Резонансные явления в электрических цепях.

>> Резонанс в электрической цепи

§ 35 РЕЗОНАНС В ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

При изучении вынужденных механических колебаний мы ознакомились с явлением резонанса . Резонанс наблюдается в том случае, когда собственная частота колебаний системы совпадает с частотой изменения внешней силы. Если трение мало, то амплитуда установившихся вынужденных колебаний при резонансе резко увеличивается. Совпадение вида уравнений для описания механических и электромагнитных колебаний (позволяет сделать заключение о возможности резонанса также и в электрической цепи, если эта цепь представляет собой колебательный контур, обладающий определенной собственной частотой колебаний.

При механических колебаниях резонанс выражен отчетливо при малых значениях коэфициента трения . В электрической цепи роль коэффициента трения выполняет ее активное сопротивление R. Ведь именно наличие этого сопротивления в цепи приводит к превращению энергии тока но внутреннюю энергию проводника (проводник нагревается). Поэтому резонанс в электрическом колебательном кон-lype должен быть выражен отчетливо при малом активном сопротивлении R.

Мы с вами уже знаем, что если активное сопротивление мало, то собственная циклическая частота колебаний в контуре определяется формулой

При вынужденных электромагнитных колебаниях возможен резонанс - резкое возрастание амплитуды колебаний силы тока и напряжения при совпадении частоты внешнего переменного напряжения с собственной частотой колебаний. На явлении резонанса основана вся радиосвязь.

1. Может ли амплитуда силы тока при резонансе превысить силу постоянного тока в цепи с таким же активным сопротивлением и постоянным напряжением, равным амплитуде переменного напряжения!
2. Чему равна разность фаз между колебаниями силы тока и напряжения при резонансе!
3. При каком условии резонансные свойства контура выражены наиболее отчетливо!

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Книги и учебники согласно календарному плануванння по физике 11 класса скачать , помощь школьнику онлайн

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Резонансом называется такой режим пассивной цепи, содержащей катушки индуктивности и конденсаторы, при котором ее входное реактивное сопротивление или ее входная реактивная проводимость равны нулю. При резонансе ток на входе цепи, если он отличен от нуля, совпадает по фазе с напряжением.

Рассмотрим последовательное соединение сопротивления, индуктивности и емкости (рис. 3-8). Такую цепь часто называет последовательным контуром. Для нее наступает резонанс, когда или , т. е.

При значения противоположных по фазе напряжений на индуктивности и емкости равны (рис. 3-11, б), поэтому резонанс в рассматриваемой цепи называют резонансом напряжений.

Напряжения на индуктивности и емкости при резонансе могут значительно превышать напряжение на зажимах цепи, которое равно напряжению на активном сопротивлении. Полное сопротивление цепи при минимально: , а ток при заданном

напряжении U достигает наибольшего значения . В теоретическом случае при полное сопротивление цепи в режиме резонанса также равно нулю, а ток при любом конечном значении напряжения U бесконечно велик. Точно так же бесконечно велики напряжения на индуктивности и емкости.

Из условия следует, что резонанса можно достичь, изменяя либо частоту напряжения источника, либо параметры цепи - индуктивность или емкость. Угловая частота, при которой наступает резонанс, называется резонансной угловой частотой

Индуктивное и емкостное сопротивления при резонансе

Величина называется характеристическим сопротивлением цепи или контура.

Отношение напряжения на индуктивности или емкости к напряжению, приложенному к цепи, при резонансе

называют добротностью контура или коэффициентом резонанса. Коэффициент резонанса указывает, во сколько раз напряжение на индуктивности или на емкости при резонансе больше, чем напряжение, приложенное к цепи: если . Наименование «добротность» контура будет разъяснено в следующем параграфе.

