Разрешение сканера — какое значение оптимальное? Оптическая плотность и разрешение изображения.

Сканер - это устройство, которое анализируя какой-либо объект (обычно изображение, текст), создаёт цифровую копию изображения объекта. Процесс получения этой копии называется сканированием.

В 1857 году флорентийский аббат Джованни Казелли изобрёл прибор для передачи изображения на расстояние, названный впоследствии пантелеграф. Передаваемая картинка наносилась на барабан токопроводящими чернилами и считывалась с помощью иглы. В 1902 году, немецким физиком Артуром Корном была запатентована технология фотоэлектрического сканирования, получившая впоследствии название телефакс. Передаваемое изображение закреплялось на прозрачном вращающемся барабане, луч света от лампы, перемещающейся вдоль оси барабана, проходил сквозь оригинал и через расположенные на оси барабана призму и объектив попадал на селеновый фотоприёмник. Эта технология до сих пор применяется в барабанных сканерах. В дальнейшем, с развитием полупроводников, усовершенствовался фотоприёмник, был изобретён планшетный способ сканирования, но сам принцип оцифровки изображения остается почти неизменным.

Основные характеристики сканеров

Оптическое разрешение

Является основной характеристикой сканера. Сканер снимает изображение не целиком, а по строчкам. По вертикали планшетного сканера движется полоска светочувствительных элементов и снимает по точкам изображение строку за строкой. Чем больше светочувствительных элементов у сканера, тем больше точек он может снять с каждой горизонтальной полосы изображения. Это и называется оптическим разрешением. Оно определяется количеством светочувствительных элементов (фотодатчиков), приходящихся на дюйм горизонтали сканируемого изображения. Обычно его считают по количеству точек на дюйм - dpi (dots per inch). Нормальный уровень разрешение не менее 600 dpi, увеличивать его еще дальше - значит, применять дорогую оптику, дорогие светочувствительные элементы, и увеличивать время сканирования. Для обработки слайдов необходимо более высокое разрешение 1200 dpi.

Разрешение по X

Этот параметр показывает количество пикселей у фоточувствительной линейки, из которых формируется изображение. Разрешение является одной из основных характеристик сканера. Большинство моделей имеет оптическое разрешение сканера 600 или 1200 dpi (точек на дюйм). Его достаточно для получения качественной копии. Для профессиональной работы с изображением необходимо более высокое разрешение.

Разрешение по Y

Этот параметр определяется величиной хода шагового двигателя и точностью работы механики. Механическое разрешение сканера значительно выше оптического разрешения фотолинейки. Именно оптическое разрешение линейки фотоэлементов будет определять общее качество отсканированного изображения.

Скорость сканирования

Скорость сканирования зависит от разрешения при сканировании и от размера оригинала. Обычно производители указывают этот параметр для формата А4. Скорость сканирования может измеряться количеством страниц в минуту или временем, необходимым для сканирования одной страницы. Иногда измеряется в количестве сканируемых линий в секунду.

Глубина цвета

Как правило, производители указывают два значения для глубины цвета - внутреннюю глубину и внешнюю. Внутренняя глубина - это разрядность АЦП (аналого-цифрового преобразователя) сканера, она указывает на то, сколько цветов сканер способен различить в принципе. Внешняя глубина - это количество цветов, которое сканер может передать компьютеру. Большинство моделей используют для цветопередачи 24 бита (по 8 на каждый цвет). Для стандартных задач в офисе и дома этого вполне достаточно. Но если вы собираетесь использовать сканер, для серьезной работы с графикой, попробуйте найти модель с большим числом разрядов.

Максимальная оптическая плотность

Максимальная оптическая плотность у сканера - это оптическая плотность оригинала, которую сканер отличает от "полной темноты". Чем больше это значение, тем больше чувствительность сканера и тем выше качество сканирования темных изображений.

Тип источника света

Ксеноновые лампы отличаются малым временем прогрева, долгим сроком службы и небольшими размерами. Флуоресцентные лампы с холодным катодом дешевы в производстве и имеют долгий срок службы. Светодиоды (LED) обладают малыми размерами, низким энергопотреблением и не требуют времени для прогрева. Но по качеству цветопередачи LED-сканеры уступают сканерам с флуоресцентными и ксеноновыми лампами.

