Структура пакета TCP (формат заголовка сегмента). Установление и разрыв TCP соединения

Установка TCP-соединения

В протоколе TCP-соединения устанавливаются с помощью «тройного рукопожатия», описанного в разделе «Установка соединения». Чтобы установить соединение, одна сторона (например, сервер) пассивно ожидает входящего соединения, выполняя примитивы LISTEN и ACCEPT, либо указывая конкретный источник, либо не указывая его.

Другая сторона (например, клиент) выполняет примитив CONNECT, указывая IP-адрес и порт, с которым он хочет установить соединение, максимальный размер TCP-сегмента и, по желанию, некоторые данные пользователя (например, пароль). Примитив CONNECT посылает TCP-сегмент с установленным битом SYN и сброшенным битом АСК и ждет ответа.

Когда этот сегмент прибывает в пункт назначения, TCP-сущность проверяет, выполнил ли какой-нибудь процесс примитив LISTEN, указав в качестве параметра тот же порт, который содержится в поле Порт получателя. Если такого процесса нет, она отвечает отправкой сегмента с установленным битом RST для отказа от соединения.

Если какой-либо процесс прослушивает какой-либо порт, то входящий ТСР-сегмент передается этому процессу. Последний может принять соединение или отказаться от него. Если процесс принимает соединение, он отсылает в ответ подтверждение. Последовательность TCP-сегментов, посылаемых в нормальном случае, (рис. а) Обратите внимание на то, что сегмент с установленным битом SYN занимает 1 байт пространства порядковых номеров, что позволяет избежать неоднозначности в их подтверждениях.

Если два хоста одновременно попытаются установить соединение друг с другом, то последовательность происходящих при этом событий будет соответствовать рис. б. В результате будет установлено только одно соединение, а не два, так как пара конечных точек однозначно определяет соединение. То есть если оба соединения пытаются идентифицировать себя с помощью пары (х, у), делается всего одна табличная запись для (х, у).

Начальное значение порядкового номера соединения не равно нулю по обсуждавшимся выше причинам. Используется схема, основанная на таймере, изменяющем свое состояние каждые 4 мкс. Для большей надежности хосту после сбоя запрещается перезагружаться ранее чем по прошествии максимального времени жизни пакета. Это позволяет гарантировать, что ни один пакет от прежних соединений не бродит где-нибудь в Интернете.

Разрыв соединения TCP

Хотя TCP-соединения являются полнодуплексными, чтобы понять, как происходит их разъединение, лучше считать их парами симплексных соединений. Каждое симплексное соединение разрывается независимо от своего напарника. Чтобы разорвать соединение, любая из сторон может послать TCP-сегмент с установленным в единицу битом FIN, что означает, что у него больше нет данных для передачи. Когда этот TCP-сегмент получает подтверждение, это направление передачи закрывается. Тем не менее, данные могут продолжать передаваться неопределенно долго в противоположном направлении. Соединение разрывается, когда оба направления закрываются. Обычно для разрыва соединения требуются четыре TCP-сегмента: по одному с битом FIN и по одному с битом АСК в каждом направлении. Первый бит АСК и второй бит FIN могут также содержаться в одном ТСР-сегменте, что уменьшит количество сегментов до трех.

Как при телефонном разговоре, когда оба участника могут одновременно попрощаться и повесить трубки, оба конца TCP-соединения могут послать FIN-cerменты в одно и то же время. Они оба получают обычные подтверждения, и соединение закрывается. По сути, между одновременным и последовательным разъединениями нет никакой разницы.

Чтобы избежать проблемы двух армий, используются таймеры. Если ответ на посланный FIN-сегмент не приходит в течение двух максимальных интервалов времени жизни пакета, отправитель разрывает соединение. Другая сторона в конце концов заметит, что ей никто не отвечает, и также разорвет соединение. Хотя такое решение и не идеально, но, учитывая недостижимость идеала, приходится пользоваться тем, что есть. На практике проблемы возникают довольно редко.

Управление передачей в TCP

Как уже было сказано ранее, управление окном в TCP не привязано напрямую к подтверждениям, как это сделано в большинстве протоколов передачи данных. Например, предположим, что у получателя есть 4096-байтовый буфер. Если отправитель передает 2048-байтовый сегмент, который успешно принимается получателем, то получатель подтверждает его получение. Однако при этом у получателя остается всего лишь 2048 байт свободного буферного пространства (пока приложение не заберет сколько-нибудь данных из буфера), о чем он и сообщает отправителю, указывая соответствующий размер окна (2048) и номер следующего ожидаемого байта.

После этого отправитель посылает еще 2048 байт, получение которых подтверждается, но размер окна объявляется равным 0. Отправитель должен прекратить передачу до тех пор, пока получающий хост не освободит место в буфере и не увеличит размер окна.

При нулевом размере окна отправитель не может посылать сегменты, за исключением двух случаев. Во-первых, разрешается посылать срочные данные, например, чтобы пользователь мог уничтожить процесс, выполняющийся на удаленной машине. Во-вторых, отправитель может послать 1-байтовый сегмент, прося получателя повторить информацию о размере окна и ожидаемом следующем байте. Стандарт TCP явно предусматривает эту возможность для предотвращения тупиковых ситуаций в случае потери объявления о размере окна.

Отправители не обязаны передавать данные сразу, как только они приходят от приложения. Также никто не требует от получателей посылать подтвержде­ния как можно скорее. Например TCP-сущность, получив от прило­жения первые 2 Кбайт данных и зная, что доступный размер окна равен 4 Кбайт, была бы совершенно права, если бы просто сохранила полученные данные в буфере до тех пор, пока не прибудут еще 2 Кбайт данных, чтобы передать сразу сегмент с 4 Кбайт полезной нагрузки. Эта свобода действий может использоваться для улучшения производительности.

