Регистры modbus tcp. Протокол Modbus: структура сообщения

6.3. MODBUS Serial

Первые сети MODBUS базировались на асинхронных последовательных линиях связи и получили название MODBUS RTU и MODBUS ASCII . На физическом уровне они используют стандартные последовательные интерфейсы с символьным режимом передачи (см. рис.6.1).

В настоящее время в MODBUS-IDA эти сети получили название MODBUS over Serial Line и описаны в соответствующем стандарте. В нем указываются правила и рекомендации использования на канальном и физическом уровне.

Поскольку сеть MODBUS RTU/ASCII может иметь шинную топологию, определен метод доступа к шине - это модель Ведущий/Ведомый. В сетях MODBUS RTU и MODBUS ASCII Процесс Ведущего всегда является Клиентом, а Процессы Ведомых - Серверами. Это значит, что Ведущий отсылает запросы, а Ведомые их обрабатывают. Этот запрос может быть адресован как индивидуальному узлу так и всем Ведомым на шине (broadcast).

На канальном уровне MODBUS RTU/ASCII используется адресация, ориентированная на идентификаторы узлов. Каждый Ведомый должен иметь свой уникальный адрес (1-247), Ведущий не адресуется. При индивидуальных запросах, Ведущий (с клиентским Процессом) формирует кадр с сообщением-запросом и отправляет его по указанному адресу. Ведомый (с серверным Процессом) получает этот кадр и обрабатывает сообщение. После его обработки, Ведомый формирует кадр с сообщением-ответом, и отправляет его обратно Ведущему. Кадр с сообщением-ответом носит также функции кадра подтверждения, которого Ведущий будет ждать от Ведомого течение времени, определенного тайм-аутом.

При широковещательных запросах (broadcast) используется 0-вой адрес. Широковещательные запросы не требуют подтверждения, поэтому после отправки широковещательного кадра, Ведущий не ожидает ответного кадра.

6.3.1. Канальный уровень

На рис.6.11 показан общий вид кадра MODBUS Serial. Обратите внимание, что разграничение между кадрами и тип контрольной суммы здесь не указаны, поскольку это зависит от режима передачи ASCII или RTU. В поле адреса устройства Ведущий (при запросе) указывает адрес получателя, а Ведомый (при ответе) - свой адрес. Поля MODBUS PDU описаны выше.

На временной диаграмме рис.6.12 показаны три типичные ситуации работы модели Ведущий-Ведомый на MODBUS Serial. Первая ситуация - типичный обмен в одноадресном режиме, вторая - в широковещательном, третья - реакция Ведомого на коммуникационную ошибку.

6.3.2. MODBUS RTU

Данный режим предусматривает использование 8 бит данных в 11-битном символе, который позволяет передавать по байту на символ. Формат символа в RTU режиме: 1 стартовый бит, 8 бит данных (младший бит передается первым), 1 бит паритета + 1 стоповый бит или без паритета + 2 стоповых бита.

Формат кадра MODBUS RTU приведен на рисунке 6.13. Разграничение между кадрами производится с помощью пауз между символами. Новый кадр не должен появляться на шине раньше, чем 3.5 * Тс от предыдущего, где Тс - время передачи одного символа. Если отсутствие сигнала на линии (интервал тишины) будет больше чем 1.5 * Тс приемник идентифицирует окончание кадра. С другой стороны, появление нового кадра ранее 3.5 * Тс, тоже приведет к ошибке.

Поле адреса и кода функции в RTU режиме занимают по одному байту, поскольку каждый байт передается одним символом. В качестве контрольной суммы используется два байта, посчитанные по алгоритму CRC16.


6.3.3. MODBUS ASCII

В данном режиме каждый байт сообщения передается как два ASCII символа их шестнадцатеричного представления, т.е. значение байта 03 16 будет передаваться как ASCII-код символов "0" и "3" (0110000 0110011) Таким образом, байты данных, код функции и байт поля проверки будет передаваться кодами символов 0-9, A-F. Формат символа в ASCII-режиме: 1 стартовый бит, 7 битов данных (младший бит передается первым); 1 бит паритета + 1 стоповый бит или без паритета + 2 стоповых бита.

Формат кадра приведен на рис.6.14. Как видим, для разграничения между кадрами используются стартовый символ ":" и стоповая последовательность "CR LF". Приемники на шине непрерывно отслеживают символ ":" который однозначно указывает на начало кадра. Когда он принят, приемники отлавливают поле адреса и т.д. Это очень простой способ синхронизации, который позволяет некритически относиться к паузам между символами (до 1 сек.). Адрес Ведомого и код функции занимают по два символа, согласно значению одного байта. Далее идут n * 2 символов данных, где n количество байт данных. В ASCII режиме для подсчета контрольной суммы используется алгоритм LRC. Причем контрольная сумма проводится над всеми байтами кадра, кроме стартовой и стоповой последовательности символов.

Режим ASCII накладывает меньшие требования на оборудование, за счет использования стартовой и столбовой последовательности в разграничении кадров, и нечувствительности к значительным паузам между символами. Но эти преимущества отражаются на его недостатках. RTU-режим более требователен к интервалам между кадрами, но значительно продуктивнее чем ASCII .

Пример 6.4. MODBUS. Расчет времени опроса ведомых на MODBUS-RTU.

Задача . Построить кадры форматов сообщений запросов и ответов для MODBUS RTU и рассчитать общее время опроса 10-ти аналоговых 16-битных переменных для 4-х ведомых (рис.6.15). Битовая скорость передачи данных - 19200 бит/с. Клиентский Процесс Ведущего (TSX Premium) и серверные Процессы ведомых (ПЛК TSX Micro) принимают сообщения в начале цикла, а отправляют - в конце цикла. Время цикла Ведущего = 10 мс, Ведомого - 5с .

Выполнения задания. Доступ к внутренним аналоговым переменным TSX Micro проводится через 03 или 04 функцию, поэтому формат кадров будет выглядеть как на рис.6.16.

Учитывая, что структура других кадров - аналогичная, приводить их формат нет смысла.
Аналогично рис.6.12 построим временную диаграмму обмена (рис.6.17).

Со стороны клиентского приложения сообщение-запрос формируется с помощью коммуникационной функции, отправка данных которой через коммуникационный порт производится в конце цикла задачи, а получение из порта - в начале цикла. Такое поведение клиентской стороны вполне соответствует многим реализациям для различных ПЛК.