Тип датчика сканера

В сканерах и МФУ обычно используется один из двух типов датчиков, основанных на разных технологиях:

  • CIS - Contact Image Sensor / контактный датчик изображения;
  • CCD - Charge-Coupled Device / прибор с зарядовой связью (ПЗС).

CIS представляет собой линейку фотоэлементов, которая равна ширине сканируемой поверхности. Во время сканирования она перемещается под стеклом и строка за строкой передает информацию об изображении на оригинале в виде электрического сигнала. Для освещения обычно используются светодиоды, которые расположены в непосредственной близости от фотолинейки на той же подвижной платформе. Сканеры на базе CIS имеют простую конструкцию, тонкий корпус и небольшой вес, что позволяет сделать сканер более тонким и легким по сравнению со сканерами с CCD-датчиками. Сканеры CIS, как правило, дешевле сканеров на базе CCD. Основной недостаток CIS состоит в малой глубине резкости.

Фотосенсор на основе CCD - это специализированная аналоговая интегральная микросхема, состоящая из светочувствительных фотодиодов, выполненная на основе кремния, использующая технологию ПЗС — приборов с зарядовой связью.

ПЗС-матрица состоит из поликремния, отделённого от кремниевой подложки, у которой при подаче напряжения через поликремневые затворы изменяются электрические потенциалы вблизи электродов. До экспонирования обычно подачей определённой комбинации напряжений на электроды происходит сброс всех ранее образовавшихся зарядов и приведение всех элементов в идентичное состояние. Далее комбинация напряжений на электродах создаёт потенциальную яму, в которой могут накапливаться электроны, образовавшиеся в данном пикселе матрицы в результате воздействия света при экспонировании. Чем интенсивнее световой поток во время экспозиции, тем больше накапливается электронов в потенциальной яме, соответственно тем выше итоговый заряд данного пикселя.
После экспонирования последовательные изменения напряжения на электродах формируют в каждом пикселе и рядом с ним распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным элементам матрицы.

Виды сканеров

  • планшетные — наиболее распространённый вид сканеров, поскольку обеспечивает максимальное удобство для пользователя — высокое качество и приемлемую скорость сканирования. Представляет собой планшет, внутри которого под прозрачным стеклом расположен механизм сканирования.
  • ручные — в них отсутствует двигатель, следовательно, объект приходится сканировать пользователю вручную, единственным его плюсом является дешевизна и мобильность, при этом он имеет массу недостатков — низкое разрешение, малую скорость работы, узкая полоса сканирования, возможны перекосы изображения, поскольку пользователю будет трудно перемещать сканер с постоянной скоростью.
  • листопротяжные (протяжные) — лист бумаги вставляется в щель и протягивается по направляющим роликам внутри сканера мимо лампы. Имеет меньшие размеры, по сравнению с планшетным, однако может сканировать только отдельные листы, что ограничивает его применение в основном офисами компаний. Многие модели имеют устройство автоматической подачи, что позволяет быстро сканировать большое количество документов.
  • планетарные или книжные сканеры — применяются для сканирования книг или легко повреждающихся документов. При сканировании нет контакта со сканируемым объектом (как в планшетных сканерах). Книжные сканеры - предназначены для сканирования брошюрованных документов. Сканирование производится лицевой стороной вверх - таким образом, Ваши действия по сканированию неотличимы от перелистывания страниц при обычном чтении. Это предотвращает их повреждение и позволяет пользователю видеть документ в процессе сканирования.
  • слайд-сканеры — как ясно из названия, служат для сканирования плёночных слайдов, выпускаются как самостоятельные устройства, так и в виде дополнительных модулей к обычным сканерам.
  • сканеры штрих-кода — небольшие, компактные модели для сканирования штрих-кодов товара в магазинах.