Рассмотрим TELNET-соединение с интерактивным редактором, реагирующим на каждое нажатие клавиши. В худшем случае, когда символ прибывает к передающей TCP-сущности, она создает 21-байтовый TCP-сегмент и передает его IP-уровню, который, в свою очередь, посылает 41-байтовую IP-дейтаграмму.

На принимающей стороне TCP-сущность немедленно отвечает 40-байтовым подтверждением (20 байт TCP-заголовка и 20 байт IP-заголовка). Затем, когда редактор прочитает этот байт из буфера, TCP-сущность пошлет обновленную информацию о размере буфера, передвинув окно на 1 байт вправо. Размер этого пакета также составляет 40 байт. Наконец, когда редактор обработает этот символ, он отправляет обратно эхо, передаваемое 41-байтовым пакетом. Итого для каждого введенного с клавиатуры символа пересылается четыре пакета общим размером 162 байта. В условиях дефицита пропускной способности линий этот метод работы нежелателен.

Для улучшения ситуации многие реализации TCP используют задержку подтверждений и обновлений размера окна на 500 мс в надежде получить дополни­тельные данные, вместе с которыми можно будет отправить подтверждение од­ним пакетом. Если редактор успеет выдать эхо в течение 500 мс, удаленному пользователю нужно будет выслать только один 41-байтовый пакет, таким образом, нагрузка на сеть снизится вдвое.

Хотя такой метод задержки и снижает нагрузку на сеть, тем не менее, эффективность использования сети отправителем продолжает оставаться невысокой, так как каждый байт пересылается в отдельном 41-байтовом пакете. Метод, позволяющий повысить эффективность, известен как алгоритм Нагля (Nagle, 1984). Предложение Нагля звучит довольно просто: если данные поступают отправителю по одному байту, отправитель просто передает первый байт, а остальные помещает в буфер, пока не будет получено подтверждение приема первого байта. После этого можно переслать все накопленные в буфере символы в виде одного TCP-сегмента и снова начать буферизацию до получения подтверждения отосланных символов. Если пользователь вводит символы быстро, а сеть медленная, то в каждом сегменте будет передаваться значительное количество символов, таким образом, нагрузка на сеть будет существенно снижена. Кроме того, этот алгоритм позволяет посылать новый пакет, даже если число символов в буфере превышает половину размера окна или максимальный размер сегмента.

Алгоритм Нагля широко применяется различными реализациями протокола TCP, однако иногда бывают ситуации, в которых его лучше отключить. В частности, при работе приложения X-Windows в Интернете информация о перемещениях мыши пересылается на удаленный компьютер. (X-Window - это система управления окнами в большинстве ОС типа UNIX). Если буферизировать эти данные для пакетной пересылки, курсор будет перемещаться рывками с большими паузами, в результате чего пользоваться программой будет очень сложно, почти невозможно.

Еще одна проблема, способная значительно снизить производительность протокола TCP, известна под именем синдрома глупого окна (Clark, 1982). Суть проблемы состоит в том, что данные пересылаются TCP-сущностью крупными блоками, но принимающая сторона интерактивного приложения считывает их посимвольно.

Рассмотрим на примере - начальное состояние таково: TCP-буфер приемной стороны полон, и отправителю это известно (то есть размер его окна равен 0). Затем интерактивное приложение читает один символ из TCP-потока. Принимающая TCP-сущность радостно сообщает отправителю, что размер окна увеличился, и что он теперь может послать 1 байт. Отправитель повинуется и посылает 1 байт. Буфер снова оказывается полон, о чем получатель и извещает, посылая подтверждение для 1-байтового сегмента с нулевым размером окна. И так может продолжаться вечно.

Дэвид Кларк (David Clark) предложил запретить принимающей стороне отправлять информацию об однобайтовом размере окна. Вместо этого получатель должен подождать, пока в буфере не накопится значительное количество сво­бодного места. В частности, получатель не должен отправлять сведения о новом размере окна до тех пор, пока он не сможет принять сегмент максимального размера, который он объявлял при установке соединения, или его буфер не освободился хотя бы наполовину.

Кроме того, увеличению эффективности отправки может способствовать сам отправитель, отказываясь от отправки слишком маленьких сегментов. Вместо этого он должен подождать, пока размер окна не станет достаточно большим для того, чтобы можно было послать полный сегмент или, по меньшей мере, равный половине размера буфера получателя. (Отправитель может оценить этот размер по последовательности сообщений о размере окна, полученных им ранее.)

В задаче избавления от синдрома глупого окна алгоритм Нагля и решение Кларка дополняют друг друга. Нагль пытался решить проблему приложения, предоставляющего данные TCP-сущности посимвольно. Кларк старался разрешить проблему приложения, посимвольно получающего данные у TCP. Оба решения хороши и могут работать одновременно. Суть их состоит в том, чтобы не посылать и не просить передавать данные слишком малыми порциями.

Принимающая TCP-сущность может пойти еще дальше в деле повышения производительности, просто обновляя информацию о размере окна большими порциями. Как и отправляющая TCP-сущность, она также может буферизировать данные и блокировать запрос на чтение READ, поступающий от приложения, до тех пор, пока у нее не накопится большого объема данных. Таким образом, снижается количество обращений к TCP-сущности и, следовательно, снижаются накладные расходы. Конечно, такой подход увеличивает время ожидания ответа, но для неинтерактивных приложений, например при передаче файла, сокращение времени, затраченного на всю операцию, значительно важнее увеличения времени ожидания ответа на отдельные запросы.