В TSX Micro MODBUS-сервер реализован на уровне операционной системы. Специфика реализации заключается в том, что прием MODBUS-запросов из коммуникационного порта системой проводится в начале цикла, а отправка сообщений-ответов – в конце.

Следует отметить, что реализация MODBUS-сервера может быть поддержана на уровне коммуникационного модуля, а обмен данными с памятью самого устройства производится через коммуникационные буферы. В этом случае реакция MODBUS-сервера будет значительно быстрее и не зависеть от цикла программы. Для расчета времени транзакции для других типов систем необходимо ознакомиться с деталями их реализации.

На рис.6.17 показано, что поступления кадра приходит где-то внутри цикла. Это значит, что их обработка и генерация ответа пройдет примерно через 1,5 цикла. Следует понимать, что это усредненное значение, для наихудшей оценки лучше резервировать 2 времени цикла (т.е. когда кадр пришел сразу после опроса коммуникационного порта). Таким образом время транзакции для одного ПЛК, например PLC1 (ТТ1), будет равна:

ТТ1=С5+T1.req+2*C1+T1.res+C5*2 (6.1)

ТТ1 рассчитан с учетом 2-х циклов затраченных Ведомым на генерацию ответа на сообщение-запрос. Если бы транзакция проводилась не периодически, как по условию задачи, а по возникновению события, то во время транзакции необходимо было бы включить также еще один цикл Ведущего. Несложно вывести время опроса всех ведомых:

ТТall=C5*9+C1*2+C2*2+C3*2+C4*2+T1.req+T1.res+ T2.req+T2.res+ T3.req+T3.res+ T4.req+T4.res (6.2)

Учитывая, что циклы Ведомых одинаковы, а кадры запросов и кадры ответов для всех ведомых имеют одинаковую структуру, общая формула будет иметь следующий вид:

ТТall= C5*9 + C1*8 + (T1.req+T2.req)*4(6.3)

Рассчитаем время T1.req и T2.req.

Время передачи кадра (Тframe) можно ориентировочно рассчитать по количеству символов (Nsymb) в кадре и времени передачи одного символа (Tsymb):

Tframe=Nsymb*Tsymb (6.4)

Время передачи одного символа рассчитывается:

время передачи одного символа = количество бит в символе/битовая скорость;
Время передачи кадров будет равна (див.рис.6.16 и рис.6.17):

T1.req=8*(11/19200)=4,58 мс

T1.res=25*(11/19200)=14,33 мс

TTall=90+40+ (4,58+14,33)*4= 206 мс.

Таким образом, для опроса 10-ти переменных из 4-х Ведомых со скоростью 19200 бит/с необходимо затратить примерно 206 мс. Если необходим периодический опрос, желательно зарезервировать определенное время, например еще дополнительно 100 мс.

В ряде случаев, реализация функций MODBUS-Клиента ложится на операционную систему, а доступ к ним в программе ПЛК происходит через интерфейсные коммуникационные функции. В частности, это характерно для большинства ПЛК от Scneider Electric (Momentum, Quantum, TSX Micro, TSX Premium, M340). В ряде других систем - клиентскую сторону на прикладном уровне необходимо полностью прописывать в программе ПЛК, а интерфейс предоставляется только для обмена с коммуникационным портом. В этом случае система предоставляет сервисы отправки и получения сообщений (которые формирует и анализирует сама программа пользователя), и генерации и проверки контрольной суммы. Рассмотрим пример .

Пример 6.5. MODBUS. Реализация MODBUS-клиента на TSX Twido.

Задача . Записать фрагмент программы в ПЛК Twido для считывания 3-х регистров с Ведомого с адресом 1 (рис.6.18).

Решение . В Twido клиентскую сторону MODBUS необходимо реализовывать через универсальную функцию EXCHx, которая отправляет и/или получает данные через коммуникационный порт с номером x. Параметрами функции являются таблица слов (%MW), в которых размещаются данные управления функцией, данные для отправки и буфер для приема. Если обмен будет проходить через коммуникационный порт 2, то вызов функции будет иметь следующий формат :

EXCH2 %MWy:n,

где y - номер первой переменной выделенной таблицы, n - количество слов в таблице.

Формат таблицы, то есть данных, которые необходимо заполнить, и область данных для приема одинаков для всех типов коммуникаций. Для функций 03/04 (чтение N слов) по MODBUS-RTU эта таблица будет иметь вид, приведенный в табл.6.2).

Таблица параметров состоит из 3-х частей-подтаблиц. В таблице управления функцией задаются параметры самой функции. Так в старшем байте 0-го слова указывается, что эта функция работает в обе стороны, т.е. после отправки данных, необходимо ждать ответа. Младший байт этого же слова указывает на длину таблицы передачи (в данном случае 6 байт), для того чтобы система знала о байтах которые необходимо передать (со 2-го слова по 4-е) и откуда начинается буфер приема (с 5-го слова) . Смещение в передаче и приеме необходимо для выравнивания данных в буферах по словам.

Таблица передачи содержит непосредственно сам запрос, т.е. кадр без кода CRC. Таблица приема - это буфер, который система заполнит кадром ответа, при положительном результате. Таким образом, перед использованием этой функции необходимо построить кадр запроса и ответа за исключением поля CRC (рис.6.19)

Таблица 6.2

Таблица параметров

Индекс в таблице

Старший байт

Младший байт

Таблица управления комм. функцией

01 (тип ф-ции отправка+приём)

06 (длина таблицы передачи)

03 (смещение в приёме)

00 (смещение в передаче)

Таблица передачи

адрес Ведомого

03 (номер функции)

адрес начального регистра

количество регистров

Таблица приёма (сообщение-ответ)

адреса Ведомого

03 (номер функции)

00 (байт для смещения)

счнтчик байт

первый регистр

второй регистр

...

N+6

N-ный регистр

Как видим, в запросе 6 байт. Это количество необходимо вписать в младший байт 0-го слова таблицы. В ответе ожидается 9-байт. Если байты кадра ответа разместить в последовательности слов (в ПЛК Schneider Electric память адресуется словами), то старший байт первого принятого регистра (согласно условию это %MW100) будет находиться на младшем байте 2-го слова буфера, а младший байт принятого регистра придется на старший байт 3-го слова в буфере. Таким образом, все принятые слова будут смещены, и прочитать их будет проблематично. Для устранения этой проблемы в таблице параметров функции есть поле смещения приема, в котором указывается номер байта в буфере приема, который будет сдвигать всю последовательность.