Принцип действия

Сканируемый объект кладется на стекло планшета сканируемой поверхностью вниз. Под стеклом располагается подвижная лампа, движение которой регулируется шаговым двигателем. Свет, отраженный от объекта, через систему зеркал попадает на чувствительную матрицу, далее на АЦП и передается в компьютер. За каждый шаг двигателя сканируется полоска объекта, которые потом объединяются программным обеспечением в общее изображение.

Изображение всегда сканируется в формат RAW — а затем конвертируется в обычный графический формат с применением текущих настроек яркости, контрастности, и т. д. Эта конвертация осуществляется либо в самом сканере, либо в компьютере — в зависимости от модели конкретного сканера. На параметры и качество RAW-данных влияют такие аппаратные настройки сканера, как время экспозиции матрицы, уровни калибровки белого и чёрного, и т. п.

Оптическое разрешение. Является основной характеристикой сканера. Сканер снимает изображение не целиком, а по строчкам. По вертикали планшетного сканера движется полоска светочувствительных элементов и снимает по точкам изображение строку за строкой. Чем больше светочувствительных элементов у сканера, тем больше точек он может снять с каждой горизонтальной полосы изображения. Это и называется оптическим разрешением. Оно определяется количеством светочувствительных элементов (фотодатчиков), приходящихся на дюйм горизонтали сканируемого изображения. Обычно его считают по количеству точек на дюйм - dpi (dots per inch). Нормальный уровень разрешение не менее 600 dpi, увеличивать его еще дальше - значит, применять дорогую оптику, дорогие светочувствительные элементы, и увеличивать время сканирования. Для обработки слайдов необходимо более высокое разрешение 1200 dpi.

Разрешение по X. Этот параметр показывает количество пикселей у фоточувствительной линейки, из которых формируется изображение. Разрешение является одной из основных характеристик сканера. Большинство моделей имеет оптическое разрешение сканера 600 или 1200 dpi (точек на дюйм). Его достаточно для получения качественной копии. Для профессиональной работы с изображением необходимо более высокое разрешение.

Разрешение по Y. Этот параметр определяется величиной хода шагового двигателя и точностью работы механики. Механическое разрешение сканера значительно выше оптического разрешения фотолинейки. Именно оптическое разрешение линейки фотоэлементов будет определять общее качество отсканированного изображения.

Скорость сканирования. Скорость сканирования зависит от разрешения при сканировании и от размера оригинала. Обычно производители указывают этот параметр для формата А4. Скорость сканирования может измеряться количеством страниц в минуту или временем, необходимым для сканирования одной страницы. Иногда измеряется в количестве сканируемых линий в секунду.

Глубина цвета. Как правило, производители указывают два значения для глубины цвета - внутреннюю глубину и внешнюю. Внутренняя глубина - это разрядность АЦП (аналого-цифрового преобразователя) сканера, она указывает на то, сколько цветов сканер способен различить в принципе. Внешняя глубина - это количество цветов, которое сканер может передать компьютеру. Большинство моделей используют для цветопередачи 24 бита (по 8 на каждый цвет). 24 бита соответствует 16 777 216 оттенков. Для стандартных задач в офисе и дома этого вполне достаточно. Но если вы собираетесь использовать сканер, для серьезной работы с графикой, попробуйте найти модель с большим числом разрядов.

Максимальная оптическая плотность. Максимальная оптическая плотность у сканера - это оптическая плотность оригинала, которую сканер отличает от «полной темноты». Чем больше это значение, тем больше чувствительность сканера и, тем выше качество сканирования темных изображений.

Тип источника света.

Ксеноновые газоразрядные лампы отличаются чрезвычайно малым временем прогрева, высокой стабильностью излучения, небольшими размерами и долгим сроком службы. С другой стороны, они требуют высокого напряжения, потребляют большой ток и имеют неидеальный спектр, что пагубно сказывается на точности цветопередачи.

Люминесцентные лампы с горячим катодом обладают очень ровным, управляемым в определенных пределах спектром и малым временем прогрева. В качестве недостатков можно назвать крупные габариты и относительно короткий срок службы.