Еще одна проблема получателя состоит в сегментах, полученных в неправильном порядке. Они могут храниться или отвергаться по усмотрению получателя. Разумеется, подтверждение может быть выслано, только если все данные вплоть до подтверждаемого байта получены. Если до получателя доходят сегменты О, 1, 2, 4, 5, 6 и 7, он может подтвердить получение данных вплоть до последнего байта сегмента 2. Когда у отправителя истечет время ожидания, он передаст сегмент 3 еще раз. Если к моменту прибытия сегмента 3 получатель сохранит в буфере сегменты с 4-го по 7-й, он сможет подтвердить получение всех байтов, вплоть до последнего байта сегмента 7.

- 1

Протокол TCP(TransmissionControlProtocol– протокол управления передачей) является ориентированным на соединение транспортным протоколом с надежной доставкой данных. Поэтому он имеет жесткие алгоритмы обнаружения ошибок, разработанные для обеспечения целостности передаваемых данных.

Для обеспечения надежной доставки применяется последовательная нумерация и подтверждение. С помощью последовательной нумерации определяется порядок следования данных в пакетах и выявляются пропущенные пакеты. Последовательная нумерация с подтверждением позволяет организовать надежную связь, которая называется полным дуплексом (fullduplex). Каждая сторона соединения обеспечивает собственную нумерацию для другой стороны.

TCP– является байтовым последовательным протоколом. В отличие от пакетных последовательных протоколов, он присваивает последовательный номер каждому передаваемому байту пакета, а не каждому пакету в отдельности.

Destination Port

Sequence Number

Acknowledgement Number

Рис. Формат заголовка TCP-пакета

Назначение полей tcp пакета:

Номер порта отправителя – Source Port (16 бит) – содержит номер порта, с которого был отправлен пакет, когда это имеет значение (например, отправитель ожидает ответа). Если это поле не используется, оно заполняется нулями.

Номер порта назначения – Destination Port (16 бит) – содержит номер порта, на который будет доставлен пакет.

Порядковый номер – Sequence number (32 бита) – значение, присвоенное пакетуTCP, определяющее номер стартового байта пакета, если не установлен битSYN. Если установлен указанный бит, то порядковый номер является начальным порядковым номером (ISN) и первый байт данных равенISN+ 1;

Номер подтверждения – Acknowledgment Number (32 бита) – значение, отсылаемое принимающей станцией отправителю, подтверждающее прием переданного ранее пакета (пакетов). Оно задает следующий порядковый номер, который целевая станция ожидает получить при установленном битеACK. При установленном соединении подтверждение отправляется всегда.

Смещение данных – Data Offset (4 бита) – задает длину заголовкаTCP(количество 32-битовых слов в заголовкеTCP);

Резервное поле – Reserved (6 бит) – зарезервировано.

Флаги управления:

URG – флаг срочности, применяется при посылке сообщения получателю, ожидающему приема экстренной информации;

ACK – флаг пакета, содержащего подтверждение получения;

PSH – флаг выталкивания, немедленная отсылка данных после считывания данных этого пакета;

RST – флаг переустановки соединения;

SYN – флаг синхронизации чисел последовательности;

FIN – флаг окончания передачи со стороны отправителя.

Окно – Window (16 бит) – содержит количество байт данных, которое отправитель данного сегмента может принять, отсчитанное от номера байта, указанного в полеAcknowledgmentNumber.

Поле контрольной суммы – Checksum (16 бит) – представляет собой побитное дополнение 16-битной суммы 16-битных слов заголовка и данных дополненных нулевым байтом, если сегмент содержит нечетное число байт заголовка и данных. При вычислении контрольной суммы поле контрольной суммы полагается равным нулю.

Указатель срочных данных – Urgent Pointer (16 бит) – содержит значение счетчика байтов, начиная с которого следуют данные повышенной срочности. Данное поле интерпретируется только в пакетах с установленным флагомURG;

Опции – Options – имеет переменную длину и содержит дополнительные параметры;

Заполнение – Padding – имеет переменную длину и используется для выравнивания заголовка по 32-битному слову нулевыми значениями.

Транспортный уровень

Задача транспортного уровня - это передача данных между различными приложениями, выполняемых на всех узлах сети. После того, как пакет доставляется с помощью IP-протокола на принимающий компьютер, данные должны быть отправлены специальному процессу-получателю. Каждый компьютер может выполнять несколько процессов, кроме того, приложение может иметь несколько точек входа, действуя в качестве адреса назначения для пакетов данных.

Пакеты, приходящие на транспортный уровень операционной системы организованы в множества очередей к точкам входа различных приложений. В терминологии TCP/IP такие точки входа называются портами.

Transmission Control Protocol

Transmission Control Protocol (TCP) (протокол управления передачей) - является обязательным протоколом стандарт TCP/IP , определенный в стандарте RFC 793, "Transmission Control Protocol (TCP)".

TCP - это протокол транспортного уровня, предоставляющий транспортировку (передачу) потока данных, с необходимостью предварительного установления соединения, благодаря чему гарантирует уверенность в целостности получаемых данных, также выполняет повторный запрос данных в случае потери данных или искажения. Помимо этого протокол TCP отслеживает дублирование пакетов и в случае обнаружения - уничтожает дублирующиеся пакеты.

В отличие от протокола UDP гарантирует целостность передаваемых данных и подтверждения отправителя о результатах передачи. Используется при передаче файлов, где потеря одного пакета может привести к искажению всего файла.

