Технологии электронных схем. Тихая революция от T-Mobile – безлимитный роуминг в ста странах

Сейчас в мире правит электроника, которая окружает нас буквально повсюду. Наука не стоит на месте, ежегодно ученые представляют новые разработки в сфере электронных технологий. Многие из них плотно внедряются в нашу повседневную жизнь.

Ускорение компьютеров

Американские исследователи доказали, что вместо электрического тока можно использовать ультракороткие лазерные вспышки для перемещения отдельных электронов. Эта технология позволит создавать квантовые компьютеры. Также инновацию планируют использовать в сфере квантовой криптографии и для оптимизации химических реакций.

Электрон надо «подтолкнуть», накачать энергией с помощью импульсов от терагерцевого лазера до уровня отрыва от ядра и начала движения кристалла по атомным связям. Подобные лазерные установки настолько быстры, что удается ловить и удерживать электроны между двумя энергетическими состояниями.

Исследователи из разных стран давно стремились создать особые импланты для живых организмов. Принципиальное отличие заключается в том, что их не нужно было бы вынимать из тела хирургическим путем после того, как они полностью выполнили свою функцию.

Ученый Леон Беллан представил новую разработку – полимер, остающийся стабильным при температуре выше 32 градусов. Из него изготовляется основа, а внутрь вставляется серебряная нанопроволока. В результате, получается примитивная электрическая цепь. Пока полимер находится на теплой плите в кастрюле, через сеть течет ток. Как только плитка выключается, он превращается в слизь, а конструкция из проволоки рассыпается.

По такому принципу можно сделать, к примеру, медицинские приборы для контроля уровня сахара. Аппарат располагают под кожей и работает, пока врач снимает данные. После прикладывания льда, устройство разрушается. Это гораздо удобнее, чем забор анализов или ношение датчиков.

Синие светодиоды

Синий свет от светодиодов имеет выраженные антибактериальные свойства. Это официально доказано учеными из Сингапурского университета. Если сочетать его с охлаждением, то становятся ненужными консерванты, которые добавляют в продукты питания.

Разработчики уверены, что их открытие станет востребованным в сетях быстрого питания. Ведь потребители наслышаны о вреде искусственных добавок, и еда без них обязательно будет пользоваться спросом.

Наибольшего эффекта можно достичь, если сочетать синий свет с температурой +4-+15 градусов и кислой средой. В бактериальных клетках присутствуют светочувствительные соединения, которые поглощают свет в видимой области электромагнитного спектра. Соответственно, при таких условиях происходит массовая гибель бактерий.

«Электронная жидкость»

Экспериментальные исследования с нано структурами показали, что электроны могут «течь» как жидкость. Соответственно, можно создать сверхбыструю «текучую» электронику.

По законам физики, наибольшая скорость электронов происходит во время их встречи с другими частицами или атомами. Хорошим примером является среда полного вакуума, в котором траектория движения частиц похожа на полет снарядов. Но на сегодняшний день подобные условия никто не сумел смоделировать. По мнению физиков, такими средами могут выступать углеродные нанотрубки или графеновые листы. Однако, пока это только на уровне догадок.

У кардиостимуляторов есть один существенный минус – ограниченный срок эксплуатации. После семи лет нужно менять тритиевые батарейки, у которых выходит срок службы. А это означает, что необходимо повторное хирургическое вмешательство на сердце для замены источника питания.

Уже несколько стран ведут разработки по созданию батареек с более длительным сроком службы. В России этим занимаются ученые в химико-технологическом университете. Активное участие в данном проекте принимает и компания «Адвансед нуклайд технолоджис». Основа нового элемента питания – радионуклид Ni 63. Его период полураспада больше ста лет. Изобретение можно будет использовать без замены в течение 20 лет, что облегчит жизнь многим кардиологическим больным.

Все знают, что у кошек и собак уникальное обоняние, которое способно распознавать летучие химические вещества, выделяемые человеком во время болезни.

Ученые в Кембриджском университете решили создать так называемый «цифровой нос». Это спектрометр на кристаллическом микрочипе размером с мелкую монетку. Он оснащен датчиками, настроенными и откалиброванными для распознавания запахов. При подозрении на опасность, прибор подаст сигнал. В дальнейшем, вся информация будет выводиться на дисплеи смартфонов.