Фрагмент программы будет выглядеть как на рис.6.20.
Верхняя цепочка LD предназначена для заполнения таблицы управления функцией и заполнения таблицы передачи.

Во второй цепочке производится непосредственно вызов функции. Переменная %MSG2.D возвращает логическую "1", когда функция EXCH2 обработана и результат получен. Ее использование не дает "затопить" сеть чрезмерным количеством кадров, ведь пока нет ответа на предыдущий запрос или не прошло время тайм-аута, новый запрос отправлять нельзя.

Последний цепочка предназначена для записи результата чтения в переменные %MW0:3 (таблица с 3-х слов начиная с %MW0). Переменная %MSG2.E будет равной 1-це тогда, когда есть место ошибки в вызове функции.

6.3.4. Реализация физического уровня для MODBUS Serial

В отличие от начальной спецификации, которая ограничивалась описанием кадра, в стандарте MODBUS-IDA описываются также правила для реализации сети на физическом уровне. MODBUS over Serial Line базируется на использовании последовательных интерфейсов RS-485, RS-422 и RS-232.

Для RS-485 определена топология - это шина, в которой предусмотрено три способа подключения устройств (рис.6.21):

- Непосредственно к магистральному (trunk) кабелю, без ответвлений;

- Через пассивную коробку подключения и кабель ответвления (Derivation);

- Через активную коробку и специфический кабель ответвления.

Интерфейсы между кабелями и элементами сети имеют следующие обозначения (см. рис.6.21): ITr - интерфейс к магистральному кабелю; IDv - интерфейс между устройством и пассивной коробкой; AUI - интерфейс между устройством и активной коробкой; LT - терминаторы линии.
Битовые скорости определены равными 9600 бит/с и 19200 бит/с (по умолчанию). Другие скорости являются опциональными. Используется метод кодирования NRZ.

При использовании RS-485 стандарт определяет правила подключения устройств по 2-х проводной и 4-х проводной схеме, а также правила совместимости 2-х проводных и 4-х проводных интерфейсов на единственной линии. Ниже рассмотрено только 2-х проводное подключение, поддержка которого является обязательным.

По сути, 2-х проводное подключение на самом деле является 3-х проводным, так как кроме линий A-(D0 ) и B+(D1 ) используется также общая линия C(Common ), которая является обязательной (рис.6.22) .

Общее количество устройств ограничено: 32 устройства на одном сегменте RS-485 без репитеров (использование репитеров разрешается). Максимальная длина кабеля зависит от скорости, типа кабеля, количества нагрузок и конфигурации сети (2-х проводная или 4-х проводная). Для битовой скорости 9600 и кабеля AWG26 максимальная длина ограничена 1000м. Кабель ответвления должен быть короче 20 м. Если используются мультипортовые коробки с n портами, то каждый кабель ответвления ограничен длиной 40/n м.

Общий сигнальный провод (Common) обязательно соединяется с экраном в одной точке шины, как правило возле узла Ведущего, либо его коробки ответвления.

Для погашения отражения волн на концах линии между D1 и D0 выставляется терминаторы линии (LT). Терминаторы разрешается выставлять только на магистральном кабеле. В качестве терминаторов можно использовать:

- Резистор номиналом 150 Ом и мощностью 0.5 Вт;

- Последовательно соединенные конденсатор (1 нФ, 10 В минимум) и резистор номиналом 120 Ом (0.25 Вт) при использовании поляризации линии

В стандарте MODBUS Serial определены правила реализации защитного смещения (поляризации), которые предусматривают подключение питания номиналом 5 В между D1 и D0 через PullUp и PullDown резисторы для поддержания логической "1" на линии при отсутствии передачи. Номинал резисторов выбирается от 450 Ом до 650 Ом в зависимости от количества устройств (650 Ом при большом количестве). Защитное смещение проводится только в одной точке линии, как правило на стороне Ведущего. Максимальное количество устройств с реализованной поляризацией уменьшается на 4 по сравнению с системой без поляризации. Поляризация является необязательной. Однако коммуникации на устройствах могут давать сбой при отсутствии логического сигнала. Если это так, то поляризацию необходимо реализовывать самостоятельно, или использовать существующие схемы, если таковые предусмотрены устройствами.

Стандарт определяет также механический интерфейс, т.е. типы разъемов, вилок и соответствие сигналов на контактах. В качестве механического терминала можно использовать клемную колодку, экранированный RJ-45 (рис.6.23) или экранированный SUB-D9 разъем (рис.6.24).

В таблице 6.3 указано назначение контактов для коннекторов при 2-х проводном подключением по RS-485, а в таблице 6.4 по RS-232

Таблица 6.3

Предназначение контактов конекторов при подключении по RS-485

номера контактов

требования к наличию

цепь IDv

цепь ITr

название RS-485

комментарий

(см. раздел 3)

RJ45

SUB-D9

опционально

PMC

управление режимом ком. порта

обязательно

D1

B/B"

напряж V1, V1>V0 для лог. "1"

обязательно

D0

A/A"

напряж V0, V0>V1 для лог. "0"

желательно

Питание 5…24 VDC

обязательно

Common

Common

C/C"

Питание и сигнальная земля

Таблица 6.4

Предназначение контактов конекторов при подключении по RS-232

DCE (модем)

контур

DTE

номера контактов

требования к наличию

название

комментарий

(см. раздел 3)

источник

RS-232

требования к наличию

номера

контактов

RJ45

SUB-D9

RJ45

SUB-D9

обязательно

TxD

Transmitted Data

<< DTE

обязательно

обязательно

RxD

Received Data

DCE >>

обязательно

опционально

CTS

Clear to Send

DCE >>

опционально

опционально

RTS

Request to Send

<< DTE

опционально

обязательно

Common

Signal Common

обязательно

В качестве кабелей для 2-х проводного типа соединения стандарт определяет двойную экранированную витую пару категорий 4 (до 600м) или 5 (до 1000м), где в одной паре идут сбалансированные сигналы D0 и D1, а во второй - сигнальная земля Common. Рекомендуемые цвета кабелей: D1 желтый; D0 коричновий; Common серый.

Пример 6.6. MODBUS. Схема сетевых соединений MODBUS RTU.