TCP обеспечивает свою надежность благодаря следующему:

  • Данные от приложения разбиваются на блоки определенного размера, которые будут отправлены.
  • Когда TCP посылает сегмент, он устанавливает таймер, ожидая, что с удаленного конца придет подтверждение на этот сегмент. Если подтверждение не получено по истечении времени, сегмент передается повторно.
  • Когда TCP принимает данные от удаленной стороны соединения, он отправляет подтверждение. Это подтверждение не отправляется немедленно, а обычно задерживается на доли секунды
  • TCP осуществляет расчет контрольной суммы для своего заголовка и данных. Это контрольная сумма, рассчитываемая на концах соединения, целью которой является выявить любое изменение данных в процессе передачи. Если сегмент прибывает с неверной контрольной суммой, TCP отбрасывает его и подтверждение не генерируется. (Ожидается, что отправитель отработает тайм-аут и осуществит повторную передачу.)
  • Так как TCP сегменты передаются в виде IP датаграмм, а IP датаграммы могут прибывать беспорядочно, также беспорядочно могут прибывать и TCP сегменты. После получения данных TCP может по необходимости изменить их последовательность, в результате приложение получает данные в правильном порядке.
  • Так как IP датаграмма может быть продублирована, принимающий TCP должен отбрасывать продублированные данные.
  • TCP осуществляет контроль потока данных. Каждая сторона TCP соединения имеет определенное пространство буфера. TCP на принимающей стороне позволяет удаленной стороне посылать данные только в том случае, если получатель может поместить их в буфер. Это предотвращает от переполнения буферов медленных хостов быстрыми хостами.

  • Порядковый номер выполняет две задачи:
    • Если установлен флаг SYN, то это начальное значение номера последовательности - ISN (Initial Sequence Number), и первый байт данных, которые будут переданы в следующем пакете, будет иметь номер последовательности, равный ISN + 1.
    • В противном случае, если SYN не установлен, первый байт данных, передаваемый в данном пакете, имеет этот номер последовательности.
  • Номер подтверждения - если установлен флаг ACK, то это поле содержит номер последовательности, ожидаемый получателем в следующий раз. Помечает этот сегмент как подтверждение получения.
  • Длина заголовка - задается словами по 32бита.
  • Размер окна - количество байт, которые готов принять получатель без подтверждения.
  • Контрольная сумма - включает псевдо заголовок, заголовок и данные.
  • Указатель срочности - указывает последний байт срочных данных, на которые надо немедленно реагировать.
  • URG - флаг срочности, включает поле "Указатель срочности", если =0 то поле игнорируется.
  • ACK - флаг подтверждение, включает поле "Номер подтверждения, если =0 то поле игнорируется.
  • PSH - флаг требует выполнения операции push, модуль TCP должен срочно передать пакет программе.
  • RST - флаг прерывания соединения, используется для отказа в соединении
  • SYN - флаг синхронизация порядковых номеров, используется при установлении соединения.
  • FIN - флаг окончание передачи со стороны отправителя

Рассмотрим структуру заголовка TCP с помощью сетевого анализатора Wireshark:


TCP порты

Так как на одном и том же компьютере могут быть запущены несколько программ, то для доставки TCP-пакета конкретной программе, используется уникальный идентификатор каждой программы или номер порта.

Номер порта - это условное 16-битное число от 1 до 65535, указывающее, какой программе предназначается пакет.

TCP порты используют определенный порт программы для доставки данных, передаваемых с помощью протокола управления передачей (TCP). TCP порты являются более сложными и работают иначе, чем порты UDP. В то время как порт UDP работает как одиночная очередь сообщений и как точка входа для UDP-соединения, окончательной точкой входа для всех соединений TCP является уникальное соединение. Каждое соединение TCP однозначно идентифицируется двумя точками входа.

Каждый отдельный порт сервера TCP может предложить общий доступ к нескольким соединениям, потому что все TCP соединения идентифицируются двумя значениями: IP-адресом и TCP портом (сокет).

Все номера портов TCP, которые меньше чем 1024 - зарезервированы и зарегистрированы в Internet Assigned Numbers Authority (IANA).

Номера портов UDP и TCP не пересекаются.

TCP программы используют зарезервированные или хорошо известные номера портов, как показано на следующем рисунке.

Установление соединения TCP

Давайте теперь посмотрим, как устанавливается TCP-соединения. Предположим, что процесс, работающий на одном хосте, хочет установить соединение с другим процессом на другом хосте. Напомним, что хост, который инициирует соединение называется «клиентом», в то время как другой узел называется «сервером».

Перед началом передачи каких-либо данных, согласно протоколу TCP, стороны должны установить соединение. Соединение устанавливается в три этапа (процесс «трёхкратного рукопожатия» TCP).

  • Запрашивающая сторона (которая, как правило, называется клиент) отправляет SYN сегмент, указывая номер порта сервера, к которому клиент хочет подсоединиться, и исходный номер последовательности клиента (ISN).
  • Сервер отвечает своим сегментом SYN, содержащим исходный номер последовательности сервера. Сервер также подтверждает приход SYN клиента с использованием ACK (ISN + 1). На SYN используется один номер последовательности.
  • Клиент должен подтвердить приход SYN от сервера своим сегментов SYN, содержащий исходный номер последовательности клиента (ISN+1) и с использованием ACK (ISN+1). Бит SYN установлен в 0, так как соединение установлено.

После установления соединения TCP, эти два хоста могут передавать данные друг другу, так как TCP-соединение является полнодуплексным, они могут передавать данные одновременно.

Мне очень нравится весь цикл статей, плюс всегда хотелось попробовать себя в качестве переводчика. Возможно, опытным разработчикам статья покажется слишком очевидной, но, как мне кажется, польза от нее в любом случае будет.

Привет, меня зовут Гленн Фидлер и я приветствую вас в первой статье из моей онлайн-книги “Сетевое программирование для разрабочиков игр”.