Кроме медицинской отрасли, «электронный нос» представляет интерес для пищевой промышленности. Ряд крупных компаний (Нестле, Кока кола) хотят использовать изобретение для определения свежести продуктов.

Новые транзисторы

В американском университете разработали новую конструкцию транзисторов. С их помощью электронные устройства смогут работать месяцами или годам. При этом затраты энергии будут минимальными, а возможно будут функционировать и вовсе без батарей. Их планируется применять в интернете вещей и в устройствах, которые не нужно подключать к сети и подзаряжать.

Тонкий нанопровод

В Великобритании была создана тончайшая одномерная нанопроволока, изготовленная из теллура. Ее толщина составляет всего один атом. Чтобы структура изделия была более прочной, разработчики ввели в нее карбоновые нанотрубки. Таким образом, атомы теллура оказываются в одной цепочке.

Одноатомные нанопровода имеют широкие перспективы в минитюаризации микросхем. А значит, современную электронику можно будет значительно уменьшить в размерах.

В Калифорнийском университете было принято решение о создании эффективных компьютерных процессоров с использованием электронных вакуумных ламп.

Для производства первых ламповых компьютеров брали громоздкие электронные лампы. Затем появились транзисторы, что произвело настоящую революцию в сфере радиоэлектроники. Но они тоже имеют существенный недостаток – невозможность бесконечного уменьшения размеров транзисторов. Чтобы происходило дальнейшее развитие, нужно было привнести инновацию в виде электронных вакуумных ламп. Дело в том, что при прохождении через полупроводник ток начинает замедляться и терять свою эффективность. Вакуумные элементы не имеют такой проблемы, потому что через них ток проходит свободно. Такие транзисторы в десять раз эффективнее полупроводниковых аналогов. Разработки на этом не закончены, они активно продолжаются в направлении уменьшения размеров ламп.

Ведущие производители электронной техники решили создать гибкие источники питания. Компания Панасоник разработала литий-ионные аккумуляторы толщиной 0,55 мм, предназначенные для носимых устройств (планшетов, телефонов, фотоаппаратов).

У них особая многослойная структура и особая конструкция размещения электрода. В качестве анода выступает медь, а в качестве катода – алюминий. Они могут быть различной формы, чаще всего цилиндрической. Благодаря своим механическим качествам, их можно сгибать и закручивать без потери мощности. Есть несколько моделей, прочность отдельных из них составляет тысячу поворотов и изгибов.

Гибкие электрические цепи на скорости 5G

Всевозможные «умные браслеты» стали очень популярными за последнее время. Они постоянно модернизируются и оснащаются новыми функциями. Очень скоро грядут дальнейшие глобальные перемены. В Америке уже разработана самая гибкая в мире электрическая цепь. Она отличается необычным дизайном – двумя переплетающимися в цепочку линиями, образующими S-образные изгибы. Благодаря подобной форме, линии могут растягиваться без потери производительности. Кроме того, они хорошо защищены от внешних воздействий. Передача электромагнитных волн происходит в определенном диапазоне частот – до 40 ГГц.

В Технологическом институте штата Джорджия инженеры разработали ректенны. Они имеют уникальную способность – захват света и преобразование его в постоянный ток. Для этого используются вертикальные углеродные нанотрубки в верхней части кремниевой подложки.

Сложные процессы приводят к формированию заряда, преобразующего переменный ток в постоянный. Пока эффективность устройство крайне мала, но ученые уверены, что в ближайшем будущем получится выйти на более высокие показатели.

Микрочип на основе человеческого мозга

Уникальная разработка американских биоинженеров – микрочип NeuroCore. Он действует быстрее, чем персональный компьютер в тысячи раз. В основе действия инновации лежит принцип работы мозга человека.

Биоинженерами была создана печатная плата, состоящая из 16 микрочипов. Она имитирует работу одного миллиона нейронов и образует миллиарды синаптических связей. Затраты энергии при этом минимальны.

В дальнейшем разработчики планируют уменьшить цену платы и создать компилятор для программного обеспечения.

Сейчас полным ходом идут разработки по созданию магнитных устройств для хранения данных. Это носитель информации следующего поколения, который может привести к созданию атомарно маленьких вычислительных машин.