Люминесцентные лампы с холодным катодом служат в десять раз дольше предшественниц с горячим катодом, имеют низкую рабочую температуру и ровный спектр, однако время прогрева у них велико - от 30 секунд до нескольких минут. Именно такие лампы используются в большинстве современных CCD-сканеров.

Светодиоды (LED) применяются, как правило, в CIS-сканерах, не требуют времени для прогрева и обладают небольшими габаритами и энергопотреблением. В большинстве случаев используются трехцветные светодиоды, меняющие с большой частотой спектр излучаемого света. Светодиоды имеют довольно низкую интенсивность светового потока и неравномерный, ограниченный спектр излучения, поэтому у сканеров с таким источником света страдает качество цветопередачи, увеличивается уровень шума на изображении и снижается скорость сканирования.

Тип датчика сканера. В сканерах МФУ обычно используется один из двух типов датчиков: контактный (CIS) или ПЗС (CCD). CIS представляет собой линейку фотоэлементов, которая равна ширине сканируемой поверхности. Во время сканирования она перемещается под стеклом и строка за строкой передает информацию об изображении на оригинале в виде электрического сигнала. Для освещения обычно используются светодиоды, которые расположены в непосредственной близости от фотолинейки на той же подвижной платформе. Сканеры на базе CIS имеют простую конструкцию, тонкий корпус и небольшой вес, они обычно дешевле сканеров на базе CCD. Основной недостаток CIS состоит в малой глубине резкости.

В традиционной фотографии разрешение определяется максимальным количеством раздельно передаваемых штрихов, приходящихся на 1 мм изображения. В цифровой фотографии разрешение определяется количеством точек в изображении. Чем выше разрешение, тем меньшие детали объекта способна передать фотокамера.На разрешающую способность цифрового изображения влияют характеристики оптики, свойства ЭОП, программные преобразования, производимые процессором ЦФК. Определяется стандартно - путем съемки тест-объектов, как предельная пространственная частота, воспроизводимая ЦФК.

Для матриц вводятся понятия «оптическое разрешение» и «интерполяционное разрешение».

Оптическое разрешение матрицы характеризует шаг дискретизации фиксируемого изображения. Оптическое разрешение выражается в пикселях на дюйм,ppi(pixelsperinch).

Оптическое разрешение фотоматрицы задают двумя способами:

Ее размером в пикселях по горизонтали и по вертикали;

Общим количеством пикселей, которые она содержит. Например: изображение 1600х1200 пикселей или 1.92 млн. пикселей.

Увеличение оптического разрешения достигают или увеличением размеров ПЗС-матрицы, или уменьшением размеров ячейки.

Большинство любительских фотоаппаратов имеют разрешение 8-10 млн пикселов. Для сравнения, оптическое разрешение человеческого глаза составляет порядка 120 млн пикселов, традиционные 35-мм слайды, по разным оценкам, содержат от 10-20 млн элементов изображения.

Интерполяционное разрешение – это программное повышение оптического разрешения. Оно не повышает степень детализации изображения, а лишь понижает его зернистость. При интерполяции ПЗС-матрица считывает графическую информацию на пределе своего оптического разрешения. После этого каждый пиксель изображения разбивается на несколько более мелких пикселей, которым присваиваются усредненные значения цвета соседних, реально считанных пикселей.

4. Шумы матриц

Физический размер матрицы и размер каждого пикселя в отдельности значительно влияют на кол-во шумов. Чем больше физический размер матрицы, тем больше ее площадь и тем больше света на нее попадает, в результате чего полезный сигнал матрицы будет сильнее и соотношение сигнал / шум будет лучше. Это позволяет получать более яркую, качественную картинку с естественными цветами. Так же при большом размере каждого отдельного пикселя, слой изоляции, разделяющий пиксели друг от друга, толще и меньше зарядов ее пробивает, т.е. токов утечки меньше, а соответственно шумов меньше.

Аналогом шумов ПЗС-матрицы у пленок является зернистость.