В этой статье мы начнем с самых базовых аспектов сетевого программирования - приема и передачи данных по сети. Прием и передача данных - это основная и наиболее простая часть из всего круга задач, которыми занимаются сетевые программисты, но часто бывает сложно определить, каким путем лучше двигаться. Уделите этой части достаточно внимания - если у вас останется непонимание, то это может привести к ужасным последствиям для вашей многопользовательской игры в дальнейшем!

Вы, скорее всего, уже что-нибудь слышали о сокетах, и, возможно, знаете, что они делятся на два основных типа - TCP и UDP. Первое, что нужно решить при разработке многопользовательской игры - это какой тип сокетов использовать - TCP, UDP, или оба?

Выбор типа сокетов полностью зависит от жанра игры, которую разрабатываете. В данном цикле статей я буду считать, что вы пишете игру в стиле action - наподобие Halo, Battlefield 1942, Quake, Unreal, CounterStrike, Team Fortress и т.п.

Теперь мы более подробно рассмотрим свойства каждого типа сокетов (учитывая тот факт, что мы разрабатыватаем игру в стиле action), и немного углубимся в детали работы сети интернет. После подробного обзора правильный вариант станет очевиден!

TCP расшифровывается как “transmission control protocol” (протокол контроля передачи), а IP - как “internet protocol”. Вместе они лежат в основе практически всего, что вы делаете в сети, начиная от просмотра веб-страниц и кончая общением в IRC и электронной почтой - все это работает на основе TCP/IP.

Если вы когда-либо уже использовали TCP сокеты, то вы должны знать, что TCP - это протокол, использующий принцип надежного соединения. Это означает, что вы устанавливаете соединение между двумя компьютерами, и затем пересылаете данные между ними подобно тому, как если бы вы записывали информацию в файл на одном компьютере, а на другом - считывали бы ее из того же файла.

При этом соединение считается надежным и последовательным - то есть, вся информация, которую вы посылаете, гарантированно должна дойти до получателя в том же порядке, в каком была отправлена. Также TCP соединение можно считать непрерывным потоком данных - протокол сам заботится о разбивке данных на пакеты и пересылке их по сети.

Еще разок - все просто, как обычная запись или чтение из файла. Элементарно, Ватсон!

Но такая простота в обращении совершенно отличается от того, что на самом деле происходит «под капотом», на более низком уровне - уровне протокола IP.

На этом уровне нет понятия соединения - вместо этого отдельные пакеты передаются от одного компьютера к другому. Можно представить этот процесс как передачу записки от одного человека к другому в комнате, полной народу: в конце концов записка попадает к кому надо, но при этом пройдя через множество рук.

При этом нет никакой гарантии того, что записка дойдет до адресата. Отправитель просто отправляет записку в надежде, что она дойдет, но при этом даже не знает, дошло ли послание или нет - до тех пор, пока получатель не решит написать в ответ.
Естественно, в реальности все немного сложнее, поскольку компьютер-отправитель не знает точную последовательность компьютеров в сети, через которые надо передать пакет, чтобы он добрался как можно быстрее. Иногда IP передает несколько копий одного и того же пакета, которые могут идти до адресата разными путями - и, скорее всего, дойдут в разное время.

А что, если мы захотим пересылать информацию между компьютерами не в стиле чтения/записи в файл, а непосредственно отправляя и получая отдельные пакеты?

Что ж, мы можем сделать это, используя UDP. UDP расшифровывается как “user datagram protocol” (протокол пользовательских датаграмм), и он работает поверх IP (как и TCP), но вместо добавления кучи функциональности он представляет собой лишь небольшую надстройку над IP.

Используя UDP, мы можем отослать пакет по определенному IP адресу (к примеру, 112.140.20.10) и порту (к примеру, 52423), и он будет передаваться от компьютера к компьютеру, пока не достигнет цели (или не потеряется по пути).

При этом, на стороне приемника мы просто сидим и ждем, прослушивая определенный порт (52423 в нашем случае), и, когда на него приходит пакет от кого-либо (помним, что соединения не используются), мы получаем об этом уведомление с адресом и портом компьютера-отправителя, размером пакета, и после этого можем прочитать данные из этого пакета.

Протокол UDP не гарантирует доставку данных. На практике большинство пакетов, конечно, доходят, но всегда имеются потери около 1-5%, а иногда бывают периоды времени, в которые пакеты вообще не доходят (помните, что между отправителем и получателем могут находиться тысячи компьютеров, на любом из которых что-то может отказать или сломаться).

Также UDP не гарантирует порядок доставки пакетов. Вы можете отправить пять пакетов по порядку - 1, 2, 3, 4, 5 - а прийти они могут совершенно в другом порядке - к примеру, 3, 1, 2, 5, 4. Опять же, на практике, они скорее всего придут в правильном порядке в большинстве случаев, но полагаться на это нельзя!

Наконец, хоть UDP и ничего особо не добавляет к IP, одну вещь он все-таки гарантирует. Если вы пересылаете пакет, то он либо дойдет полностью, либо не дойдет вообще. Так, если вы пересылаете пакет в 256 байт другому компьютеру, то он не может получить только первые 100 байт от пакета - он обязательно должен получить все 256 байт. Это реально единственная вещь, которую гарантирует протокол UDP - все остальное ложится на ваши плечи.

Итак, нам нужно решить - использовать TCP или UDP сокеты? Давайте взглянем на их свойства:

  • Использует принцип соединений
  • Гарантирует доставку и очередность
  • Автоматически разбивает информацию на пакеты
  • Следит за тем, чтобы не пересылать данные слишком интенсивно (контроль потока данных)
  • Легко использовать - как запись/чтение из файла
UDP:
  • Не использует принцип соединений - придется реализовывать это вручную
  • Не гарантирует доставку и порядок доставки пакетов - они могут дойти в неправильном порядке, с дубликатами, или вообще не дойти!
  • Нужно вручную разбивать данные на пакеты и отправлять их
  • Нужно следить за тем, чтобы не пересылать данные слишком интенсивно
  • Если пакет потеряется, то нужно как-то это отследить, и в случае необходимости переслать его заново
С таким списком решение кажется очевидным - TCP реализует всю необходимую нам функциональность и его проще использовать, тогда как использование UDP обещает геморрой с написанием всего на свете вручную, с нуля. Значит, используем TCP, да?

