Сигнал принимающий только 2 значения называется. Разница между аналоговым и цифровым сигналом

Понятие стыка цифровых АТС

ЦСК должна обеспечивать интерфейс (стык) с аналоговыми и цифровыми абонентскими линиями (АЛ) и системами передачи.

Стыком называется граница между двумя функциональными блоками, которая задается функциональными характеристиками, общими характеристиками физического соединения, характеристиками сигналов и другими характеристиками в зависимости от специфики.

Стык обеспечивает одноразовое определение параметров соединения между двумя уст­ройствами. Эти параметры относятся к типу, количеству и функциям соединительных цепей, а также к типу, форме и последовательности сигналов, которые передаются по этим цепям.

Точное определение типов, количества, формы и последовательности соединений и взаимосвязи между двумя функциональными блоками на стыке между ними задается спе­цификацией стыка.

Стыки цифровой АТС можно разделить на следующие

Аналоговый абонентский стык;

Цифровой абонентский стык;

Абонентский стык ISDN;

Сетевые (цифровые и аналоговые) стыки.

Кольцевые соединители

Кольцевые структуры находят применение в целом ряде областей связи. Прежде всего это кольцевые системы передачи с временным группообразованием, которые по существу имеют конфигурацию последовательно соединенных однонаправленных линий, образую­щих замкнутую цепь или кольцо. При этом в каждом узле сети реализуются две основные функции:

1) каждый узел работает как регенератор, чтобы восстановить входящий цифровой сиг­нал и передать его заново;

в узлах сети опознается структура цикла временного группообразования и осуществ­ляется связь по кольцу посредством

2) удаления и ввода цифрового сигнала в определенных канальных интервалах, приписанных к каждому узлу.

Возможность перераспределения канальных интервалов между произвольными парами узлов в кольцевой системе с временным группообразованием означает, что кольцо является распределенной системой передачи и коммутации. Идея одновременности передачи и ком­мутации в кольцевых структурах была распространена на цифровые коммутационные поля.

В такой схеме с помощью единственного канала между любыми двумя узлами может быть установлено дуплексное соединение. В этом смысле кольцевая схема выполняет про­странственно-временное преобразование координат сигнала и может быть рассмотрена как один из вариантов построения S/T-ступени.

Аналоговый, дискретный, цифровой сигналы

В системах электросвязи информация передается с помощью сигналов. Международный союз электросвязи дает следующее определение сигнала:

Сигналом систем электросвязи называется совокупность электромагнитных волн, ко­торая распространяется по одностороннему каналу передачи и предназначена для воздей­ствия на приемное устройство.

1) аналоговый сигнал - сигнал у которого каждый представляющий параметр задается функцией непрерывного времени с непрерывным множеством возможных значений

2) дискретный по уровню сигнал - сигнал, у которого значения представляющих пара­метров задается функцией непрерывного времени с конечным множеством возможных зна­чений. Процесс дискретизации сигнала по уровню носит название квантования;

3) дискретный по времени сигнал - сигнал, у которого каждый представляющий пара­метр задается функцией дискретного времени с непрерывным множеством возможных зна­чений

4) цифровой сигнал - сигнал, у которого значения представляющих параметров задается функцией дискретного времени с конечным множеством возможных значений

Модуляция - это преобразование одного сигнала в другой путем изменения па­раметров сигнала-переносчика в соответствии с преобразуемым сигналом. В качестве сиг­нала-переносчика используют гармонические сигналы, периодические последовательности импульсов и т.д.

Например, при передаче по линии цифрового сигнала двоичным кодом может появиться постоянная составляющая сигнала за счет преобладания единиц во всех кодовых словах.

Отсутствие же постоянной составляющей в линии позволяет использовать согласующие трансформаторы в линейных устройствах, а также обеспечить дистанционное питание реге­нераторов постоянным током. Чтобы избавиться от нежелательной постоянной составляющей цифрового сигнала, перед посылкой в линию двоичные сигналы преобразуются с помощью специальных кодов. Для первичной цифровой системы передачи (ЦСП) принят код HDB3.

Кодирование двоичного сигнала в модифицированный квазитроичный сигнал с ис­пользованием кода HDB3 производится по следующим правилам (рис. 1.5).

Рис. 1.5. Двоичный и соответствующий ему HDB3 коды

Импульсно-кодовая модуляция

Преобразование непрерывного первичного аналогового сигнала в цифровой код называется импульсно-кодовой модуляцией (ИКМ). Основными операциями при ИКМ являются операции дискретизации по времени, квантова­ния (дискретизации по уровню дискретного по времени сигнала) и кодирования.

Дискретизацией аналогового сигнала по времени называется преобразование, при кото­ром представляющий параметр аналогового сигнала задается совокупностью его значений в дискретные моменты времени, или, другими словами, при котором из непрерывного анало­гового сигнала c(t) (рис. 1.6, а) получают выборочные значения с„ (рис. 1.6, б). Значения представляющего параметра сигнала, полученные в результате операции дискретизации по времени, называются отсчетами.