Все цифровые изображения можно описать несколькими характеристиками, которые определяют их физический размер (число битов памяти, необходимое для хранения файла изображения) и качество. Эти характеристики взаимосвязаны. Так, например, чем выше качество фотографии, тем, как правило, больше размер файла , в котором она хранится. Для того, чтобы определить с чем связано качество цифрового изображения необходимо познакомиться с такими понятиями, как разрешение и графические форматы.

Разрешение

Цифровое изображение формируется из крошечных элементов, называемых пикселами. Пиксел является основным элементом (кирпичиком) растровых изображений. Это единица измерения , принятая в компьютерной графике, аналогичная привычным для нас метру, килограмму или литру в повседневной жизни. Именно количество пикселов в изображении и обозначают термином разрешение .

Чем выше разрешение, тем большее количество пикселов содержит изображение и тем, соответственно, выше качество такого изображения, поскольку изображение с более высоким разрешением характеризуется большим количеством деталей.

При сканировании, а также съемке цифровым фотоаппаратом или видеокамерой осуществляется преобразование аналогового изображения в цифровую форму (оцифровка). В настоящее время для этой цели в основном используются сенсорные устройства.

Сенсоры представляют собой интегральные микросхемы, в которых реализован набор фоточувствительных элементов, конструктивно выполненных в виде линеек (как в планшетных сканерах ) или матриц (как в случае цифровых камер). Чем больше количество элементарных фоточувствительных элементов в сенсоре , тем большее разрешение он обеспечивает.

Сенсоры с небольшим количеством фоточувствительных элементов не позволяют получить изображение с высоким разрешением. В таком изображении отдельные элементы (пикселы) могут быть видны невооруженным глазом, что приводит к проявлению ступенек, т.е. эффекта пикселизации (рис. 2.4).

И наоборот, большое количество очень маленьких cветочувствительных элементов позволяет получать цифровую модель изображения, близкую к оригиналу. В технической документации по эксплуатации сканеров в качестве единиц, определяющих их разрешающую способность, обычно используют количество точек на дюйм - dpi ( dots per inch ). То есть, при установке режима сканирования необходимо задавать разрешение сканера в этих единицах, например, 300 dpi .

ПРИМЕЧАНИЕ

В литературе вместо термина dpi (точек на дюйм) вы можете встретить термин ppi ( pixels per inch ) - пикселов на дюйм. Точка имеет форму круга, а пиксел - квадрата . Однако, для того, чтобы в дальнейшем избежать терминологической путаницы, будем считать единицы измерения разрешения ppi и dpi синонимами.

Разрешение оптическое (физическое) и программное (интерполяционное)

Оптическое разрешение указывает реальное количество светочувствительных элементов в квадратном дюйме (1 дюйм = 2,54 см).

Интерполяционное разрешение является не физической характеристикой цифрового устройства, а характеристикой его программного обеспечения. Поэтому качество изображений, полученных с использованием интерполированного разрешения, зависит от качества алгоритмов интерполяции, реализованных в программе.

Например, в паспорте сканера может быть указано оптическое разрешение 1200 dpi , а разрешение программное - 24000 dpi ..

ПРИМЕЧАНИЕ

Многие профессиональные фотографы отрицательно относятся к увеличению разрешения фотоизображений не аппаратным, а программным путем, так как при уменьшении разрешения данные отбрасываются, а при увеличении - программа их "придумывает". Другими словами, интерполяция искусственно добавляет элементы цифрового изображения, но не увеличивает количество деталей изображения.

Разрешение монитора

Разрешающая способность монитора связана с максимальным количеством точек, которое он может генерировать и их размером, а измеряется числом точек в одной горизонтальной строке и числом горизонтальных строк экрана. При обычном на сегодня размере точки ("зерне") 0,2 мм для 17-дюймовых мониторов стандартным является разрешение 1024x768.

Разрешение принтера

Разрешающая способность лазерного принтера определяется количеством точек, которые принтер может напечатать на одном дюйме ( dpi - dots per inch ). Так, если лазерный принтер имеет разрешение 300 точек на дюйм, то в одном дюйме он может напечатать 300 точек.

Вы можете посмотреть разрешение установленного у вас принтера, выполнив команду Пуск Панель управления Принтеры и факсы (рис. 2.5).