А вот и нет.

Использовать TCP - это наверное, худшая ошибка, которую можно совершить, разрабатывая многопользовательскую игру. Чтобы понять почему, давайте разберемся, что делает TCP таким простым в использовании!

Как работает TCP
TCP и UDP оба работают поверх IP, но по факту они совершенно разные. UDP ведет себя очень похоже на IP, в то время как TCP абстрагирует пользователя от всех проблем с пакетами, делая взаимодействие с ним похожим на чтение/запись в файл.

Итак, как же он это делает?

Во-первых, TCP использует абстракцию потока данных - вы можете просто записывать байты данных в этот поток, и TCP позаботится о том, чтобы они дошли до адресата. Так как протокол IP передает данные пакетами, а TCP работает поверх IP, TCP должен разбивать поток входных данных пользователя на отдельные пакеты. Таким образом, внутри TCP некоторая логика собирает данные в очередь, и, когда их накапливается достаточно много, она формирует пакет и отправляет его адресату.

Такое поведение может стать проблемой для нашей многопользовательской игры, если нужно передавать очень маленькие пакеты. Может случиться так, что TCP решит не передавать наши данные, пока их не накопится достаточно, чтобы сформировать пакет определенного размера (скажем, больше ста байт). И это - большая проблема, потому что необходимо передавать данные с клиента (нажатия клавиш игрока) на сервер как можно быстрее, и если при этом будут возникать задержки из-за буферизации данных протоколом, то для игрока на клиентской стороне игра будет происходить далеко не самым приятным образом. При этом обновление объектов игры будет происходить с задержкой и редко - тогда как нам нужно делать обновление объектов вовремя и часто.

В TCP есть опция, призванная исправить это - “TCP_NODELAY”. Она говорит протоколу, чтобы он не ждал накопления данных в очереди на отправку, а отсылал их сразу.

К сожалению, даже с установленной данной опцией, у TCP наблюдается множество проблем при использовании его в сетевых играх.

Корень всех проблем заключается в том, каким образом TCP обрабатывает пакеты, потерянные или пришедшие вне очереди, создавая иллюзию надежного и последовательного соединения.

Как TCP обеспечивает надежность соединения
При передаче TCP разбивает поток данных на отдельные пакеты, пересылает их по сети, используя ненадежный протокол IP, и затем на принимающем компьютере восстанавливает из принятых пакетов первоначальный поток.

Но что будет, если один из пакетов не дойдет? Или если пакеты придут не по порядку, или с дубликатами?

Если особо не углубляться в детали работы TCP (а это реально очень сложная тема - можете почитать в TCP/IP Illustrated), процесс выглядит так: TCP отправляет пакет, определяет, что пакет не дошел, и заново отправляет тот же пакет адресату. Дублирующиеся пакеты отсеиваются на стороне адресата, а пакеты, пришедшие не по порядку - переупорядочиваются, чтобы все было как надо - надежно и по порядку.

Проблема заключается в том, что когда TCP таким образом “синхронизирует” поток данных, в случае потери пакета передача останавливается до тех пор, пока потерянный пакет не будет отправлен заново (и получен адресатом). Если во время ожидания придут новые данные, они будут поставлены в очередь, и вы не сможете прочитать их, пока не дойдет тот самый потерянный пакет. Сколько времени занимает посылка пакета заново? Она занимает как минимум время, равное времени прохождения пакета туда и обратно (когда TCP определяет, какой пакет надо отправить заново), плюс время на повторную доставку потерянного пакета. Так что, если пинг между компьютерами составляет 125 мс, повторная передача пакета займет примерно одну пятую секунды, а в худшем случае - до полсекунды (представьте, если вдруг заново отправленный пакет тоже потеряется). Веселуха!

Почему никогда не стоит использовать TCP для многопользовательских игр
Проблема с использованием TCP в сетевых играх заключается в том, что, в отличие от браузеров, электронной почты и прочих приложений, игры завязаны на взаимодействии в реальном времени. Для многих аспектов игры, например, нажатых пользователем клавиш и положения игроков в игре, неважно, что происходило секунду назад, а важно только наиболее актуальное состояние игрового мира.

Рассмотрим простой пример многопользовательской игры, например, 3d-шутер. Сетевая часть в игре построена очень просто: каждую итерацию цикла игры клиент посылает на сервер описание всех действий игрока (нажатые клавиши, положение мыши и т.п.), и каждую итерацию сервер обрабатывает эти данные, обновляет модель игрового мира и посылает обратно клиенту текущие позиции объектов мира, чтобы тот отрисовал игроку новый кадр.

Итак, в нашей игре, если пакет будет потерян при передаче по сети, игра останавливается и ждет, пока пакет не будет доставлен заново. На клиентской стороне игровые объекты замирают, и на сервере игроки также не могут двигаться или стрелять, так как сервер не может принимать новые пакеты. Когда потерянный пакет наконец доходит, в нем содержится уже устаревшая информация, которая уже является неактуальной. К тому же после этого приходят и все те пакеты, которые накопились в очереди за время ожидания, и их всех нужно обработать за одну итерацию цикла. Полная неразбериха!

К сожалению, изменить такое поведение TCP никак нельзя, да и не надо, так как в нем и заключается смысл TCP. Это - необходимость, чтобы сделать передачу данных через интернет надежным и последовательным потоком данных.
Но нам не нужен надежный и последовательный поток данных.