Наибольшее распространение получили цифровые системы передачи, в которых при­меняется равномерная дискретизация аналогового сигнала (отсчеты этого сигнала произво­дятся через одинаковые интервалы времени). При равномерной дискретизации используют­ся понятия: интервал дискретизации At (интервал времени между двумя соседними отсче­тами дискретного сигнала) и частота дискретизации Fd (величина, обратная интервалу дискретизации). Величина интервала дискретизации выбирается в соответствии с теоремой Котельникова.

Согласно теореме Котельникова, аналоговый сиг­нал с ограниченным спектром и бесконечным интерва­лом наблюдения можно без ошибок восстановить из дискретного сигнала, полученного дискретизацией ис­ходного аналогового сигнала, если частота дискретиза­ции в два раза больше максимальной частоты спектра аналогового сигнала:

Теорема Котельникова

Теоре́ма Коте́льникова (в англоязычной литературе - теорема Найквиста-Шеннона) гласит, что, если аналоговый сигнал x(t) имеет ограниченный спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчѐтам, взятым с частотой более удвоенной максимальной частоты спектра Fmax.

Сигнал определяется как напряжение или ток, который может быть передан как сообщение или как информация. По своей природе все сигналы являются аналоговыми, будь то сигнал постоянного илипеременного тока, цифровой или импульсный. Тем не менее, принято делать различие между аналоговыми и цифровыми сигналами.

Цифровым сигналом называется сигнал, определённым образом обработанный и преобразованный в цифры. Обычно эти цифровые сигналы связаны с реальными аналоговыми сигналами, но иногда между ними и нет связи. В качестве примера можно привести передачу данных в локальных вычислительных сетях (LAN) или в других высокоскоростных сетях.

В случае цифровой обработки сигнала (ЦОС) аналоговый сигнал преобразуется в двоичную форму устройством, которое называется аналого-цифровым преобразователем (АЦП). На выходе АЦП получается двоичное представление аналогового сигнала, которое затем обрабатывается арифметическим цифровым сигнальным процессором (DSP). После обработки содержащаяся в сигнале информация может быть преобразована обратно в аналоговую форму с использованием цифро-аналогового преобразователя (ЦАП).

Другой ключевой концепцией в определении сигнала является тот факт, что сигнал всегда несет некоторую информацию. Это ведет нас к ключевой проблеме обработки физических аналоговых сигналов — проблеме извлечения информации.

Цели обработки сигналов.

Главная цель обработки сигналов заключается в необходимости получения содержащейся в них информации. Эта информация обычно присутствует в амплитуде сигнала (абсолютной или относительной), в частоте или в спектральном составе, в фазе или в относительных временных зависимостях нескольких сигналов.

Как только желаемая информация будет извлечена из сигнала, она может быть использована различными способами. В некоторых случаях желательно переформатировать информацию, содержащуюся в сигнале.

В частности, изменение формата сигнала происходит при передаче звукового сигнала в телефонной системе с многоканальным доступом и частотным разделением (FDMA). В этом случае используются аналоговые методы, чтобы разместить несколько голосовых каналов в частотном спектре для передачи через радиорелейную станцию СВЧ диапазона, коаксиальный или оптоволоконный кабель.

В случае цифровой связи аналоговая звуковая информация сначала преобразуется в цифровую с использованием АЦП. Цифровая информация, представляющая индивидуальные звуковые каналы, мультиплексируется во времени (многоканальный доступ с временным разделением, TDMA) и передается по последовательной цифровой линии связи (как в ИКМ-системе).

Еще одна причина обработки сигналов заключается в сжатии полосы частот сигнала (без существенной потери информации) с последующим форматированием и передачей информации на пониженных скоростях, что позволяет сузить требуемую полосу пропускания канала. В высокоскоростных модемах и системах адаптивной импульсно-кодовой модуляции (ADPCM) широко используются алгоритмы устранения избыточности данных (сжатия), так же как и в цифровых системах мобильной связи, системах записи звука MPEG, в телевидении высокой четкости (HDTV).

Промышленные системы сбора данных и системы управления используют информацию, полученную от датчиков, для выработки соответствующих сигналов обратной связи, которые, в свою очередь, непосредственно управляют процессом. Обратите внимание, что эти системы требуют наличия как АЦП и ЦАП, так и датчиков, устройств нормализации сигнала (signal conditioners) и DSP (или микроконтроллеров).

В некоторых случаях в сигнале, содержащем информацию, присутствует шум, и основной целью является восстановление сигнала. Такие методы, как фильтрация, автокорреляция, свертка и т.д., часто используются для выполнения этой задачи и в аналоговой, и в цифровой областях.

