транзистор, то есть в матрице с разрешением 1280х1024 находятся 1280х1024=13010720 пикселов, а каждый пиксел в свою очередь состоит из трёх субпикселов, таким образом, число транзисторов в матрице с разрешением 1280х1024 равно 3932160.

    Не вдаваясь в подробности поляризации светового потока, упрощенно, представить в общем как работет ЖК матрица можно так: если подать напряжение на транзистор субпиксела — то субпиксел НЕ будет пропускать свет, если не подавать напряжение — субпиксел будет пропускать свет. Если все три субпиксела RGB пропускают свет, то на экране мы будем видеть белую точку (пиксел), если все три субпиксела НЕ пропускают свет — то на экране мы будем видеть черную точку. В зависимости от интенсивности светового потока (т.е. от угла поворота жидких кристаллов в субпикселе), проходящего через три светофильтра RGB одного пиксела, мы можем получить точку любого цвета

    за формирование необходимых напряжений питания TFT матрицы отвечает преобразователь, выполненный на интегральной микросхеме U200

    если снять металлическую рамку и отделить ЖК матрицу от отражателя/световода, можно обнаружить, что матрица — почти прозрачная

    рассмотрим конструкцию световода/рассеивателя. пластмассовая рамка фиксирует три плёнки (две рассеивающие и между ними — одна поляризационная) на поверхности световода, представляющего собой прямоугольную плиту из оргстекла толщиной ~10мм

    под световодом находится подложка из белого пластика, толщиной 0,5мм

    на стороне световода, обращенной к белой пластиковой подложке, нанесён специальный узор, для формирования равномерности засветки во всех точках дисплея

    завершающей деталью «пирога» рассеивателя/световода является металлическое основание, в этом основании расположены крепежные элементы, с помощью которых весь ЖК модуль фиксируется в корпусе монитора

    высоковольтные газоразрядные CCFL (Cold cathode fluorescent lamps) лампы расположены по две, горизонтально сверху и снизу световода

    отражатель на несколько миллиметров длиннее, чем бОльшая сторона световодной плиты, служит также контейнером, благодаря которому лампы фиксируются сверху и снизу световода

    благодаря спецальному узору световода, свет ламп равномерно распространяется по всей площади экрана. бывают и другие конструкции рассеивателя без тяжелой плиты световода, и лампами, расположенными горизонтально сверху вниз с единым шагом за ЖК матрицей. существуют конструкции рассеивателя/световода (backlight) с применением большего количества ламп, например 6, 8, 12

    Важно!

    Данный материал предназначен для ознакомления. Если у Вас нет достаточного опыта восстановления ЖК устройств — не разбирайте Ваш монитор, в результате некорректных действий Вы можете повредить LCD модуль