Задача . Нарисовать схему сетевых соединений для 2-х проводной реализации шины MODBUS RTU со следующими узлами:

- PLC1: VIPA CPU 115SER 6BL32 (Ведущий) через встроенный последовательный порт процессорного модуля;

- PLC2: TSX Twido TWDLMDA40DTK (Ведомый) через коммуникационный модуль TWD NOZ 485T

- PLC3: TSX Twido TWDLMDA40DTK (Ведомый) через коммуникационный модуль TWD NOZ 485T

Решение . На рис.6.25 показана схема сетевых соединений для поставленной задачи. Спецификация сетевых средств дана в таб.6.5.

Как видно из рис.6.25, PLC1 подключается к шине через пассивную коробку, а вернее через клеммную колодку, что в принципе равнозначно. Это вызвано тем, что на ПЛК подключения идет с использованием 9-штекерного SUB-D разъема, что требует разработку собственного кабеля, схема подключения (спая) которого к коннектору и к клеммной колодке показан ниже основной схемы.

Таким образом к вилке КК1 провода кабеля КМ2 необходимо припаять. Назначение пинов розетки SER не совпадает со стандартной. Пины 8 и 3 (соответственно А (D0) и В (D1)) идут в одну пару, затем подключаются к ХТ1:1 и ХТ1:2; 5 и 6 (соответственно M5V (-5В) и P5V (+5 В)) идут в другую витую пару кабеля КМ2. Питания 5В необходимо для того, чтобы реализовать защитное смещение (асимметрию) в соответствии со стандартом. Кроме того M5V является сигнальной землей (Common).

Кабель КМ2 подключается к ХТ1 согласно схеме, показанной на рис.6.25. Экран кабеля соединяется с сигнальной землей в соответствии с требованиями стандарта. Следует напомнить, что ПЛК VIPA в этой системе является Ведущим, следовательно и защитное смещение и соединения экрана с землей необходимо реализовывать именно в этом месте. Защитное смещение производится с помощью питания 5В, которое берется из порта SER и двух резисторов.

Таблица 6.5.

Спецификация сетевых средств

Обозначение

Наименование

Референс

Колич

Примечание

PLC1

ПЛК VIPA 100

VIPA CPU 115SER 6BL32

1 шт.

VIPA

PLC2, PLC3

ПЛК Twido

TWDLMDA40DTK

2 шт.

Schneider Electric

MK1, MK2

коммуникационный модуль для реализации интерфейса RS-485, подключение под винт

TWD NOZ 485T

2 шт.

Schneider Electric

KK1

9-пиновий SUB-D коннектор типа вилка

1 шт.

XT1

клеммная колодка на 4 клеммы

1 шт.

TL1,TL2

терминаторы линии

2 шт

изготовляются с поз. 7 и 8

Резистор 120 Ом (0.25 Вт)

2 шт.

в составе поз.6

Конденсатор 1 нФ (>10 В)

2 шт.

в составе поз поз.6

Ru,Rd

Резистор 500 Ом (0.25 Вт)

2 шт

КМ1

AWG26

300 м

КМ2

кабель двойная экранированная витая пара 5-й категории AWG26

2 м

КМ3

кабель двойная экранированная витая пара 5-й категории AWG26

300 м

PLC2 и PLC3 соединяются с шиной с помощью коммуникационного модуля с клеммной колодкой. Это позволяет реализовать подключение без ответвлений. Однако на колодке не предусмотрено место подключения экрана, поэтому кабель экранируется отдельно.

Терминаторы линий реализованы последовательным соединением резисторов и конденсаторов, поскольку на шине задействовано защитное смещение.

В настоящее время MODBUS Serial используется как на уровне контроллеров так и на уровне датчиков (для распределенной периферии). Его использование проблематично при наличии на шине нескольких устройств SCADA / HMI , которые в клиент-серверной архитектуре должны быть Клиентами, ведь на MODBUS RTU/ASCII только Ведущий может быть Клиентом. Но даже в такой ситуации есть возможность организовать доставку данных всем нуждающимся узлам, если они поддерживают такой режим.

Исходя из указанного, на шине MODBUS Serial можно остановить свой выбор в случае, если:

- все устройства-Серверы поддерживают MODBUS RTU / ASCII в режиме Ведомого;

- необходимо только одно устройство-Клиент, которому необходимо инициировать обмены на шине, поддерживающий MODBUS RTU/ASCII как Ведущий;

- скорость восстановления данных - удовлетворяет условию задачи;
нет необходимости в

Мы разобрали общую структуру протокола ModBus. Сегодня мы рассмотрим разновидность этого протокола — ModBus TCP, которая используется для реализации ModBus в сетях Ethernet.

ModBus TCP всегда работает поверх TCP/IP стека, поэтому не может считаться полноценным ModBus протоколом в его классическом виде.

Основное отличие, которое накладывает TCP/IP на ModBus при их совместном использовании — непосредственное подключение к определённому адресу. Протокол TCP/IP устроен по принципу «клиент-сервер». Для обмена данными клиент открывает сеанс связи с сервером, указывая его адрес.

Переходя на терминологию протокола ModBus ведущее устройство (мастер) в TCP-сети становится клиентом (т.к. именно клиент является инициатором обмена данными), а подчинённое устройство (слейв) — сервером.

Таким образом, для того чтобы передать запрос подчинённому устройству в TCP-сети мастер должен сначала открыть сеанс связи с ним. Причём открытие сеанса реализуется не на уровне протокола ModBus, а на уровне TCP/IP. Поэтому ведущее устройство не может средствами ModBus передавать запросы разным устройствам, так же, как это происходит в ModBus RTU или ASCII.

По этой же причине в ModBus TCP отсутствуют широковещательные сообщения (сразу всем подчинённым устройствам).

Однако, Master-устройство может подключаться к необходимому узлу (слейву) средствами протокола TCP/IP, а затем уже общаться с ним на языке ModBus.

На рисунке рабочее место диспетчера под управлением SCADA-системы является сервером сбора данных и одновременно мастером в сети ModBus TCP. Оно последовательно подключается к каждому удалённому контроллеру, открывая сеанс связи в сети TCP/IP и обменивается с ним ModBus-пакетами.

Безусловно, такой обмен происходит дольше, чем в случае ModBus RTU, т.к. дополнительное время уходит на открытие и закрытие сеанса TCP/IP. Однако, это даёт возможность объединить устройства находящиеся на значительном удалении витой парой или даже по WiFi.