ЦЕЛИ ОБРАБОТКИ СИГНАЛОВ
  • Извлечение информации о сигнале (амплитуда, фаза, частота, спектральные составляющие,временные соотношения)
  • Преобразование формата сигнала (телефония с разделением каналов FDMA, TDMA, CDMA)
  • Сжатие данных (модемы, сотовые телефоны, телевидение HDTV, сжатие MPEG)
  • Формирование сигналов обратной связи (управление промышленными процессами)
  • Выделение сигнала из шума (фильтрация, автокорреляция, свертка)
  • Выделение и сохранение сигнала в цифровом виде для последующей обработки (БПФ)

Формирование сигналов

В большинстве приведенных ситуаций (связанных с использованием DSP-технологий), необходимы как АЦП, так и ЦАП. Тем не менее, в ряде случаев требуется только ЦАП, когда аналоговые сигналы могут быть непосредственно сгенерированы на основе DSP и ЦАП. Хорошим примером являются дисплеи с разверткой видеоизображения, в которых сгенерированный в цифровой форме сигнал управляет видеоизображением или блоком RAMDAC (преобразователем массива пиксельных значений из цифровой в аналоговую форму).

Другой пример — это искусственно синтезируемые музыка и речь. В действительности, при генерации физических аналоговых сигналов с использованием только цифровых методов полагаются на информацию, предварительно полученную из источников подобных физических аналоговых сигналов. В системах отображения данные на дисплее должны донести соответствующую информацию оператору. При разработке звуковых систем задаются статистическими свойствами генерируемых звуков, которые были предварительно определены с помощью широкого использования методов ЦОС (источник звука, микрофон, предварительный усилитель, АЦП и т.д.).

Методы и технологии обработки сигналов

Сигналы могут быть обработаны с использованием аналоговых методов (аналоговой обработки сигналов, или ASP), цифровых методов (цифровой обработки сигналов, или DSP) или комбинации аналоговых и цифровых методов (комбинированной обработки сигналов, или MSP). В некоторых случаях выбор методов ясен, в других случаях нет ясности в выборе и принятие окончательного решения основывается на определенных соображениях.

Что касается DSP, то главное отличие его от традиционного компьютерного анализа данных заключается в высокой скорости и эффективности выполнения сложных функций цифровой обработки, таких как фильтрация, анализ с использованием и сжатие данных в реальном масштабе времени.

Термин "комбинированная обработка сигналов" подразумевает, что системой выполняется и аналоговая, и цифровая обработка. Такая система может быть реализована в виде печатной платы, гибридной интегральной схемы (ИС) или отдельного кристалла с интегрированными элементами. АЦП и ЦАП рассматриваются как устройства комбинированной обработки сигналов, так как в каждом из них реализованы и аналоговые, и цифровые функции.

Недавние успехи технологии создания микросхем с очень высокой степенью интеграции (VLSI) позволяют осуществлять комплексную (цифровую и аналоговую) обработку на одном кристалле. Сама природа ЦОС подразумевает, что эти функции могут быть выполнены в режиме реального масштаба времени.

Сравнение аналоговой и цифровой обработки сигналов

Сегодняшний инженер стоит перед выбором надлежащей комбинации аналоговых и цифровых методов для решения задачи обработки сигналов. Невозможно обработать физические аналоговые сигналы, используя только цифровые методы, так как все датчики (микрофоны, термопары, пьезоэлектрические кристаллы, головки накопителя на магнитных дисках и т.д.) являются аналоговыми устройствами.

Некоторые виды сигналов требуют наличия цепей нормализации для дальнейшей обработки сигналов как аналоговым так и цифровым методом. Цепи нормализации сигнала — это аналоговые процессоры, выполняющие такие функции как усиление, накопление (в измерительных и предварительных (буферных) усилителях), обнаружение сигнала на фоне шума (высокоточными усилителями синфазного сигнала, эквалайзерами и линейными приемниками), динамическое сжатие диапазона (логарифмическими усилителями, логарифмическими ЦАП и усилителями с программируемым коэффициентом усиления) и фильтрация (пассивная или активная).

Несколько методов реализации процесса обработки сигналов показано на рисунке 1. В верхней области рисунка изображен чисто аналоговый подход. В остальных областях изображена реализация DSP. Обратите внимание, что, как только выбрана DSP технология, следующим решением должно быть определение местоположения АЦП в тракте обработки сигнала.

ОБРАБОТКА АНАЛОГОВЫХ И ЦИФРОВЫХ СИГНАЛОВ

Рисунок 1. Способы обработки сигналов

Вообще, поскольку АЦП перемещен ближе к датчику, большая часть обработки аналогового сигнала теперь производится АЦП. Увеличение возможностей АЦП может выражаться в увеличении частоты дискретизации, расширении динамического диапазона, повышении разрешающей способности, отсечении входного шума, использовании входной фильтрации и программируемых усилителей (PGA), наличии источников опорного напряжения на кристалле и т.д. Все упомянутые дополнения повышают функциональный уровень и упрощают систему.