Цель, стоявшая перед исследователями – организация определенного движения атомов. К примеру, в какой-то момент нужно, чтобы они прекратили вращаться. Это удалось воплотить благодаря сочетанию платины, гольмия и отрицательной температуры. Квантовая система дестабилизируется и сохраняется момент атома.

Электрическое моноколесо

Инновация представляет собой электрический мотор. Корпус его выполнен из ударостойкого пластика. Вес моноколеса составляет в среднем 10-20 кг, а высота – пол метра.

Оно оснащено системой гироскопов и управляющей электроникой для поддержания транспортного средства в вертикальном положении. От человека требуется только овладеть навыком сохранять на нем баланс. Колесо может менять скорость, регулировать положение тела в пространстве, подавать сигналы в случае возникновения опасности на дороге. Им легко управлять, оно маневренное и безопасное.

К моноколесу прилагается зарядное устройство. Аккумулятор заряжается подключением к розетке на пару часов.

В Стэнфордском университете впервые разработали аккумулятор с алюминиевым анодом. Он долговечный, недорогой и способен быстро заряжаться. Так же была представлена аккумуляторная батарея на алюминиевой основе с высокой стабильностью. В ней использованы катод из графитовой пены и металлический анод из алюминия. Такие батареи очень гибкие, что позволит использовать их для создания гибких гаджетов.

Дополнительные преимущества:

  • низкая стоимость;
  • безопасность;
  • ультрабыстрая зарядка;
  • огромный ресурс батареи.

Это перспективный материал, имеющий хорошие эксплуатационные свойства.

Основные из них:

  • стойкость к воздействию щелочей, кислот и низких температур;
  • высокое электрическое сопротивление.

Они изготовляются из обработанных радиационным облучением полиолефелинов. Также при производстве могут использоваться фторсодержащие эластомеры, силиконы, поливинилхлорид.

Виды термоусаживаемых материалов:

  • кабельные муфты;
  • термоусадки;
  • кабельные капы;
  • перчатки;
  • негорючие трубки.

Данные материалы применяются в энергетике, приборостроении, авиастроении, электротехнике и многих других промышленных сферах.

Развитием и совершенствованием электронных технологий занимаются практически все ведущие страны. Государство и частные инвесторы заинтересованы в появлении все новых инноваций в этой области, поэтому они активно поддерживают развитие перспективных проектов.

Направление подготовки 654100 "Электроника и микроэлектроника"
Специальность 200500 "Электронное машиностроение"

Основные направления научных исследований:

  • физические процессы в высоком вакууме, термовакуумные процессы;
  • физические процессы взаимодействия потоков заряженных частиц с твердым телом; нанесение тонкопленочных покрытий;
  • новые микротехнологии обработки в машиностроении, приборостроении, в производстве художественных изделий;
  • прогрессивные конструкции машин, механизмов и устройств, работающих в условиях вакуума;
  • прецизионные приводы с манометрической точностью позиционирования.

Базовые учебные курсы:

Кафедра основана в 1974 году деканом факультета МТ Ю. А. Хруничевым.
Преподавательский состав: 3 профессора, доктора технических наук, 9 доцентов, кандидатов технических наук.

Кафедрой подготовлено более 1500 специалистов, в том числе 10 докторов технических наук, более 40 кандидатов технических наук. Среди выпускников 16 лауреатов Государственных премий.
Зав. кафедрой - доктор технических наук, профессор Леонид Иванович Волчкевич
Телефон кафедры: 267-02-13 Факультет Машиностроительные технологии

Ни одно научно-техническое направление не развивается сейчас столь быстро и плодотворно, как электроника. Прогресс этот стремителен и зачастую непредсказуем. Кто, например, еще сравнительно недавно ожидал, что "за спиной" традиционной вакуумной электроники (осветительные и приемно-усилительные лампы, кинескопы, приборы ночного видения) быстро созреет и выйдет на первый план твердотельная электроника (полупроводниковые диоды и транзисторы, разнообразные интегральные схемы)! Кто мог вообразить, что электронные приборы с тысячами составных элементов будут компоноваться не в объеме, а послойно на плоскости, с общей толщиной в тысячные доли миллиметра! Что радиоприемники из масштабов "ящика" сожмутся до коробочки, которую можно бесхлопотно носить на шейной цепочке! Революция электронных приборов позволила совершить впечатляющую революцию электронных систем, появление современных телевизоров, персональных компьютеров, микропроцессорного управления.