Нам нужно, чтобы данные доходили от клиента к серверу как можно быстрее, и мы не хотим ждать повторной отправки данных.
Вот почему никогда не следует использовать TCP для многопользовательских игр.

Но подождите! Почему я не могу использовать и UDP, и TCP вместе?

Для игровых данных реального времени, например, нажатий пользователя и состояния игрового мира, важны только наиболее актуальные данные, но для других типов данных, например, наборов команд, пересылаемых от одного компьютера к другому, надежность и последовательность канала может быть очень важна.

Конечно, велико искушение использовать UDP для передачи данных пользовательского ввода и состояния мира, а TCP - для тех данных, которые должны быть гарантированно доставлены. Возможно, вы даже думаете, что можно сделать несколько “потоков” команд - например, один для загрузки уровней, другой - для команд AI. Вы думаете: “Мне не нужно, чтобы команды AI ждали в очереди, если потеряется пакет с данными для загрузки уровня, ведь они же совершенно не связаны!”. В данном случае вы правы, и вы можете решить создать по TCP сокету на каждый поток команд.

На первый взгляд, это отличная идея. Но проблема в том, что раз TCP и UDP оба работают поверх IP, пакеты обоих протоколов будут влиять друг на друга - уже на уровне IP. Как конкретно будет проявляться это влияние - очень сложный вопрос, и связан он с механизмами обеспечения надежности в TCP. Но, в любом случае, знайте, что использование TCP обычно приводит к увеличению потерь UDP пакетов. Если хотите узнать об этом больше, можете прочитать

TCP - это транспортный механизм, предоставляющий поток данных, с предварительной установкой соединения, за счёт этого дающий уверенность в достоверности получаемых данных, осуществляет повторный запрос данных в случае потери данных и устраняет дублирование при получении двух копий одного пакета. В отличие от UDP , гарантирует, что приложение получит данные точно в такой же последовательности, в какой они были отправлены, и без потерь.

Протокол TCP используется в тех случаях, когда требуется надежная доставка сообщений. Он освобождает прикладные процессы от необходимости использовать таймауты и повторные передачи для обеспечения надежности. Наиболее типичными прикладными процессами, использующими TCP, являются FTP (File Transfer Protocol - протокол передачи файлов) и TELNET. Кроме того, TCP используют система X-Window, rcp (remote copy - удаленное копирование) и другие "r-команды". Большие возможности TCP даются не бесплатно. Реализация TCP требует большой производительности процессора и большой пропускной способности сети. Внутренняя структура модуля TCP гораздо сложнее структуры модуля UDP.

Реализация TCP, как правило, встроена в ядро системы, хотя есть и реализации TCP в контексте приложения.

Когда осуществляется передача от компьютера к компьютеру через Internet, TCP работает на верхнем уровне между двумя конечными системами, например, интернет-браузер и интернет-сервер. Также TCP осуществляет надежную передачу потока байт от одной программы на некотором компьютере в другую программу на другом компьютере. Программы для электронной почты и обмена файлами используют TCP. TCP контролирует длину сообщения, скорость обмена сообщениями, сетевой трафик.

Когда прикладной процесс начинает использовать TCP, то модуль TCP на машине клиента и модуль TCP на машине сервера начинают общаться. Эти два оконечных модуля TCP поддерживают информацию о состоянии соединения, называемого виртуальным каналом. Этот виртуальный канал потребляет ресурсы обоих оконечных модулей TCP. Канал является дуплексным; данные могут одновременно передаваться в обоих направлениях. Один прикладной процесс пишет данные в TCP-порт, они проходят по сети, и другой прикладной процесс читает их из своего TCP-порта.

Протокол TCP разбивает поток байт на пакеты; он не сохраняет границ между записями. Например, если один прикладной процесс делает 5 записей в TCP-порт, то прикладной процесс на другом конце виртуального канала может выполнить 10 чтений для того, чтобы получить все данные. Но этот же процесс может получить все данные сразу, сделав только одну операцию чтения. Не существует зависимости между числом и размером записываемых сообщений с одной стороны и числом и размером считываемых сообщений с другой стороны.

Протокол TCP требует, чтобы все отправленные данные были подтверждены принявшей их стороной. Он использует таймауты и повторные передачи для обеспечения надежной доставки. Отправителю разрешается передавать некоторое количество данных, не дожидаясь подтверждения приема ранее отправленных данных. Таким образом, между отправленными и подтвержденными данными существует окно уже отправленных, но еще неподтвержденных данных. Количество байт, которые можно передавать без подтверждения, называется размером окна. Как правило, размер окна устанавливается в стартовых файлах сетевого программного обеспечения. Так как TCP-канал является дуплексным, то подтверждения для данных, идущих в одном направлении, могут передаваться вместе с данными, идущими в противоположном направлении. Приемники на обеих сторонах виртуального канала выполняют управление потоком передаваемых данных для того, чтобы не допускать переполнения буферов.

Схема работы пользовательского приложения с TCP в общих чертах состоит в следующем. Для передачи данных пользовательскому процессу надо вызвать соответствующую функцию TCP, с указанием на буфер передаваемых данных. TCP упаковывает эти данные в сегменты своего стека и вызывает функцию передачи протокола нижнего уровня, например IP.

На другом конце, получатель TCP группирует поступившие от протокола нижнего уровня данные в принимающие сегменты своего буфера, проверяет целостность данных, передает данные пользовательскому процессу и уведомляет отправителя об их получении.

Пользовательский интерфейс с TCP может выполнять такие команды как открыть (OPEN) или закрыть соединение (CLOSE), отправить (SEND) или принять (RECEIVE) данные, а также получить состояние соединения (STATUS).