При наличии современных технологий производства ЦАП и АЦП с высокими частотами дискретизации и разрешающими способностями существенный прогресс достигнут в интеграции все большего числа цепей непосредственно в АЦП /ЦАП.

В сфере измерений, например, существуют 24-битные АЦП со встроенными программируемыми усилителями (PGA), которые позволяют оцифровывать полномасштабные мостовые сигналы 10 mV непосредственно, без последующей нормализации (например серия AD773x).

На голосовых и звуковых частотах распространены комплексные устройства кодирования-декодирования&nbp;— кодеки (Analog Front End, AFE), которые имеют встроенную в микросхему аналоговую схему, удовлетворяющую минимуму требований к внешним компонентам нормализации (AD1819B и AD73322).

Существуют также видео-кодеки (AFE) для таких задач, как обработка изображения с помощью ПЗС (CCD), и другие (например, серии AD9814, AD9816, и AD984X).

Пример реализации

В качестве примера использования DSP сравним аналоговый и цифровой фильтры низкой частоты (ФНЧ), каждый с частотой среза 1 кГц.

Цифровой фильтр реализован в виде типовой цифровой системы, показанной на рисунок 2. Обратите внимание, что в диаграмме принято несколько неявных допущений. Во -первых, чтобы точно обработать сигнал, принимается, что тракт АЦП /ЦАП обладает достаточными значениями частоты дискретизации, разрешающей способности и динамического диапазона. Во -вторых, для того, чтобы закончить все свои вычисления в пределах интервала дискретизации (1/f s), устройство ЦОС должно иметь достаточное быстродействие. В -третьих, на входе АЦП и выходе ЦАП сохраняется потребность в аналоговых фильтрах ограничения и восстановления спектра сигнала (anti-aliasing filter и anti-imaging filter), хотя требования к их производительности невелики. Приняв эти допущения, можно сравнить цифровой и аналоговый фильтры.



Рисунок 2. Структурная схема цифрового фильтра

Требуемая частота среза обоих фильтров — 1 кГц. Аналоговое преобразование реализуется первого рода шестого порядка (характеризуется наличием пульсаций коэффициента передачив полосе пропускания и отсутствием пульсаций вне полосы пропускания). Его характеристики представлены на рисунке 2. На практике этот фильтр может быть представлен тремя фильтрами второго порядка, каждый из которых построен на операционном усилителе и нескольких и конденсаторах. С помощью современных систем автоматизированного проектирования (САПР) фильтров создать фильтр шестого порядка достаточно просто, но чтобы удовлетворить техническим требованиям по неравномерности характеристики 0,5 дБ, требуется точный подбор компонентов.

Представленный же на рисунке 2 цифровой КИХ-фильтр со 129 коэффициентами имеет неравномерность характеристики всего 0,002 дБ в полосе пропускания, линейную фазовую характеристику и намного более крутой спад. На практике такие характеристики невозможно реализовать с использованием аналоговых методов. Другое очевидное преимущество схемы состоит в том, что цифровой фильтр не требует подбора компонентов и не подвержен дрейфу параметров, так как частота синхронизации фильтра стабилизирована кварцевым резонатором. Фильтр со 129 коэффициентами требует 129 операций умножения с накоплением (MAC) для вычисления выходного отсчёта. Эти вычисления должны быть закончены в пределах интервала дискретизации 1/fs, чтобы обеспечить работу в реальном масштабе времени. В этом примере частота дискретизации равна 10 кГц, поэтому для обработки достаточно 100 мкс, если не требуется производить существенных дополнительных вычислений. Семейство DSP ADSP-21xx может закончить весь процесс умножения с накоплением (и другие функции, необходимые для реализации фильтра) за один командный цикл. Поэтому фильтр со 129 коэффициентами требует быстродействия более 129/100 мкс = 1,3 миллиона операций с секунду (MIPS). Существующие DSP имеют намного большее быстродействие и, таким образом, не являются ограничивающим фактором для этих приложений. Быстродействие серии 16-разрядных ADSP-218x с фиксированной точкой достигает 75MIPS. В листинге 1 приведен ассемблерный код, реализующий фильтр на DSP процессорах семейства ADSP-21xx. Обратите внимание, что фактические строки исполняемого кода помечены стрелками; остальное — это комментарии.


Рисунок 3. аналогового и цифрового фильтров

Конечно, на практике имеется много других факторов, рассматриваемых при сравнительной оценке аналоговых и цифровых фильтров или аналоговых и цифровых методов обработки сигнала вообще. В современных системах обработки сигналов комбинируются аналоговые и цифровые методы реализации желаемой функции и используются преимущества лучших методов, как аналоговых, так и цифровых.