Для уяснения энергетических процессов при резонансе определим сумму энергий магнитного и электрического полей цепи Пусть ток в контуре . Тогда напряжение на емкости

Суммарная энергия

и, следовательно,

т. е. сумма энергий магнитного и электрического полей с течением времени не изменяется. Уменьшение энергии электрического поля сопровождается увеличением энергии магнитного поля и наоборот. Хаким образом, наблюдается непрерывный переход энергии из электрического поля в магнитное поле и обратно.

Энергия, поступающая в цепь от источника питания, в любой момент времени целиком переходит в тепло. Поэтому для источника питания вся цепь эквивалентна одному активному сопротивлению.

Наименование «резонанс» для рассмотренного режима цепи заимствовано из теории колебаний. Как известно, резонансом называется процесс вынужденных колебаний с такой частотой, при которой интенсивность колебаний при прочих равных условиях максимальна. Но характеризовать интенсивность колебательного процесса можно по различным проявлениям, максимумы которых наблюдаются при различных частотах. Поэтому нужно условиться о критерии резонанса.

В электрической цепи колеблются заряды. Можно было бы взять за критерий резонанса максимум амплитудного значения заряда на емкости, что соответствует максимальной амплитуде напряжения на емкости. Этот критерий определяет амплитудный резонанс. Для принятого в начале параграфа критерия резонанса ток при резонансе совпадает по фазе с приложенным напряжением, это так называемый фазовый резонанс. В рассматриваемой схеме (рис. 3-8) фазовый резонанс наступает при максимальной скорости движения колеблющихся зарядов или максимуме тока.

Если заряженный конденсатор замкнуть на катушку индуктивности, то в такой цепи при достаточно малом сопротивлении катушки наблюдается процесс затухающих колебаний напряжений и тока. Частота этих колебаний называется частотой собственных или свободных колебаний. Отметим, что частоты, при которых наблюдаются фазовый и амплитудный резонансы, не совпадают с частотой собственных колебаний (они совпадают только в теоретическом случае, когда сопротивление цепи равно нулю). Принятый здесь критерий резонанса применим и в том случае, когда в цепи вследствие большого сопротивления собственные колебания невозможны.

САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

Электрические цепи переменного тока Явление резонанса.

Выполнил:

Антропов А. И.

Проверила:

Бородина А. В.

Самара 2009

Электрические цепи переменного тока. Явление резонанса

Явление резонанса относится к наиболее важным с практической точки зрения свойствам электрических цепей. Оно заключается в том, что электрическая цепь, имеющая реактивные элементы обладает чисто резистивным сопротивлением .

Общее условие резонанса для любого двухполюсника можно сформулировать в виде Im[Z ]=0 или Im[Y ]=0, где Z и Y комплексное сопротивление и проводимость двухполюсника. Следовательно, режим резонанса полностью определяется параметрами электрической цепи и не зависит от внешнего воздействия на нее со стороны источников электрической энергии.

Для определения условий возникновения режима резонанса в электрической цепи нужно:

· найти ее комплексное сопротивление или проводимость;

· выделить мнимую часть и приравнять нулю.

Все параметры электрической цепи, входящие в полученное уравнение, будут в той или иной степени влиять на характеристики явления резонанса.

Уравнение Im[Z ]=0 может иметь несколько корней решения относительно какого-либо параметра. Это означает возможность возникновения резонанса при всех значениях этого параметра, соответствующих корням решения и имеющих физический смысл.

В электрических цепях резонанс может рассматриваться в задачах:

· анализа этого явления при вариации параметров цепи;

· синтеза цепи с заданными резонансными параметрами.

Электрические цепи с большим количеством реактивных элементов и связей могут представлять значительную сложность при анализе и почти никогда не используются для синтеза цепей с заданными свойствами, т.к. для них не всегда возможно получить однозначное решение. Поэтому на практике исследуются простейшие двухполюсники и с их помощью создаются сложные цепи с требуемыми параметрами.