Рис. 2.5.

Разрешение цифровой камеры

В цифровой камере свет, прошедший через объектив, попадает на светочувствительную матрицу (занимающую место пленки) - совокупность сенсоров CCD (ПЗС) или CMOS (КМОП), которые и выполняют оцифровку изображения. В процессе оцифровки изображения с цифровой камеры содержащаяся в нем информация конвертируется в набор чисел, организованных в виде матрицы, называемой битовой матрицей ( bit-map ). При этом каждой фотоячейке сенсора соответствует определенный числовой элемент в битовой матрице .

Светочувствительная матрица (сенсор) является главным (и самым дорогим) компонентом цифровой камеры. Качество снимаемого камерой изображения зависит в основном от разрешения сенсоров и качества оптики фотокамеры.

В цифровых камерах основной единицей измерения разрешения является пиксел и его величина определяется размером отдельной ячейки ПЗС-матрицы.

Для изображений, введенных в компьютер с помощью цифровой камеры, разрешение может быть задано или в виде конкретного числа мегапикселов (мегапиксельный сенсор содержит 1 миллион фоточувствительных ячеек) или как растровое изображение с указанным числом пикселов по горизонтали и вертикали. Например, цифровая камера, имеющая 2,1 мегапиксельное сенсорное устройство, создает файл изображения размером 1792*1200 пиксел (сохраненный в JPEG формате).

Форматы графических изображений

После того, как кадр в цифровом фотоаппарате снят, полученную картинку необходимо записать в память . Для этого чаще всего используются графические форматы JPEG или TIFF . Причем, для фотографа не столько важен формат записи, сколько возможности используемых в них режимов сжатия (желательно - с минимальной потерей качества), а также количество памяти в камере. Поговорим об этом подробнее.

Каждый из существующих сегодня форматов прошел естественный отбор, доказал свою жизнеспособность и практическую ценность. Все они имеют характерные особенности и возможности, делающие их незаменимыми в конкретных сферах применения: Web-дизайне, при печати, ретуши фотографий и других.

Все множество форматов, используемых для записи изображений, можно условно разделить на две категории:

  • хранящие изображение в растровом виде ( BMP , TIFF , JPEG , PNG , GIF и др.);
  • хранящие изображение в векторном виде ( WMF , CDR , AI, FH9 и др.);

Какому формату отдать предпочтение? Профессионалы знают, что лучше сохранять результаты работы в формате, который является "родным" для используемой программы. Например, в Photoshop - PSD, CorelDRAW - CDR , Flash - FLA . Это позволит в максимальной степени реализовать возможности программы и застраховаться от неприятных сюрпризов. Однако в данной лекции мы уделим внимание в основном растровым форматам, поскольку с фотографией приходится работать именно в растровых графических редакторах .

Растровые форматы

Растровое изображение (растр) напоминает сетку (таблицу) пикселов, которая в простейшем черно-белом варианте состоит из двух типов клеточек: белые или черные, и которые могут быть закодированы, соответственно, ноликом или единичкой. В отличие от черно-белого, в цветном RGB -изображении, например, глубиной 24 бита, каждый пиксел кодируется 24-битовым числом, поэтому в каждой ячейке битовой матрицы хранится число из 24 ноликов и единичек.

Теперь перейдем к рассмотрению наиболее распространенных форматов растровых изображений.

BMP

Формат BMP (от слова bitmap ) - это родной формат Windows. Он поддерживается всеми графическими редакторами, работающими под управлением этой операционной системы. Применяется для хранения растровых изображений, предназначенных для использования в Windows, например, в качестве фона вашего рабочего стола . С помощью этого формата вы можете задать глубину цвета от 1 до 24 бит. Предоставляет возможность применения сжатия информации по алгоритму

Здравствуйте, дорогие читатели блога о . Сегодня мы поговорим о таком важном параметре сканирования, как разрешение . Разрешение определяет количество деталей, записываемое . Оно измеряется в точках на дюйм (dots per inch, dpi). Чем больше значение dpi, тем выше разрешение.