ПРОГРАММА НА АССЕМБЛЕРЕ:
FIR ФИЛЬТР ДЛЯ ADSP-21XX (ОДИНАРНАЯ ТОЧНОСТЬ)

MODULE fir_sub; { Подпрограмма КИХ фильтра Параметры вызова подпрограммы I0 --> Наиболее старые данные в линии задержки I4 --> Начало таблицы коэффициентов фильтра L0 = Длина фильтра (N) L4 = Длина фильтра (N) M1,M5 = 1 CNTR = Длина фильтра - 1 (N-1) Возвращаемые значения MR1 = Результат суммирования (округлённый и ограниченный) I0 --> Наиболее старые данные в линии задержки I4 --> Начало таблицы коэффициентов фильтра Изменяемые регистры MX0,MY0,MR Время работы (N - 1) + 6 cycles = N + 5 cycles Все коэффициенты записаны в формате 1.15 } .ENTRY fir; fir: MR=0, MX0=DM(I0,M1), MY0=PM(I4,M5) CNTR = N-1; DO convolution UNTIL CE; convolution: MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M5); MR=MR+MX0*MY0(RND); IF MV SAT MR; RTS; .ENDMOD; ОБРАБОТКА СИГНАЛОВ В РЕАЛЬНОМ ВРЕМЕНИ

  • Цифровая обработка сигналов;
    • Ширина спектра обрабатываемого сигнала ограничена частотой дискретизации АЦП/ЦАП
      • Помните о критерии Найквиста и теореме Котельникова
    • ограничен разрядностью АЦП /ЦАП
    • Производительность процессора DSP ограничивает объем обработки сигнала, так как:
      • Для работы в реальном масштабе времени все вычисления, производимые сигнальным процессором, должны быть закончены в течение интервала дискретизации, равного 1/f s
  • Не забывайте об аналоговой обработке сигнала
    • высокочастотной /радиочастотной фильтрации, модуляции, демодуляции
    • аналоговых ограничивающих и восстанавливающих спектр фильтрах (обычно ФНЧ) для АЦП и ЦАП
    • там, где диктуют здравый смысл и стоимость реализации

Литература:

Вместе со статьей "Виды сигналов" читают:

Аналоговый сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений.

Различают два пространства сигналов - пространство L (непрерывные сигналы), и пространство l (L малое) - пространство последовательностей. Пространство l (L малое) есть пространство коэффициентов Фурье (счетного набора чисел, определяющих непрерывную функцию на конечном интервале области определения), пространство L - есть пространство непрерывных по области определения (аналоговых) сигналов. При некоторых условиях, пространство L однозначно отображается в пространство l (например, первые две теоремы дискретизации Котельникова).

Аналоговые сигналы описываются непрерывными функциями времени, поэтому аналоговый сигнал иногда называют непрерывным сигналом. Аналоговым сигналам противопоставляются дискретные (квантованные, цифровые). Примеры непрерывных пространств и соответствующих физических величин:

    прямая: электрическое напряжение

    окружность: положение ротора, колеса, шестерни, стрелки аналоговых часов, или фаза несущего сигнала

    отрезок: положение поршня, рычага управления, жидкостного термометра или электрический сигнал, ограниченный по амплитуде различные многомерные пространства: цвет, квадратурно-модулированный сигнал.

Свойства аналоговых сигналов в значительной мере являются противоположностью свойств квантованных или цифровых сигналов.

Отсутствие чётко отличимых друг от друга дискретных уровней сигнала приводит к невозможности применить для его описания понятие информации в том виде, как она понимается в цифровых технологиях. Содержащееся в одном отсчёте "количество информации" будет ограничено лишь динамическим диапазоном средства измерения.

Отсутствие избыточности. Из непрерывности пространства значений следует, что любая помеха, внесенная в сигнал, неотличима от самого сигнала и, следовательно, исходная амплитуда не может быть восстановлена. В действительности фильтрация возможна, например, частотными методами, если известна какая-либо дополнительная информация о свойствах этого сигнала (в частности, полоса частот).

Применение:

Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал, снимаемый с термопары, несет информацию об изменении температуры, сигнал с микрофона - о быстрых изменениях давления в звуковой волне, и т.п.

2.2 Цифровой сигнал

Цифровой сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений.

Сигналы представляют собой дискретные электрические или световые импульсы. При таком способе вся емкость коммуникационного канала используется для передачи одного сигнала. Цифровой сигнал использует всю полосу пропускания кабеля. Полоса пропускания - это разница между максимальной и минимальной частотой, которая может быть передана по кабелю. Каждое устройство в таких сетях посылает данные в обоих направлениях, а некоторые могут одновременно принимать и передавать. Узкополосные системы (baseband) передают данные в виде цифрового сигнала одной частоты.