Об этом знает сегодня каждый школьник. Но немногим известно, что этим преобразованиям электронные приборы и системы обязаны появлению третьего направления в электронике - технологической электроники.

Электронные технологии - это совокупность методов и средств воздействия на конструкционные материалы, основанных на использовании энергии потоков электронов, ионов, фотонов, поляризованных молекул и т.п.; электронно-технологическое оборудование - конструктивная материализация этих методов и средств; электронное машиностроение -научно-техническое направление, объединяющее технологию, конструирование и эффективное применение.

Процессы микрообработки, когда высокоэнергетические потоки действуют в микронных зонах и часто в кратчайшие отрезки времени, не могут управляться иначе, чем самой электроникой, по программам, доступным лишь современной информатике. Поэтому электронные технологии органически связаны с информационными, а электронно-технологическое оборудование - с микропроцессорными системами управления, современными арсеналами компьютеризации. Мир современной электроники огромен и разнообразен.

Сегодня мы - свидетели и участники еще одной революции в нашем деле. Электронные технологии и системы автоматического управления стремительно вырываются из сферы электронной промышленности, находя все новые применения, раскрывая невиданные возможности, революционизируя такие отрасли, как машиностроение, приборостроение, строительство. Например, широко применяется вакуумное нанесение тон?копленочных покрытий. Затемнение стекол зданий, автомобилей, очков; светофильтры оптических приборов - все это электронные технологии. Высокохудожественные изображения на стекле или металле, с поразительной проработкой подробностей - тоже электронные технологии..

Кафедра оснащена всем необходимым для учебно-лабораторного процесса и научных исследований. Совместно с фирмой "Электронсервис" создан научно-технический центр "Электронные технологии", оборудованный новейшей техникой.

На кафедре сложилась система творческой самостоятельной работы, призванная развить и раскрыть еще на студенческой скамье склонности и способности каждой личности к конкретным видам инженерной, научной или коммерческой деятельности. Уже в конце третьего курса каждый студент выбирает себе научного руководителя, который определяет студенту конкретное актуальное научно-техническое направление. По этому направлению в рамках учебного процесса (инженерный практикум, курсовые проекты, расчетно-графические работы) студент выполняет комплекс исследований и разработок и, в конце концов, защищает дипломный проект. Именно в процессе творческих поисков совместно с руководителем раскрываются индивидуальные качества, способности к теоретической или экспериментальной работе, проектным или пусконаладочным работам, программированию, научно-организационной работе.

Печатная электроника для дешевых электронных систем. Состояние технологии и развитие оборудования.

Аннотация. В последние годы печать стала сильно интересна как метод получения дешевых и массовых электронных систем. Печать допускает использование целиком аддитивных процессов, тем самым снижая сложность процесса и расход материала. В сочетании с использованием недорогих подложек, таких как пластик, металлические фольги и так далее, это прогнозирует что печатная электроника позволит реализовать широкий спектр легкоразвертываемых электронных систем, в том числе дисплеев, сенсоров и RFID (Radio Frequency IDentification - радиочастотная идентификация) меток. Мы рассматриваем нашу работу по развитию технологии и оборудования для печатной электроники. Благодаря комбинированию синтетически полученных неорганических наночастиц и органических материалов, мы реализовали ряд «чернил» для печатной электроники, и используем их для демонстрации печати пассивных компонентов, многослойных соединений, диодов, транзисторов, блоков памяти (накопителей), батарей и различных газоанализаторов и биосенсоров. Используя возможности печати можно дешево обеспечить интеграцию различных функциональных возможностей и материалов на одной подложке, поэтому возможно реализовать печатные системы, которые используют преимущества печати, обходя недостатки таковой.