В модели межсетевого соединения взаимодействие TCP и протоколов нижнего уровня, как правило, не специфицировано, за исключением того, что должен существовать механизм, который обеспечивал бы асинхронную передачу информации от одного уровня к другому. Результатом работы этого механизма является инкапсуляция протокола более высокого уровня в тело протокола более низкого уровня. Реализуется этот механизм через интерфейс вызовов между TCP и IP.

В результате работы этого механизма каждый TCP пакет вкладывается в «конверт» протокола нижнего уровня, например, IP. Получившаяся таким образом дейтаграмма содержит в себе TCP-пакет так же как TCP пакет содержит пользовательские данные.

Краткое описание протоколов семейства TCP/IP с расшифровкой аббревиатур

  • ARP (Address Resolution Protocol, протокол определения адресов) : конвертирует 32-разрядные IP-адреса в физические адреса вычислительной сети, например, в 48-разрядные адреса Ethernet.
  • FTP (File Transfer Protocol, протокол передачи файлов) : позволяет передавать файлы с одного компьютера на другой с использованием TCP-соединений. В родственном ему, но менее распространенном протоколе передачи файлов - Trivial File Transfer Protocol (TFTP) - для пересылки файлов применяется UDP, а не TCP.
  • ICMP (Internet Control Message Protocol, протокол управляющих сообщений Internet) : позволяет IP-маршрутизаторам посылать сообщения об ошибках и управляющую информацию другим IP-маршрутизаторам и главным компьютерам сети. ICMP-сообщения "путешествуют" в виде полей данных IP-дейтаграмм и обязательно должны реализовываться во всех вариантах IP.
  • IGMP (Internet Group Management Protocol, протокол управления группами Internet) : позволяет IP-дейтаграммам распространяться в циркулярном режиме (multicast) среди компьютеров, которые принадлежат к соответствующим группам.
  • IP (Internet Protocol, протокол Internet) : низкоуровневый протокол, который направляет пакеты данных по отдельным сетям, связанным вместе с помощью маршрутизаторов для формирования Internet или интрасети. Данные "путешествуют" в форме пакетов, называемых IP-дейтаграммами.
  • RARP (Reverse Address Resolution Protocol, протокол обратного преобразования адресов) : преобразует физические сетевые адреса в IP-адреса.
  • SMTP (Simple Mail Transfer Protocol, простой протокол обмена электронной почтой) : определяет формат сообщений, которые SMTP-клиент, работающий на одном компьютере, может использовать для пересылки электронной почты на SMTP-сервер, запущенный на другом компьютере.
  • TCP (Transmission Control Protocol, протокол управления передачей) : протокол ориентирован на работу с подключениями и передает данные в виде потоков байтов. Данные пересылаются пакетами - TCP-сегментами, - которые состоят из заголовков TCP и данных. TCP - "надежный" протокол, потому что в нем используются контрольные суммы для проверки целостности данных и отправка подтверждений, чтобы гарантировать, что переданные данные приняты без искажений.
  • UDP (User Datagram Protocol, протокол пользовательских дейтаграмм) : протокол, не зависящий от подключений, который передает данные пакетами, называемыми UDP-дейтаграммами. UDP - "ненадежный" протокол, поскольку отправитель не получает информацию, показывающую, была ли в действительности принята дейтаграмма.

Состав и предназначение полей заголовка

ТСР-сегменты отправляются как IP-дейтаграммы. Заголовок TCP, следующий за IP-заголовком, содержит информацию TCP-протокола.

Source Port (16 бит). Порт отправителя.

Destination Port (16 бит). Порт получателя.

Sequence Number (32 бита). Номер кадра. Номер кадра первого октета данных в этом сегменте (за исключением пакета, где присутствует флаг SYN). Если в пакете присутствует флаг SYN, то номер данного пакета становится номером начала последовательности (ISN) и номером первого октета данных становится номер ISN+1.

Acknowledgment Number (32 бита). Поле номера кадра подтвержденного получения. Если пакет содержит установленный контрольный бит АСК, то это поле содержит номер следующего пакета данных отправителя, который ожидает получатель. При установленном соединении пакет подтверждения отправляется всегда.

Data Offset (4 бита). Поле величины смещения данных. Оно содержит количество 32-битных слов заголовка TCP-пакета. Это число определяет смещение расположения данных в пакете.

Reserved (6 бит). Резервное поле. Поле зарезервировано.

Флаги управления (слева направо):

  • URG: Флаг срочности
  • АСК: Флаг пакета, содержащего подтверждение получения
  • PSH: Флаг форсированной отправки
  • RST: Переустановка соединения
  • SYN: Синхронизация чисел последовательности
  • FIN: Флаг окончания передачи со стороны отправителя

Window (16 бит). Окно. Это поле содержит количество байт данных, которое отправитель данного сегмента может принять, отсчитанное от номера байта, указанного в поле Acknowledgment Number.

Checksum (16 бит). Поле контрольной суммы. Это поле содержит 16 бит суммы побитных дополнений 16-битных слов заголовка и данных. Если сегмент содержит нечетное число байт заголовка и данных, последний байт дополняется справа нулями. При вычислении контрольной суммы поле контрольной суммы полагается равным нулю.

Urgent Pointer (16 бит). Поле указателя срочных данных. Это поле содержит значение счетчика пакетов, начиная с которого следуют пакеты повышенной срочности. Это поле принимается во внимание только в сегментах с установленным флагом URG.

Options. Поле дополнительных параметров: может быть переменной длины.

Padding. Заполнение: переменная длина. Заполнение (нулями) TCP-заголовка используется для выравнивания его по 32-битному слову.

Эта ссылка на наглядное видео. К сожалению, оно на английском языке, но и так понятно.