Дискретный цифровой сигнал сложнее передавать на большие расстояния, чем аналоговый сигнал, поэтому его предварительно модулируют на стороне передатчика, и демодулируют на стороне приёмника информации. Использование в цифровых системах алгоритмов проверки и восстановления цифровой информации позволяет существенно увеличить надёжность передачи информации.

Замечание. Следует иметь в виду, что реальный цифровой сигнал по своей физической природе является аналоговым. Из-за шумов и изменения параметров линий передачи он имеет флуктуации по амплитуде, фазе/частоте (джиттер), поляризации. Но этот аналоговый сигнал (импульсный и дискретный) наделяется свойствами числа. В результате для его обработки становится возможным использование численных методов (компьютерная обработка).

Любой сигнал, будь-то аналоговый или цифровой, представляет собой электромагнитные колебания, распространяющиеся с определенной частотой. В зависимости от того, какой сигнал распространяется устройство, принимающее данный сигнал определяет, какое изображение выводить на экран, соответственно, со звуковым сопровождением.

К примеру, телевизионная вышка или радиостанция может передавать и аналоговый и цифровой сигналы. Звук передается в аналоговой форме, и уже через приемное устройство преобразуется в электромагнитные колебания. Как уже говорилось, колебания распространяются с определенной частотой. Чем выше частота звука, тем выше колебания, в результате, получаем на выходе более громкое звучание голоса.

Общими словами, аналоговый сигнал распространяется непрерывно, а цифровой сигнал - дискретно (прерывисто), т.е. амплитуда колебаний принимает определенные значения в единицу времени.

Если продолжить пример звукового аналогового сигнала, то получим процесс, при котором электромагнитные волны распространяются с помощью передатчика (антенны). Т.к. распространение аналогового сигнала происходит постоянно, то колебания суммируются, и на выходе возникает несущая частота, которая является основной, т.е. на неё происходит настройка приемника.

В самом приемнике происходит отделение данной частоты от других колебаний, которые преобразуются в звук.

Недостатками передачи информации с помощью аналогового сигнала очевидны:

  • Возникает большое количество помех;
  • Передается больше лишней информации;
  • Безопасность передачи сигнала

Если в радиовещании передача информации с помощью аналогового сигнала происходит менее заметно, то в телевидении, вопрос перехода на цифровую передачу крайне важен.

Основными преимуществами цифрового сигнала перед аналоговым являются:

  • Более высокий уровень защиты. Безопасность передачи цифрового сигнала основана на том, что «цифра» передается в зашифрованном виде;
  • Легкость приема сигнала. Цифровой сигнал можно принимать, находясь на любом расстоянии от местожительства;
  • Цифровое вещание способно обеспечить огромное количество каналов. Именно эта возможность обеспечивает поклонников цифрового телевидения большим количеством телеканалов для просмотра фильмов и передач;
  • Качество передачи находится на несколько порядков выше, чем при аналоговом вещании. Цифровой сигнал обеспечивает фильтрацию принимаемых данных, а также имеется возможность восстанавливать исходную информацию.

Соответственно, для преобразования аналогового сигнала в цифровой, и наоборот используются специальные устройства.

  • Устройство, которое преобразует аналоговый сигнал в цифровой сигнал, называется аналого-цифровым преобразователем (АЦП);
  • Устройство, преобразующее цифровой сигнал в аналоговый называется цифро-аналоговым преобразователем (ЦАП).

Соответственно, АЦП установлен в передатчике, а ЦАП установлен в приемнике и преобразет дискретный сигнал в аналоговый, соответствующий голосу.

Почему цифровой сигнал является более защищенным?

Передача цифрового сигнала осуществляется в зашифрованном виде и цифро-аналоговое устройство должно иметь код для расшифровки. АЦП может передавать и цифровой адрес приемника. Если даже сигнал будет перехвачен, то полностью расшифровать его будет невозможно из-за отсутствия части кода. Данный свойство цифровой передачи широко используется в мобильной связи.

Таким образом, основное различие между аналоговым и цифровым сигналом заключается в различной структуре передаваемого сигнала. Аналоговые сигналы - непрерывный поток колебаний с изменяющимися амплитудой и частотой.

Цифровой сигнал - дискретные (прерывистые) колебания, значения которых зависят от передающей среды.

Иногда у потребителей возникает вопрос, как передается сигнал в телевидении.

В телевидении перед передачей сигнала в цифровом виде, аналоговый сигнал подлежит оцифровке. После этого, необходимо выбрать, в какой среде будет происходить передача: медный кабель, эфир, оптоволоконный кабель.

Например, многие пользователи уверены, что кабельное телевидение - это только цифровая передача данных. Это не так. Кабельное телевидение - это и аналоговый и цифровой вид передачи сигнала.