Введение. В последние годы наблюдается значительный уровень заинтересованности в использовании печати как технологии для реализации недорогой и массовой электроники. Печать, как ожидается, позволит реализовывать электронику на гибких, относительно бюджетных подложках, таких как пластик и металичская фольга. Анализ затрат и возможностей производства основанной на печатни микроэлектроники предполагает, что печать может потенциально дать возможность реализовать электронные системы на пластике, цена которых значительно ниже по сравнению с обычными базирующимися на литографии на единицу площади. С другой стороны, затраты на функционирование ожидаются более высокими, базируясь на худшем разрешении печатной электроники. Как следствие, различные потенциальные применения для печатной электроники предлагаются: встроенные дисплеи , различные типы сенсоров и RFID . Для реализации этих систем требуется, конечно, развивать необходимые «чернила», которыми можно печатать индуктивности, емкости, батареи, трассы (соединители), резисторы, транзисторы, диоды, блоки памяти, чувствительные элементы и дисплеи. Кроме того так же требуется разработка соответствующих технологий печати, включающих технологии выполнения необходимых тонких слоёв однородными, контроля границ и совмещения слоёв. Таким образом, в этой работе мы анализируем современное состояние и перспективы для печатной электроники. Во-первых, изучается жизнеспособность печати как технологии для реализации печатной электроники. Далее, мы рассмотрим классы печатных материалов, которые мы разработали для печатной электроники. И наконец, мы рассмотрим состояние дел в устройствах печатной электроники и оценим потребности для реализации жизнеспособных устройств для печатной электроники.

Печатные технологии для электроники

Интерес к печати, как к средству реализации электронных систем, традиционно в первую очередь исходит из того факта, что печать как ожидается, будет недорогой технологией для реализации электронных систем. Чтобы проверить это утверждение, стоит сравнить технологии производства на основе печати с традиционными технологиями производства микроэлектроники высокого класса. Во-первых, печать требует, по сравнению с литографией, меньшие капитальные вложения. Что интересно, это неверно для ширины проводников > 1 мкм, т.к. сильно уменьшает стоимость литографических инструментов доступных в этих режимах; кроме того, для достижения высокого аптайма, низкая дефективность инструментов печати потребует разработки нового оборудования для печатной электроники, добавляя к капиталу расходы на это. Таким образом, не очевидно, что печать позволит снизить изначальные расходы на оборудование. Во-вторых, печать обещает снижение общей сложности процесса, так как она может позволить использование целиком и полностью аддитивных процессов, вместо необходимых для использования литографии ещё и субтрактивных процессов. Это огромное преимущество, т.к. это уменьшает общее количество операций, затраты на материалы, и общую стоимость оборудования, поэтому сокращает капитальные вложения и увеличивает пропускную способность всего потока. В-третьих, печать может потенциально использовать дешевую обработку подложки и автоматизацию производства, т.к. она позволяет использовать недорогие технологии рулонной подачи «roll-to-roll» или полистную подачи базового материала «sheet-feed». Хотя это, скорее всего, верно в долгосрочной перспективе, разработка инструментов высокой точности для совмещения до сих пор находится не закончена, но результаты в конечном счёте остаются неясными. Учитывая материальные затраты, затраты на подложки, оценки капитальных затрат и оценки производительности, можно сделать вывод об экономической жизнеспособности печатной электроники. Этот анализ показывает, что печать должна быть дешевле на единицу площади, чем обычная электроника; фактическая стоимость зависит от используемых конкретных технологический решений, но ценовые преимущества в >10Х раз вполне реальны. С другой стороны, стоимость одного транзистора в печатной электронике на несколько порядков выше, чем стоимость одного кремниевого транзистора, в связи с худшей шириной дорожки (лучшая достижимая ширина дорожки в высокоскоростной печати на сегодня меньше чем 10 мкм). Как следствие, экономическая эффективность может быть суммирована очень просто – печатная электроника экономически выгодна в приложениях, которые ограничены по площади, между тем она экономически не выгодна в приложениях, которые функционально ограничены по плотности.

Различные методы печати доступны для использования в производстве электроники. Поэтому целесообразно суммировать преимущества и недостатки каждого из широких классов методов печати. Методы печати, которые здесь рассматриваются – это трафаретная печать (шелкография), струйная печать, штамповка(тиснение)/наноимпринтинг (метод вдавливания шаблона с наноразмерными элементами в слой материала) и глубокая печать (интаглио). Другие методы печати существуют, но как правило не применяются при изготовлении печатной электроники.