Кроме того, протокол ModBus TCP может использоваться в сетях со шлюзом, где шлюз является интеллектуальным устройством и маршрутизирует сообщения остальным устройствам сети ModBus.

При такой конфигурации клиент сети TCP (он же мастер сети ModBus) подключается к шлюзу (серверу) и ведёт общение только с ним. Шлюз же переадресует сообщение внутри шины ModBus (RTU или ASCII) тому устройству, адрес которого указан в ModBus-пакете.

Структура пакета ModBus TCP

Сначала вспомним структуру классического ModBus-пакета (RTU или ASCII):

Он состоит из четырёх блоков: адрес слейва, номер функции, блок данных и блок контроля чётности.

А вот так выглядит структура пакета ModBus TCP:

Как вы можете видеть, в пакете ModBus TCP по сравнению с ModBus RTU добавлены блоки идентификаторов обмена и протокола, а так же от отсутствует блок контроля подлинности пакета. Последнее объясняется тем, что контроль целостности пакета обеспечивается средствами протокола TCP/IP, поэтому отпадает необходимость в его ModBus-реализации.

Рассмотрим что означает каждый из блоков пакета ModBus TCP:

  • id обмена — чаще всего два нуля. Применяется только в том случае, если мастер отсылает подчинённому устройству несколько запросов подряд без ожидания ответа. При этом id позволяет затем понять какому из запросов какой ответ соответствует.
  • id протокола — всегда нули, не применяется. Поле оставлено в качестве резерва для будующих применений.
  • длина пакета — совокупная длина блоков «адрес», «номер функции» и «данные». Длина пакета передаётся двумя байтами, первым из которых идет старший.
  • адрес ведомого устройства — аналог такого же блока в структуре пакета ModBus RTU, но обычно не используется, т.к. ,как уже говорилось, в ModBus TCP мастер и так открывает сеанс обмена только с одним слейвом (у которого, конечно, есть и IP адрес в сети TCP/IP). Данное поле используется только в варианте ModBus TCP-сети со шлюзом. Тогда шлюз сам перенаправляет пакет по указанному адресу.
  • поля код функции и данные аналогичны соответствующим полям в классическом ModBus-пакете.

Данная статья описывает основы работы с протоколом Modbus. В статье вы можете найти:

  • Описание Modbus
  • Пример применения
  • Описание программы Onitex Modbus Terminal

Основные принципы Modbus

Modbus — коммуникационный протокол, основанный на клиент-серверной архитектуре. В данной статье мы рассмотрим основы протокола и базовые принципы работы. Кроме того, вы можете ознакомиться с конкретными примерами работы протокола Modbus, изучив описания контроллеров, использующих этот протокол, к примеру, OSM-17RA, а так же скачав программу Modbus Terminal, позволяющую удобно работать с различными регистрами Modbus.

Протокол Modbus разработан для использования в программируемых логических контроллерах, таких, как управление электроприводом. В настоящее время является очень распространенным протоколом, используемых в различных промышленных системах. К примеру, данный протокол используется в контроллерах шаговых двигателей Онитекс. Широко используется для передачи данных последовательные линии связи, основанных на интерфейсах RS-485, RS-422, RS-232. В начале развития применялся интерфейс RS-232, как один из наиболее простых промышленных интерфейсов для последовательной передачи данных. В настоящее время протокол часто используется поверх интерфейса RS-485, что позволяет добиться высокой скорости передачи, больших расстояний и объединения нескольких устройств в единую сеть, тем более что протокол Modbus поддерживает адресацию. Широкая распространенность протокола Modbus, обусловленная его простотой и надежностью, позволяет легко интегрировать устройства, поддерживающие Modbus, в единую сеть.

Основной особенностью протокола является наличие в сети одного ведущего устройства - master. Только ведущее устройство может опрашивать остальные устройства сети, которые являются ведомыми (slave). Подчиненное устройство не может самостоятельно инициировать передачу данных или запрашивать какие-либо данные у других устройств, работа сети строится только по принципу "запрос-ответ". Мастер может так же выдать широковещательный запрос, адресованный всем устройствам в сети, в таком случае ответное сообщение не посылается.

Существует три типа протокола Modbus: Modbus ASCII, Modbus RTU и Modbus TCP. Устройства Onitex поддерживают протокол Modbus RTU, поэтому мы в дальнейшем будем иметь в виду прежде всего этот протокол.

Пакет данных в Modbus выглядит следующим образом:

Адрес | Код функции | Данные | Контрольная сумма.

Адрес - это поле, содержащее номер устройства, которому адресован запрос. Каждое устройство в сети должно иметь уникальный адрес. Устройство отвечает только на те запросы, которые поступают по его адресу, во избежание конфликтов. При этом, ведомое устройство в своем ответе так же посылает поле Адрес , кроме широковещательного запроса (когда ответа от ведомого быть вообще не должно).

Код функции содержит номер функции модбаса (о функциях будет сказано ниже). Функция может запрашивать данные или давать команду на определенные действия. Коды функций являются числами в диапазоне от 1 до 127. Функции с номерами от 128 до являются зарезервированными для пересылки в ответном сообщении информации об ошибках.

В поле Данные содержится информация, которую передает мастер слэйву, либо наоборот в случае ответного сообщения. Длина этого поля зависит от типа передаваемых данных.

Поле Контрольная сумма является важным элементом протокола: в нем содержится информация, необходимая для проверки целостности сообщения и отсутствия ошибок передачи.

Максимальный размер пакета для сетей RS232/RS485 — 256 байт, для сетей TCP — 260 байт.

Существует три типа функций:

  1. Стандартные. Описание этих функций опубликовано и утверждено Modbus-IDA. Эта категория включает в себя как опубликованные, так и свободные в настоящее время коды.
  2. Пользовательские. Два диапазона кодов (от 65 до 72 и от 100 до 110), для которых пользователь может создать произвольную функцию.
  3. Зарезервированные. В эту категорию входят коды функций, не являющиеся стандартными, но уже используемые в устройствах, производимых различными компаниями. К этим кодам относятся 9, 10, 13, 14, 41, 42, 90, 91, 125, 126 и 127.