Отличие аналоговой и цифровой связи.
Имея дело с радиосвязью, очень часто приходится сталкиваться с такими терминами, как «аналоговый сигнал» и «цифровой сигнал» . Для специалистов в этих словах нет никакой тайны, но для людей несведущих разница между «цифрой» и «аналогом» может быть совсем неведомой. А между тем разница есть и весьма существенная.
Итак. Радиосвязь это всегда передача информации (речевой, СМС, телесигнализации) между двумя абонентами источником сигнала передатчиком (Радиостанцией, репитером, базовой станцией) и приемником.
Когда мы говорим о сигнале, то обычно подразумеваем электромагнитные колебания, наводящие ЭДС и вызывающие колебания тока в антенне приемника. Далее приемное устройство – переводит полученные колебания обратно в сигнал звуковой частоты и выводит на динамик.
В любом случае сигнал передатчика можно представить как в цифровой, так и в аналоговой форме. Ведь, к примеру, сам по себе звук – это аналоговый сигнал. На радиостанции звук, воспринимаемый микрофоном, преобразуется в уже упоминавшиеся электромагнитные колебания. Чем выше частота звука – тем выше частота колебаний на выходе, а чем громче говорит диктор – тем больше амплитуда.
Получившиеся электромагнитные колебания, или волны, распространяются в пространстве с помощью передаточной антенны. Чтобы эфир не забивался низкочастотными помехами, и чтобы у разных радиостанций была возможность работать параллельно, не мешая друг другу, колебания, получившиеся от воздействия звука, суммируют, то есть «накладывают» на другие колебания, имеющие постоянную частоту. Последнюю частоту принято называть «несущей», и именно на ее восприятие мы настраиваем свой радиоприемник, чтобы «поймать» аналоговый сигнал радиостанции.
В приемнике происходит обратный процесс: несущая частота отделяется, а электромагнитные колебания, полученные антенной, преобразуются в колебания звука, и из динамика слышится информация которую хотел сообщить передавший сообщение.
В процессе передачи звукового сигнала от радиостанции к приемнику могут возникнуть сторонние помехи, частота и амплитуда могут измениться, что, конечно же, отразится на звуках, издаваемых радиоприемником. Наконец, и сами передатчик и приемник во время преобразования сигнала вносят некоторую погрешность. Поэтому звук, воспроизводимый аналоговым радиоприемником, всегда имеет некоторые искажения. Голос может вполне воспроизводиться, несмотря на изменения, но фоном будет шипение или даже какие-то хрипы, вызванные помехами. Чем менее уверенным будет прием, тем громче и отчетливее будут эти посторонние шумовые эффекты.

Вдобавок эфирный аналоговый сигнал имеет очень слабую степень защиты от постороннего доступа. Для общественных радиостанций это, конечно, не имеет никакого значения. Но во время пользования первыми мобильными телефонами был один неприятный момент, связанный с тем, что почти любой посторонний радиоприемник мог быть легко настроен на нужную волну для подслушивания вашего телефонного разговора.

Для защиты от этого используют так называемое «тонирование» сигнала или по другому система CTCSS (Continuous Tone-Coded Squelch System) система шумоподавления, кодированная непрерывным тоном или система идентификации сигнала «свой/чужой», предназначенная разделять пользователей, работающих в одном частотном диапазоне, на группы. Пользователи (корреспонденты) из одной группы могут слышать друг друга благодаря идентификационному коду. Объясняя доступно, принцип действия данной системы таков. Вместе с передаваемой информацией в эфир отправляют также дополнительный сигнал (или по другому тон). Приемник, помимо несущей, распознает при соответствующей настойке этот тон и принимает сигнал. Если же в рации –приемнике тон не настроен, то приема сигнала не происходит. Стандартов шифрования существует достаточное большое количество отличающаяся для различных производителей.
Такие недостатки есть у аналогового эфирного вещания. Из-за них, к примеру, телевидение в относительно скором времени обещает стать полностью цифровым.