Шелкография является, пожалуй, самой зрелой технологией для изготовления печатной электроники. Трафаретная печать применяет для производства печатных плат на протяжении десятилетий. В трафаретной печати вязкие чернила «вжимаются» через трафарет с помощью штапеля. Изображение на трафарете, как правило, формируется с помощью светочувствительного покрытия. Трафаретная печать широко используется в электронике, т.к. она используется для шаблона трас проводников (как правило, используют серебряные пасты), сопротивлений (используются углеродные пленки), конденсаторов (используют полиимидные диэлектрики) и т.д., при производстве печатных плат. Разрешающая способность коммерческого высокоскоростного оборудования для трафаретной печати обычно хуже >50 мкм, хотя в исследованиях шелкография была применена для реализации печати в диапазоне менее 1000сП (сантипуаз)) для предотвращения чрезмерного размазывания и излишек связующего. Это проблематично для некоторых материалов в печатной электронике. Высокая вязкость краски обычно реализуется добавлением полимерных связующих в чернила. И хотя это не серьезная проблема для полиграфии, это может стать серьезной проблемой для печатной электроники, поскольку такие связующие могут уничтожить функциональность полупроводников, вносить чрезмерные утечки и потери в диэлектриках или ухудшать проводимость проводников. В результате, использования трафаретной печати, как правило, ограничивается изделиями, где связующие могут быть добавлены без критичных потерь в производительности. Например, связующие с серебряной пастой, обычно используют в трафаретной печати. В то время как проводимость снижается по отношению к чистому слою серебра, она всё ещё приемлема для заданных изделий (например, тонкий слой мембранных переключателей, автомобильных клавиатур и т.д.). Трафаретная печать была применена в некоторых ограниченных приложениях для печатной электроники, таких как печать проводников и т.д.

Наиболее широко используемая технология для печати активных электрических схем на сегодня – это струйная печать. Струйная печать позволяет использовать чернила низкой вязкости (1-20сП); это чрезвычайно важно, т.к. позволяет разрабатывать чернила, которые содержат только активное вещество и растворитель, без связующего. В сочетании с цифровым вводом данных, который позволяет на лету изменять проект, струйная печать доминирует в исследованиях печатных транзисторов и т.д. С другой стороны, производство жизнеспособной струйной печати пока не определено. Во-первых, струйная печать, будучи drop-by-drop (капля за каплей) техникой, это головка со строго пиксельным испусканием, в котором явление сушки объединена в комплекс с каплями, может производить разнообразные варианты печатаемого рисунка. Этот вопрос будет обсуждаться ниже. Во-вторых, струйная печать, как правило, медленна, и высокая пропускная способность достигается только с помощью большого числа головок, работающих параллельно. Это, в свою очередь, представляет проблему для производительности, связанную с выходом из строя отдельных головок при печати рисунка. В-третьих, имеется «конус неопределённости», зависящий от угла выброса капли из сопла; это обычно 10 мкм, результат ±3σ разброса в размещении при падении с высоты. Это, в свою очередь, вносит линию шероховатости края и лимиты на размещение в проектные правила масштабирования.

Явления сушки, связанные со струйной печатью, особенно важны, т.к. гладкие, тонкие слои с низкой шероховатостью края очень важны для реализации печатных устройств. Неотъемлемой частью сушки капель является так называемый «coffee ring» эффект. В этом эффекте, сушки капель, наблюдается сильная миграция материала от центра капли к краям капли из-за сильных конвективных сил, связанных с испарением растворителя из капли. В зависимости от относительного испарения и конвективных потоков, капля сохнет, и это дает возможность образоваться кольцевой форме финального слоя в результате, как показано на рисунке 1. Это, очевидно, серьезная проблема для печатной электроники, т.к. большое изменение толщины, присущее наличию в переходных отверстиях, и острые кромки, вносят свой вклад в неприемлемость формы слоя. Влияние сушки на линии формирования отчетливо видны на рисунке 2, который показывает изменения в морфологии (наука о форме и строении) линии в зависимости от расстояния между каплями в печатаемой линии. Все остальные параметры держаться одинаково. Очевидно, просто изменение одного параметра оказывает большое влияние на морфологии напечатанной линии, опять же из-за сильных конвективных сил, связанных с сушкой капли.