Сдвиг фаз между током и напряжением. Понятие двухполюсника

Простейшими электрическими цепями, в которых может возникать резонанс, являются последовательное и параллельное соединения резистора, индуктивности и емкости. Соответственно схеме соединения, эти цепи называются последовательным и параллельным резонансным контуром . Наличие резистивного сопротивления в резонансном контуре по определению не является обязательным и оно может отсутствовать как отдельный элемент (резистор). Однако при анализе резистивным сопротивлением следует учитывать по крайней мере сопротивления проводников.

Последовательный резонансный контур представлен на рис. 1 а). Комплексное сопротивление цепи равно

Условием резонанса из выражения (1) будет


Таким образом, резонанс в цепи наступает независимо от значения резистивного сопротивления R когда индуктивное сопротивление x L = wL равно емкостному x C = 1/(wC ) . Как следует из выражения (2), это состояние может быть получено вариацией любого их трех параметров - L , C и w , а также любой их комбинацией. При вариации одного из параметров условие резонанса можно представить в виде

Все величины, входящие в выражение (3) положительны, поэтому эти условия выполнимы всегда, т.е. резонанс в последовательном контуре можно создать

· изменением индуктивности L при постоянных значениях C и w ;

· изменением емкости C при постоянных значениях L и w ;

· изменением частоты w при постоянных значениях L и C .

Наибольший интерес для практики представляет вариация частоты. Поэтому рассмотрим процессы в контуре при этом условии.

При изменении частоты резистивная составляющая комплексного сопротивления цепи Z остается постоянной, а реактивная изменяется. Поэтому конец вектора Z на комплексной плоскости перемещается по прямой параллельной мнимой оси и проходящей через точку R вещественной оси (рис. 1 б)). В режиме резонанса мнимая составляющая Z равна нулю и Z = Z = Z min = R , j = 0 , т.е. полное сопротивление при резонансе соответствует минимальному значению .

Индуктивное и емкостное сопротивления изменяются в зависимости от частоты так, как показано на рис. 2. При частоте стремящейся к нулю x C ®µ , x L ® 0 , и j® - 90° (рис. 1 б)). При бесконечном увеличении частоты - x L ®µ , x C ® 0 , а j® 90° . Равенство сопротивлений x L и x C наступает в режиме резонанса при частоте w 0 .

Рассмотрим теперь падения напряжения на элементах контура. Пусть резонансный контур питается от источника, обладающего свойствами источника ЭДС, т.е. напряжение на входе контура u = const, и пусть ток в контуре равен i =I m sinwt . Падение напряжения на входе уравновешивается суммой напряжений на элементах

Переходя от амплитудных значений к действующим, из выражения (4) получим напряжения на отдельных элементах контура

А при резонансной частоте

величина, имеющая размерность сопротивления и называемая волновым или характеристическим сопротивлением контура.

Следовательно, при резонансе

· напряжение на резисторе равно напряжению на входе контура;

· напряжения на реактивных элементах одинаковы и пропорциональны волновому сопротивлению контура;

· соотношение напряжения на входе контура (на резисторе) и напряжений на реактивных элементах определяется соотношением резистивного и волнового сопротивлений.

Отношение волнового сопротивления к резистивному r /R = Q , называется добротностью контура , а величина обратная D =1/Q - затуханием . Таким образом, добротность числено равна отношению напряжения на реактивном элементе контура к напряжению на резисторе или на входе в режиме резонанса. Добротность может составлять несколько десятков единиц и во столько же раз напряжение на реактивных элементах контура будет превышать входное. Поэтому резонанс в последовательном контуре называется резонансом напряжений .

Рассмотрим зависимости напряжений и тока в контуре от частоты. Для возможности обобщенного анализа перейдем в выражениях (5) к относительным единицам, разделив их на входное напряжение при резонансе

U =RI 0


где i =I /I 0 , u k =U k /U , v = w /w 0 - соответственно ток, напряжение и частота в относительных единицах, в которых в качестве базовых величин приняты ток I 0 , напряжение на входе U и частота w 0 в режиме резонанса.