Modbus RTU

При использовании режима Modbus RTU сообщение начинается с так называемого интервала тишины, равного времени передачи 3.5 символов, при заданной скорости обмена. Первым полем передается адрес устройства. Вслед за последним передаваемым символом также следует интервал тишины продолжительностью не менее 3.5 символов. Новое сообщение может начинаться после этого интервала. Фрейм сообщения передаётся непрерывно. Если интервал тишины продолжительностью 1.5 возник во время передачи фрейма, принимающее устройство должно игнорировать этот фрейм как неполный. Если новое сообщение начнется раньше интервала 3.5 символа, принимающее устройство воспримет его как продолжение предыдущего сообщения. В этом случае устанавливается ошибка CRC (несовпадение контрольной суммы).

Типы данных и стандартные функции Modbus

Типы данных протокола Modbus представлены в таблице:

Для чтения значений из этих выше таблиц данных используются функции с кодами 1—4 (0x01—0x04) :
1 (0x01) — чтение значений из нескольких регистров флагов (Read Coil Status)
2 (0x02) — чтение значений из нескольких дискретных входов (Read Discrete Inputs)
3 (0x03) — чтение значений из нескольких регистров хранения (Read Holding Registers)
4 (0x04) — чтение значений из нескольких регистров ввода (Read Input Registers)

Запрос состоит из адреса первого элемента таблицы, значение которого требуется прочитать, и количества считываемых элементов. Адрес и количество данных задаются 16-битными числами, старший байт каждого из них передается первым.
В ответе передаются запрошенные данные. Количество байт данных зависит от количества запрошенных элементов. Перед данными передается один байт, значение которого равно количеству байт данных.

Запись одного значения происходит при помощи следующих функций:
5 (0x05) — запись значения одного флага (Force Single Coil)
6 (0x06) — запись значения в один регистр хранения (Preset Single Register)

Команда состоит из адреса элемента (2 байта) и устанавливаемого значения (2 байта). Если команда выполнена успешно, ведомое устройство возвращает копию запроса.

Запись нескольких значений задается функциями:
15 (0x0F) — запись значений в несколько регистров флагов (Force Multiple Coils)
16 (0x10) — запись значений в несколько регистров хранения (Preset Multiple Registers)

Команда состоит из адреса элемента, количества изменяемых элементов, количества передаваемых байт устанавливаемых значений и самих устанавливаемых значений. В ответе ведомый передает начальный адрес и количество изменённых элементов.

Пример устройства Modbus

Рассмотрим работу протокола на примере контроллера шагового двигателя. В документации на контроллер описано назначение регистров Modbus, которые в нем использованы. Для управления двигателем необходимо задать параметры контроллера, параметры вращения и непосредственно команду. Вся работа с контроллером при использовании протокола Модбас сводится к работе с регистрами, то есть чтению и записи. Наш контроллер имеет всего один тип регистров: Holding Registers. Этот тип регистров предназначен как для чтения, так и для записи параметров. В контроллере использовано три типа регистров: 8, 16 и 32 бита. Таким образом, для работы с ним нам понадобится использование всего лишь нескольких функций: Read Holding Registers для чтения, Preset Single Register для записи регистров размерностью 8 и 16 бит, и Preset Multiple Registers для записи дначений в регистры длиной 32 бита.

Для начала работы с контроллером необходимо установить параметры контроллера и вращения. Делается это последовательной записью нужных параметров в регистры согласно документации, используя необходимые функции. При этом, каждая запись параметра вызывает соответствующий обработчик в контроллере, который по необходимости проверяет диапазоны значений или проводит другие необходимые действия. По сути, контроллер производит прерывание по изменению значения в регистре. Такая возможность существенно расширяет возможности применения протокола Modbus.

После записи всех параметров производится запись самой команды в соответствующий регистр. Такая организация работы с протоколом Modbus весьма удобна для практического применения, так как позволяет обходиться всего лишь тремя стандартными функциями. Во время выполнения команды доступ во все регистры сохраняется, в частности, мы можем прочитать значение счетчика позиции, при необходимости обнулить его, изменить скорость, либо задать новую команду, не дожидаясь выполнения старой. Еще одной особенностью применения протокола Modbus является то, что все регистры сохраняют свои значения до их перезаписи, поэтому, если нам необходимо повторить движение с теми же параметрами, мы протсо записываем команду движения в регистр команд и двигатель повторяет прошлое задание. Это не только упрощает управление, но и уменьшает траффик между контроллером двигателя и управляющим устройством.

Таким образом, использование протокола Modbus позволило сделать управление шаговым двигателем очень простым, качественным и надежным.

Для отладки устройств с протоколом Modbus нами разработана программа OSM Modbus Terminal. Данная программа позволяет быстро освоить основные принципы управления устройствами OSM MB по протоколу Modbus RTU, проверить корректную работу устройства и быст-рее написать собственное программное обеспечение. Скачать программу можно в разделе Программное обеспечение на нашем сайте.

Программа представляет собой карту регистров, каждому из которых можно задать адрес, тип значения и название. В каждом регистре имеется возмож-ность чтения и записи значения. В окне «LogOut» можно наблюдать вывод лога по результатам каждого действия, в т. ч. и возникшие ошибки.

Для начала работы с программой необходимо установить адрес порта ПК и адрес устройства, и нажать кнопку «Connect». После этого можно производить чтение и запись в требуемые регистры. При необходимости можно сохранить названия и адреса используемых регистров кнопкой «Save». Программа написана с использованием OsmModbusDriver_SDK и может служить примером использования SDK.

Все права защищены. Перепечатка материалов с сайта возможно только с разрешения администрации

Пришло время рассмотреть еще одну вариацию протокола Modbus Modbus ASCII . Эта версия протокола использует для передачи данных только символы ASCII, которыми кодирует шестнадцатеричное представление бинарных данных. Немного не понятно и запутано? Это ничего, welcome под кат и давайте рассмотрим, с чем же мы имеем дело.

Разделитель пакетов

Первое отличие протокола Modbus ASCII от Modbus RTU – у него есть разделитель между пакетами. Если в Modbus RTU все пакеты шли один за одним (практически, там должна быть небольшая задержка на линии между пакетами, порядка 2-5мс), то в Modbus ASCII каждый новый пакет должен начинаться со специального символа разделителя.

По стандарту Modbus RTU между пакетами нужна задержка в 3.5 символа (это время, которое нужно для передачи 3.5 символов по линии связи, зависит от скорости передачи). Эта задержка используется, что бы детектировать новый запрос от мастера. Т.е. эта задержка указывает начало нового запроса. Но когда стали использовать модемы, это перестало работать. На модеме невозможно выдержать нужное время. Поэтому решили использовать новый вариант протокола — Modbus ASCII . Этот вариант устраняет многие неудобства при работе с модемом: есть специальный символ разделитель пакетов и используются только видимые символы ASCII.