Происхождение изменений в напечатанной линии легко понять, рассматривая конвективные силы связанные с сушкой (рисунок 3). Когда капля добавляется в конец уже сформированной линии, конвективные силы вызывают перенос жидкости капли по направлению к соединительной точке с линией. Если интервал между каплями слишком велик, то это соединение слишком мало, чтобы поддержать перенос, и в результате капли высыхают до сплошной линии как показано на рисунке 2.1. Если расстояние чуть ближе, то тот же материалы вытягивается в линию, но ограниченное соединение мешает переносу, в результате высыхания/гелеобразования капли вместо гладкой боковины образуется зубчатая линия (рисунок 2.2). Если интервал между каплями снижать дальше, то могут быть сформированы на самом деле гладкие непрерывные края линии (рисунок 2.3). Однако, если уменьшать интервал между каплями ещё дальше, то точка соединения линии и капли становится слишком большой и чрезмерное количество материала из капли переносится в линию. Линия не может выдержать перенесенное количество и, следовательно, переполняясь, становится выпуклой. Увеличение сечения выпуклости позволяет дальнейший перенос жидкости, и таким образом, перешеек отступает снова, только увеличиваясь, когда сопротивление для переноса жидкости падает. Это приводит к формированию периодических выпуклостей на линии (рисунок 2.4). Теперь понятно, почему морфологией линии сложно управлять, и технологический процесс по этой же причине сложный, но интересный. Решение задачи, которое обычно принята многими авторами включает в себя «быструю сушку» линии, такую чтобы капли сохли очень быстро при касании подложки. Этой формы линии состоят из перекрывающих друг друга индивидуально высушенных капель (рисунок 2.5.). К сожалению, такие линии страдают от плохой однородности толщины пленки и ограниченности в масштабируемости размеров элементов.

Пиксельная природа струйной печати, низкая производительность и проблемы при производстве вызвали интерес к альтернативным технологиям печати.

Основой электронных технологий в настоящее время явля­ются полупроводники (semiconductors) - вещества, электропро­водность которых увеличивается с ростом температуры и являет­ся промежуточной между проводимостью металлов и изоляторов.

Наиболее часто используемыми в электронике полупровод­никами являются кремний и германий.На их основе путем вне­дрения примесей в определенных точках кристаллов создаются разнообразные полупроводниковые элементы , к которым, в пер­вую очередь, относятся:

проводники, коммутирующие активные элементы;

вентили, выполняющие логические операции;

транзисторы (полупроводниковые триоды), предназначен­ные для усиления, генерирования и преобразования элек­трического тока;

резисторы, обеспечивающие режимы работы активных эле­ментов;

приборы с зарядовой связью (ПЗС), предназначенные для кратковременного хранения электрического заряда и ис­пользуемые в светочувствительных матрицах видеокамер;

диоды и др.

В настоящее время используется несколько технологий по­строения логических элементов :

транзисторно-транзисторная логика (ТТЛ, TTL);

логика на основе комплементарных МОП-транзисторов (КМОП, CMOS);

логика на основе сочетания комплементарных МОП- и би­полярных транзисторов (BiCMOS).

Кроме того, различают:

положительную логику, или систему высоких потенциалов;

отрицательную логику, или систему низких потенциалов;

смешанную .

При положительной логике напряжение высокого уровня со­ответствует логической «1», а при отрицательной логике - «О».

Логические элементы, функционирующие в системе высоких потенциалов, дуальны элементам, работающим в системе низких потенциалов. Например, в системе высоких потенциалов эле­мент реализует функцию «ИЛИ-HE», а в системе низких потен­циалов - «И-НЕ».

Рассмотрим рис. 1.16, на котором достаточно упрощенно представлены транзисторные сборки «И» (последовательно вклю­ченные транзисторы) и «ИЛИ» (параллельное включение). Вход­ные и выходные сигналы «1» представляются высоким уровнем напряжения на коллекторе транзистора (практически равным на­пряжению питания). Сигналу «О», наоборот, соответствует низ­кий уровень выходного напряжения.

Рис. 1.16. Пример реализации сборок «И» (о) и «ИЛИ» (б)

Поскольку, например, в большинстве современных персо­нальных компьютеров напряжение питания составляет 3,3 В (в более ранних версиях, до Pentium - 5 В), то выходная «1» за­дается напряжением 3,3 В.

На рис. 1.17 приводится иллюстрация так называемого «за­кона/правила Мура» , с высокой точностью демонстрирующего удвоение за 18-24 мес. количества транзисторов в процессо­рах . Основой этой закономерности является объективный про­цесс увеличения плотности упаковки элементов микросхем (рис. 1.18).