Цифровая связь и вещания считаются более защищенными от помех и от внешних воздействий. Все дело в том, что при использовании «цифры» аналоговый сигнал с микрофона на передающей станции зашифровывается в цифровой код. Нет, конечно, в окружающее пространство не распространяется поток цифр и чисел. Просто звуку определенной частоты и громкости присваивается код из радиоимпульсов. Продолжительность и частота импульсов задана заранее – она одна и у передатчика, и у приемника. Наличие импульса соответствует единице, отсутствие – нулю. Поэтому такая связь и получила название «цифровая».
Устройство, преобразующее аналоговый сигнал в цифровой код, называется аналого-цифровым преобразователем (АЦП) . А устройство, установленное в приемнике, и преобразующее код в аналоговый сигнал, соответствующий голосу вашего знакомого в динамике сотового телефона стандарта GSM, называется цифро-аналоговый преобразователь (ЦАП).
Во время передачи цифрового сигнала ошибки и искажения практически исключены. Если импульс станет немного сильнее, продолжительнее, или наоборот, то он все равно будет распознан системой как единица. А нуль останется нулем, даже если на его месте возникнет какой-то случайный слабый сигнал. Для АЦП и ЦАП не существует других значений, как 0,2 или 0,9 – только нуль и единица. Поэтому помехи на цифровую связь и вещание почти не оказывают влияния.
Более того, «цифра» является и более защищенной от постороннего доступа. Ведь, чтобы ЦАП устройства смог расшифровать сигнал, необходимо, чтобы он «знал» код расшифровки. АЦП вместе с сигналом может передавать и цифровой адрес устройства, выбранного в качестве приемника. Таким образом, даже если радиосигнал и будет перехвачен, он не сможет быть распознан из-за отсутствия как минимум части кода. Это особенно актуально для связи.
Итак, отличия цифрового и аналогового сигналов :
1) Аналоговый сигнал может быть искажен помехами, а цифровой сигнал может быть или забит помехами совсем, или приходить без искажений. Цифровой сигнал или точно есть, или полностью отсутствует (или нуль, или единица).
2) Аналоговый сигнал доступен для восприятия всеми устройствами, работающими по тому же принципу, что и передатчик. Цифровой сигнал надежно защищен кодом, его трудно перехватить, если вам он не предназначается.

Помимо чисто аналоговых и чисто цифровых станций, существуют и радиостанции поддерживающие как аналоговый так и цифровой режим. Они предназначены для перехода с аналоговой на цифровую связь.
Итак имея в распоряжении парк аналоговых радиостанций, вы можете постепенно перейти на цифровой стандарт связи.
Например, изначально вы строили систему связи на Радиостанциях Байкал 30.
Напомню, что это аналоговая станция с 16 каналами.

Но идет время, и станция перестает устраивать Вас, как пользователя. Да, она надежная, да мощная, да с хорошим аккумулятором до 2600 мА/ч. Но при расширении парка радиостанций более чем на 100 человек, а особенно при работе в группах её 16 каналов начинает не хватать.
Вам совершенно не обязательно сразу бежать и покупать радиостанции цифрового стандарта. Большинство производителей, намеренно вводят модель с наличием аналогового режима передачи.
То есть вы можете поэтапно переходить на например Байкал -501 или Vertex-EVX531 сохраняя существующую систему связи в рабочем состоянии.

Плюсы такого перехода неоспоримы.
Вы получаете станцию работающую
1) дольше (в цифровом режиме меньше потребление.)
2) Имеющую большее количество функций (групповой вызов, одинокий работник)
3) 32 канала памяти.
То есть вы фактически создаете изначально 2 базы каналов. Под новые закупленные станции (цифровые каналы) и базу каналов содействия с существующими станциями (аналоговые каналы). Постепенно по мере закупки оборудования вы будете сокращать парк радиостанций второго банка и увеличивать – первого.
В конечном итоге вы достигнете поставленной задачи – перевести полностью вашу базу на цифровой стандарт связи.
Хорошим дополнением и расширением к любой базе может послужить цифровой ретранслятор Yaesu Fusion DR-1


Это двухдиапазонный (144/430MHz) ретранслятор, который поддерживает аналоговую FM связь, а также одновременно цифровой протокол System Fusion в пределах частотного диапазона 12.5кГц. Мы уверены, что внедрение новейшей DR-1X станет рассветом нашей новой и впечатляющей многофункциональной системы System Fusion.
Одной из ключевых возможностей System Fusion является функция AMS (автоматический выбор режима) , которая мгновенно распознает принимается ли сигнал в режиме V/D, режиме голосовой связи или режиме данных FR аналоговом FM или цифровом C4FM, и автоматически переключается на соответствующий. Таким образом, благодаря нашим цифровым трансиверам FT1DR и FTM-400DR System Fusion ,чтобы поддерживать связь с аналоговыми FM радиостанциями больше нет необходимости каждый раз вручную переключать режимы,.
На репитере DR-1X, AMS можно настроить так, чтобы входящий цифровой C4FM сигнал преобразовывался в аналоговый FM и ретранслировался, таким образом позволяя поддерживать связь между цифровым и аналоговым трансиверами. AMS также можно настроить на автоматическую ретрансляцию входящего режима на выход, позволяя цифровым и аналоговым пользователям совместно использовать один ретранслятор.
До сих пор, FM ретрансляторы использовались только для традиционной FM связи, а цифровые ретрансляторы только для цифровой. Однако, теперь просто заменив обычный аналоговый FM репитер на DR-1X, вы можете продолжать пользоваться обычной FM связью, а также использовать ретранслятор для более продвинутой цифровой радиосвязи System Fusion . Другие периферийные устройства, такие как дуплексер и усилитель и т.д. можно продолжать использоваться как обычно.

Более подробные характеристики оборудование можно увидеть на сайте в разделе продукция