Так вот, таким символом начала пакета служит символ двоеточие с шестнадцатеричным кодом 0x3A . А конец каждого пакета помечается символами новой строки и перевода каретки – 0x0D 0x0A . Таким образом, из протокола полностью убирается зависимость от задержек между байтами. Т.е. если модем задержит байт, это не вызовет недопонимания на стороне клиента. И он будет ждать окончания пакета байтами 0x0D 0x0A . А если встретит символ разделителя 0х3А – сбросит буфер и начнем формировать пакет заново. Кроме того нет необходимости в экранировании спец символов модема, так как данные не используют символы из начальной секции ASCII таблицы.

Представление байтов данных

В Modbus ASCII протоколе каждый байт данных представлен в виде 2 байтов. Каждый байт представляет собой ASCII символ в шестнадцатеричном представлении. Что бы легче было понять, приведем пример:

Немного объяснений для таблицы.

Например, нам нужно передать байт данных, который хранит символ # . Этот символ имеет в таблице ASCII шестнадцатеричный код 0x23 . В протоколе Modbus RTU мы просто передаем байт со значением 0x23 .

Если мы хоти передать тот же символ через протокол Modbus ASCII , нам нужно уже передавать 2 байта. На первом этапе мы получаем шестнадцатеричный код символа, 0x23 . На втором этапе мы кодируем это значение при помощи двух символов ASCII – 2 и 3 . И на третьем этапе мы передаем два байта данных, первый — это шестнадцатеричное значение символа 2 , второй байт — это шестнадцатеричное значение символа 3 .

Таким образом, диапазон значений для байта данных в протоколе Modbus RTU 0 .. 0xFF

Диапазон значений для байта данных в протоколе Modbus ASCII – только символы, необходимые для отображения шестнадцатеричных цифр, т.е. 0 – 9, A, B, C, D, E, F (все заглавные).

Контрольная сумма для Modbus ASCII

В протоколе Modbus RTU используется 2 байтная контрольная сумма, которая помогает детектировать поврежденные запросы. В протоколе Modbus ASCII так же есть контрольная сумма – LRC (Longitudinal Redundancy Check) .

Вычисление LRC намного проще, чем вычисление CRC . Что бы высчитать LRC вам нужно сделать следующие:

  • Сложить вместе все байты в сообщении Modbus ASCII , до того, как они сконвертированы в в символы ASCII. Не включаются в вычисления стартовый символ двоеточия и завершающие символы CR/LF .
  • Обнулить все биты больше 8 (т.е. оставить младший байт)
  • Сделать результирующий байт отрицательным чтобы получить LRC байт

Таким образом, если затем сложить все байты пакета данных и байт LRC мы получим в результате 0. Это и есть самая быстрая проверка корректности пакета данных.

Ниже приведен пример вычисления LRC для конкретного запроса Modbus ASCII .

Для примера возьмем запрос на чтение регистров #40108 — #40110 с устройства с адресом 17

Запрос: 11 03 00 6B 00 03
Данные (Десятичные) Данные (HEX) Данные (Двоичные)
17 11 0001 0001
3 03 0000 0011
0 00 0000 0000
107 6B 0110 1011
0 00 0000 0000
3 03 0000 0011

Теперь посчитаем сумму всех байт

Вот это отрицательное число (-130 или 0x7E ) и есть LRC запроса.

Эта контрольная сумма добавляется к запросу в виде 2 ASCII символов – 7 и E .

Т.е. в конце запроса нужно добавить 2 байта со значением 37 и 45 .

Примеры Modbus RTU и Modbus ASCII запросов

Что бы лучше понять, как все это работает, посмотрите пару простых примеров.

Возьмем наш запрос на чтение регистров #40108 — #40110 с устройства с адресом 17

Запрос: 11 03 00 6B 00 03

Это Modbus RTU запрос без последних двух байтов CRC . Теперь преобразуем этот запрос из Modbus RTU в Modbus ASCII . Для этого добавляем в начало запроса символ двоеточия, в конец запроса символ перевода строки и возврата каретки, а каждый байт представим в виде ASCII символов, соответствующих шестнадцатеричному представлению каждого байта запроса. В итоге у нас получиться такой запрос (в виде ASCII символов, или попросту в виде текстовой строки). Так же в конец запроса добавляем LRC .

: 1 1 0 3 0 0 6 B 0 0 0 3 7 E CR LF

Теперь просто нужно передать данный запрос в порт, используя коды ASCII символов. В бинарном виде запрос будет выглядеть так:

3A 3131 3033 3030 3642 3030 3033 3745 0D 0A
Индекс байта Значение HEX ASCII Описание
0 3A : Символ начала
1-2 31 31 11 Адрес устройства
3-4 30 33 03 Код команды
5-8 30 30 36 42 00 6B Адрес HOLDING регистра, с которого нужно начинать чтение. В данном случае 0х006B = 107. Но это не адрес, а смещение от адреса 40001. Т.е. реальный адрес = 107+ 40001 = 40108.
9-12 30 30 30 33 00 03 Количество регистров, которые нужно прочитать. 0х0003 = 3. Т.е. читать нужно регистры 40108– 40110.
13 – 14 37 45 7E LRC запроса
15 CR 0D Символ перевода каретки
16 LF 0A Символ новой строки

Одним из преимуществ Modbus является отсутствие необходимости в специальных интерфейсных контроллерах (Profibus и CAN требуют для своей реализации заказные микросхемы), простота программной реализации и элегантность принципов функционирования. Все это снижает затраты на освоение стандарта как системными интеграторами, так и разработчиками контроллерного оборудования. Высокая степень открытости протокола обеспечивается также полностью бесплатными текстами стандартов, которые можно скачать с сайта www.modbus.org.

В России Modbus по распространенности конкурирует только с Profibus. Популярность протокола в настоящее время объясняется, прежде всего, совместимостью с большим количеством оборудования, которое имеет протокол Modbus. Кроме того, Modbus имеет высокую достоверность передачи данных, связанную с применением надежного метода контроля ошибок. Modbus позволяет унифицировать команды обмена благодаря стандартизации номеров (адресов) регистров и функций их чтения-записи.

Основным недостатком Modbus является сетевой обмен по типу "ведущий/ведомый", что не позволяет ведомым устройствам передавать данные по мере их появления и поэтому требует интенсивного опроса ведомых устройств ведущим.