Качество изображения повышается вместе с повышением разрешения, но лишь до определенного момента, после которого дальнейшее увеличение разрешения ведет лишь к тому, что файл становится слишком большого размера для того, чтобы им можно было управлять. К тому же, изображения с большим разрешением дольше печатаются. В большинстве случаев разрешения 300 dpi для сканов более чем достаточно.

Говоря о разрешении сканера , не следует забывать о разнице между оптическим разрешением и интерполяции. Оптическое разрешение является «родным» для сканера и зависит от оптики, которая используется в конструкции аппарата. Интерполированное разрешение – это разрешение, увеличенное с помощью специальных программ. И хотя интерполяция может быть полезной в некоторых случаях (например, при сканировании графических рисунков или когда требуется увеличить изображение маленького размера), качество и четкость картинки, полученной таким способом, ниже, чем при использовании только оптического разрешения.

Как выбрать оптимальные настройки разрешения?

Сканирование при высоком разрешении требует больше времени, памяти и дискового пространства. Задавая настройки разрешения, принимайте во внимание тип изображения и метод печати, который вы собираетесь применить в дальнейшем, либо устройство вывода.

Самый простой способ определить необходимое разрешение – это выяснить количество линий на дюйм (значение lpi) устройства вывода изображения и для большей верности умножить это число на два.

Пример: Чтобы «подогнать» отсканированное изображение под стандартный печатающий пресс для журналов со значением lpi 133, просто умножьте 133 на 2. В результате вы получите оптимальное значение разрешение 266 dpi. Однако, если вы собираетесь увеличить изображение после сканирования, помните, что разрешение при этом снизится, поэтому, будьте аккуратнее с масштабированием.

Число lpi варьируется в зависимости от качества печати. Для газеты требуется примерно 85 lpi, для журнала – 133-150 lpi, а для цветной книги может понадобиться от 200 до 300 lpi.

Если вы выводите изображения на монитор (например, для публикации в интернете), нет необходимости с разрешением более 72 dpi, так как мониторы не способны отображать более 72 dpi. Изображение большего разрешения не станет лучше или четче; оно лишь приведет к увеличению размера файла, за счет чего его сложнее будет обрабатывать.

Помните, что чем выше разрешение, тем больше размер файла. Например, цветное фото формата 8.5 на 11 дюймов с разрешением 72 dpi будет «весить» примерно 1.6 мегабайт. Увеличесние разрешения до 150 dpi приведет к увеличению файла до 6.3 мегабайт (примерно в четыре раза)! А при 300 dpi этот же файл будет «весить» уже 26.2 мегабайт.

Таким образом, нужно всегда стараться выбирать самое низкое разрешение из возможных, чтобы сохранить качество изображения и в то же время, получить не слишком большой для удобного использования файл.

Когда нужно высокое разрешение?

Высокое разрешение важно в том случае, если пропускаете изображение через высокотехнологичную систему управления цветом, которая сохраняет при печати все данные, полученные в процессе сканирования. В этом случае высокое разрешение позволит сделать конечное изображение более четким и резким.

Когда использовать интерполированное изображение?

Функция интерполяции полезна для сканирования графических и карандашных рисунков, а также для увеличения изображений маленького размера. Также к этой категории относится любая черно-белая или одноцветная графика, чернильные или карандашные наброски, эскизы или механические светокопии.

Для графики: установите разрешение равное разрешению печатающего устройства. Например, если вы собираетесь распечатывать изображение на устройстве с разрешением 1200 dpi, установите на сканере значение 1200 dpi для получения оптимальных результатов. Это обеспечит большую плавность линий и устранит неровности и расплывчатость.

Для увеличения маленьких оригиналов: Предположим, что вы сканируете 1- или 2-дюймовую фотографию с разрешением 300 dpi, и максимальное оптическое разрешение сканера тоже составляет 300 dpi. Чтобы увеличить изображение в два раза по сравнению с оригиналом без потери деталей, интерполируйте изображение до 600 dpi. Таким образом, изображение сохранит резкость и четкость, а его размер увеличится вдвое.