Абсолютный и относительный ток в контуре равен


Из выражений (7) и (8) следует, что характер изменения всех величин при изменении частоты зависит только от добротности контура. Графическое представление их при Q =2 приведено на рис. 3 в логарифмическом (а) и линейном (б) масштабах оси абсцисс.

На рис. 3 кривые A (v), B (v) и C (v) соответствуют напряжению на индуктивности, емкости и резисторе или току в контуре. Кривые A (v)=u L (v) и B (v)=u C (v) имеют максимумы, напряжения в которых определяются выражением

, (9)

а относительные частоты максимумов равны


(10)

При увеличении добротности Q ®µA max = B max ®Q , а v 1 ®1.0 и v 2 ®1.0.


С уменьшением добротности максимумы кривых u L (v) и u С (v) смещаются от резонансной частоты, а при Q 2 < 1/2 исчезают, и кривые относительных напряжений становятся монотонными.

Напряжение на резисторе и ток в контуре имеют при резонансной частоте максимум равный 1,0. Если на оси ординат отложить абсолютные значения тока или напряжения на резисторе, то для различных значений добротности они будут иметь вид, показанный на рис. 4. В целом они дают представление о характере изменения величин, но удобнее делать сопоставление в относительных единицах.

На рис. 5 представлены кривые рис. 4 в относительных единицах. Здесь видно, что увеличение добротности влияет на скорость изменения тока при изменении частоты.

Можно показать, что разность относительных частот, соответствующих значениям относительного тока

, равна затуханию контура D =1/Q =v 2 -v 1 .

Перейдем теперь к анализу зависимости фазового сдвига между током и напряжением на входе контура от частоты. Из выражения (1) угол j равен

Явление резонанса электрических напряжений наблюдается в цепи последовательного колебательного контура, состоящего из емкости (конденсатора), индуктивности и резистора (сопротивления). Для обеспечения энергетической подпитки колебательного контура в последовательную цепь включается также источник электродвижущей силы Е. Источник вырабатывает переменное напряжение с частотой W. При резонансе ток, циркулирующий в последовательной цепи, должен совпадать по фазе с э.д.с. Е. Это обеспечивается, если общее сопротивление схемы Z = R+J(WL – 1/WС) будет лишь активным, т.е. Z=R. Равенство:

(L – 1/WС) = 0 (1),

является математическим условием резонанса в колебательном контуре. При этом величина тока в цепи составит I = E/R. Если преобразовать равенство (1), то получим:

В этом выражении W - является резонансной частотой контура.

Важно то, что в процессе резонанса напряжение на индуктивности равно напряжению на конденсаторе и составляет:

UL = U = WL * I = WLE/R

Общая сумма энергий в индуктивности и емкости (магнитного и электрического полей) постоянна. Это объясняется тем, что между этими полями происходит колебательный обмен энергиями. Суммарное ее количество в любой момент неизменно. При этом обмена энергией между ее источником Е и цепью не происходит. Вместо этого имеет место непрерывное преобразование одного вида энергии в другой.

Для колебательных контуров применятся термин добротность, которая показывает, как соотносятся напряжение на реактивном элемента (емкость или индуктивность) и входное напряжение контура. Добротность вычисляется по формуле:

Для идеальной последовательной цепи с нулевым активным сопротивлением возникновение резонанса сопровождается незатухающими колебаниями. На практике затухание колебаний компенсируется подпиткой контура от генератора колебаний с частотой резонанса.

Применение резонанса напряжений

Явление колебательного резонанса широко используется в радиоэлектронике. В частности, входная цепь любого радиоприемника представляет собой регулируемый колебательный контур. Его резонансная частота, изменяемая с помощью регулировки емкости конденсатора, совпадает с частотой сигнала радиостанции, которую необходимо принять.