Разновидностями Modbus являются протоколы Modbus Plus [Modicon ] - многомастерный протокол с кольцевой передачей маркера и Modbus TCP [Modbus ], рассчитанный на использование в сетях Ethernet и интернет.

Протокол Modbus имеет два режима передачи: RTU (Remote Terminal Unit – «удаленное терминальное устройство») и ASCII. Стандарт предусматривает, что режим RTU в протоколе Modbus должен присутствовать обязательно, а режим ASCII является опционным. Пользователь может выбирать любой из них, но все модули, включенные в сеть Modbus, должны иметь один и тот же режим передачи.

Мы рассмотрим только протокол Modbus RTU, поскольку Modbus ASCII в России практически не используется. Отметим, что Modbus ASCII нельзя путать с частно-фирменным протоколом DCON, который используется в модулях фирм Advantech и ICP DAS и не соответствует стандарту Modbus.

Стандарт Modbus предусматривает применение физического интерфейса RS-485, RS-422 или RS-232. Наиболее распространенным для организации промышленной сети является 2-проводной интерфейс RS-485. Для соединений точка-точка может быть использован интерфейс RS-232 или RS-422.

В стандарте Modbus имеются обязательные требования, рекомендуемые и опционные (необязательные). Существует три степени соответствия стандарту: «полностью соответствует» - когда протокол соответствует всем обязательным и всем рекомендуемым требованиям, «условно соответствует» - когда протокол соответствует только обязательным требованиям и не соответствует рекомендуемым, и «не соответствует».

Модель OSI протокола Modbus содержит три уровня: физический, канальный и прикладной.

По умолчанию в RTU режиме бит паритета устанавливают равным 1, если количество двоичных единиц в байте нечетное, и равным 0, если оно четное. Такой паритет называют четным (even parity) и метод контроля называют контролем четности .

Стартовый бит

Бит паритета

Рис. 2.26. Последовательность битов в режиме RTU; МЗР – младший значащий разряд. При отсутствии бита паритета на его место записывается второй стоп-бит

При четном количестве двоичных единиц в байте бит паритета может быть равен 1. В этом случае говорят, что паритет является нечетным (odd parity).

Контроль четности может отсутствовать вообще. В этом случае вместо бита паритета должен использоваться второй стоповый бит. Для обеспечения максимальной совместимости с другими продуктами рекомендуется использовать возможность замены бита паритета на второй стоповый бит.

Ведомые устройства могут воспринимать любой из вариантов: четный, нечетный паритет или его отсутствие.

Структура Modbus RTU сообщения

Сообщения Modbus RTU передаются в виде кадров, для каждого из которых известно начало и конец. Признаком начала кадра является пауза (тишина) продолжительностью не менее 3,5 шестнадцатеричных символов (14 бит). Кадр должен передаваться непрерывно. Если при передаче кадра обнаруживается пауза продолжительностью более 1,5 шестнадцатеричных символа (6 бит), то считается, что кадр содержит ошибку и должен быть отклонен принимающим модулем. Эти величины пауз должны строго соблюдаться при скоростях ниже 19200 бит/с, однако при более высоких скоростях рекомендуется использовать фиксированные значения паузы, 1,75 мс и 750 мкс соответственно.

Контроль ошибок

В режиме RTU имеется два уровня контроля ошибок в сообщении:

    контроль паритета для каждого байта (опционно);

    контроль кадра в целом с помощью CRC метода.

CRC метод используется независимо от проверки паритета. Значение CRC устанавливается в ведущем устройстве перед передачей. При приеме сообщения вычисляется CRC для всего сообщения и сравнивается с его значением, указанным в поле CRC кадра. Если оба значения совпадают, считается, что сообщение не содержит ошибки.

Стартовые, стоповые биты и бит паритета в вычислении CRC не участвуют.

2.8.3. Прикладной уровень

Прикладной уровень Modbus RTU версии 1.1а описан в [Modbus ]. Он обеспечивает коммуникацию между устройствами типа "ведущий/ведомый". Прикладной уровень является независимым от физического и канального, в частности, он может использовать протоколы Ethernet TCP/IP (Modbus TCP/IP), Modbus Plus (многомастерная сеть с передачей маркера), интерфейсы RS-232, RS-422, RS-485, оптоволоконные, радиоканалы и другие физические среды для передачи сигналов.

Прикладной уровень Modbus основан на запросах с помощью кодов функций . Код функции указывает ведомому устройству, какую операцию оно должно выполнить.

При использовании протокола прикладного уровня с различными протоколами транспортного и канального уровня сохраняется неизменным основной блок Modbus-сообщения, включающий код функции и данные (этот блок называется PDU - "Protocol Data Unit" - "элемент данных протокола"). К блоку PDU могут добавляться дополнительные поля при использовании его в различных промышленных сетях и тогда он называется "ADU " - "Application Data Unit" - "элемент данных приложения".

Коды функций

Стандартом Modbus предусмотрены три категории кодов функций: установленные стандартом, задаваемые пользователем и зарезервированные.

Коды функций являются числами в диапазоне от 1 до 127. Коды в диапазоне от 65 до 72 и от 100 до 110 относятся к задаваемым пользователем функциям, в диапазоне от 128 до 255 зарезервированы для пересылки кодов ошибок в ответном сообщении. Код «0» не используется.

Коды ошибок используются ведомым устройством, чтобы определить, какое действие предпринять для их обработки. Значения кодов и их смысл описаны в стандарте на Modbus RTU [Modbus ].

Обозначение регистра

HEX адрес регистра

Что читается или записывается

Код функции чтения регистра

Код функции записи в регистр

Примечание

Дискр. выход 0

Дискр. выход 1

Дискр. вход 0

Дискр. вход 1

Дискр. вход 2

Дискр. вход 3

Дискр. вход 4

Дискр. вход 5

Дискр. вход 6

Дискр. вход 7

Дискр. вход 8

Дискр. вход 9

Дискр. вход 10

Дискр. вход 11

Дискр. вход 12

Дискр. вход 13

Дискр. вход 14

Дискр. вход 15

Имя модуля

Версия программы

Адрес модуля

0001h-00 F7h (Допустимый диапазон значений)

Скорость UART

(Допустимый диапазон значений)

Протокол

0000h– ASCII,

Значение на выходе после включения питания модуля Power On Value0

0000h-0003 h (Допустимый диапазон значений)