В электроэнергетике возникновение резонанса напряжений вследствие сопутствующих ему перенапряжений чревато нежелательными последствиями. Например, в случае подключения к генератору или промежуточному трансформатору длинной кабельной линии (являющейся колебательным контуром с распределенной емкостью и индуктивностью), не соединенной на приемном конце с нагрузкой (это называется режимом холостого хода), весь контур может оказаться в резонансом состоянии. В такой ситуации напряжения, возникающие на некоторых участках цепи, могут оказаться выше расчетных. Это может грозить пробоем изоляции кабеля и выходом его из строя. Такая ситуация предотвращается применением вспомогательной нагрузки.

Резонансом называют режим, когда в цепи, содержащей индуктивности и емкости, ток совпадает по фазе с напряжением . Входные реактивные сопротивление и проводимость равны нулю:
x = ImZ = 0 и B = ImY = 0. Цепь носит чисто активный характер:
Z = R ; сдвиг фаз отсутствует (j = 0).

Напряжения на индуктивности и емкости в этом режиме равны по величине и, находясь в противофазе, компенсируют друг друга. Все приложенное к цепи напряжение приходится на ее активное сопротивление (рис. 2.42, а ).

Рис. 2.42. Векторные диаграммы при резонансе напряжений (а) и токов (б)

Напряжения на индуктивности и емкости могут значительно превышать напряжения на входе цепи. Их отношение, называемое добротностью контура Q , определяется величинами индуктивного (или емкостного) и активного сопротивлений

.

Добротность показывает, во сколько раз напряжения на индуктивности и емкости при резонансе превышают напряжение, приложенное к цепи. В радиотехнических цепях она может достигать нескольких сотен единиц.

Из условия (2.33) следует, что резонанса можно достичь, изменяя любой из параметров – частоту, индуктивность, емкость. При этом меняются реактивное и полное сопротивления цепи, а вследствие этого – ток, напряжение на элементах и сдвиг фаз. Не приводя анализа формул, показываем графические зависимости некоторых из этих величин от емкости (рис. 2.43). Емкость , при которой наступает резонанс, можно определить из формулы (2.33):

.

Если, например, индуктивность контура L = 0,2 Гн, то при частоте 50 Гц, резонанс наступит при емкости

Рис. 2.43. Зависимости параметров режима от емкости

Аналогичные рассуждения можно провести и для цепи, состоящей из параллельно соединенных R , L и C (рис. 2.31, а ). Векторная диаграмма ее резонансного режима приведена на рис. 2.42, б .

Рассмотрим теперь более сложную цепь с двумя параллельными ветвями, содержащими активные и реактивные сопротивления
(рис. 2.44, а ).

Рис. 2.44. Разветвленная цепь (а ) и ее эквивалентная схема (б )

Для нее условием резонанса является равенство нулю ее реактивной проводимости: ImY = 0 . Это равенство означает, что мы должны мнимую часть комплексного выражения Y приравнять к нулю.

Определяем комплексную проводимость цепи. Она равна сумме комплексных проводимостей ветвей:


Приравнивая к нулю выражение, стоящее в круглых скобках, получаем:

или . (2.34)

Левая и правая части последнего выражения представляют собой не что иное, как реактивные проводимости первой и второй ветвей B 1 и B 2 . Заменяя схему на рис. 2.44, а эквивалентной (рис. 2.44, б ), параметры которой вычисляем по формуле (2.31), и используя условие резонанса(B = B 1 – B 2 = 0), снова приходим к выражению (2.34).

Схеме на рис. 2.44, б соответствует векторная диаграмма, приведенная на рис. 2.45.

Резонанс в разветвленной цепи называется резонансом токов . Реактивные составляющие токов параллельных ветвей противоположны по фазе, равны по величине и компенсируют друг друга, а сумма активных составляющих токов ветвей дает общий ток.

Рис. 2.45. Векторная диаграмма резонансного режима разветвленной цепи

Пример 2.23. Считая R 2 и x 3 известными, определить величину x 1 , при которой в цепи наступит резонанс напряжений (рис. 2.46, а ). Для резонансного режима построить векторную диаграмму.