Ключевыми выражениями при описании микросхемных эле­ментов (рис. 1.18) являются такие, как «технология 130 нм», «технологический процесс 0,5 мкм» и т. д. Это означает, что раз­меры транзисторов или других элементов соответственно не пре­вышают 130 нанометров (1 нм = 10~ 9 м) либо же 0,5 микрон (1 мкм = 10" 6 м) - рис. 1.19.

В процессоре Intel 4004 (1971 г.) использовалась технология 10мкм] в процессоре Pentium II (1998 г.) - технология 0,25мкм\ в процессорах Intel Pentium IV Prescott и AMD Athlon 64 Toledo (2004 г.) - нанотехнологии 0,09 мкм (90 нм) (см. также табл. 3.3 и 3.6).

Рис. 1.17. Правило Мура (количество транзисторов в интегральной схеме удваивается каждые 18 мес.)

Рис. 1.18. Динамика изменений размеров схемных элементов

Рис. 1.19. Нанотехнологии наглядно: а - транзистор (90 нм); б - ви­рус гриппа (100 нм)

Микропроцессоры

Microprocessor - процессор, выполненный в одной либо не­скольких взаимосвязанных интегральных схемах.

Процессор полностью собирается на одном чипе из кремния. Электронные цепи создаются в несколько слоев, состоящих из различных веществ, например, диоксид кремния может играть роль изолятора, а поликремний - проводника.

В частности, транзистор представляет собой простейшее уст­ройство, размещающееся на поверхности кремниевой пластины и функционирующее как электронный ключ (рис. 1.20, а). Обыч­но он содержит три вывода - источник (эмиттер), сток (коллектор) и затвор (база). Заметим, что в ламповых элементах соответствующие электроды именовались - катод, анод, сетка. Источник и сток образуются путем внедрения в поверхность кремния определенных примесей, а затвор содержит материал, именуемый полисиликоном. Ниже затвора расположен слой диэлектрика, изготовленного из диоксида кремния. Данная структура получила название «кремний-на-изоляторе» (silicon- on-insulator - SOI). Когда к транзистору приложено напряжение, затвор «открыт», и транзистор пропускает ток. Если напряжение снято, затвор «закрыт» и тока нет.

Рис. 1.20. Обычный транзистор (а), терагерц-транзистор (б)

Традиционная технология. Технология микропроцессоров в простейшем случае включает следующие обязательные этапы производства:

выращивание кремниевых заготовок и получение из них пластин;

шлифование кремниевых пластин;

нанесение защитной пленки диэлектрика (Si0 2);

нанесение фоторезиста;

литографический процесс;

травление;

диффузию;

металлизацию .

Все перечисленные этапы используются для того, чтобы на кремниевой основе создать сложную структуру полупроводнико­вых планарных транзисторов (CMOS-транзисторов) и связать их должным образом между собой.

Процесс изготовления любой микросхемы начинается с вы­ращивания кремниевых монокристаллических болванок цилинд­рической формы (кремниевых заготовок). Это лишенный приме­сей монокристалл.

В дальнейшем из таких монокристаллических заготовок на­резают круглые пластины, «таблетки» (waffer - вафля, облатка), толщина которых составляет приблизительно от 0,2 до 1,0 мм, а диаметр - от 5 см (ранние технологии) до 20 см (современные технологии), поверхность которых отполировывается до зеркаль­ного блеска, а затем покрывается тончайшим слоем оксидной пленки (Si0 2), выполняющей функцию диэлектрика и защитной пленки при дальнейшей обработке кристалла кремния.

После того как кремниевая основа покроется защитной пленкой диоксида кремния, необходимо удалить эту пленку с тех мест, которые будут подвергаться дальнейшей обработке. Удаление пленки осуществляется посредством травления, а для того, чтобы в результате травления оксидная пленка удалялась избирательно, на поверхность пленки наносят слой фоторе­зиста (состава, чувствительного к воздействию света). Облу­ченные области становятся растворимыми в кислотной среде.

Процесс нанесения фоторезиста и его дальнейшее облучение ультрафиолетом по заданному рисунку называется фотолито­графией. Для засветки нужных участков слоя фоторезиста ис­пользуется шаблон-маска, который содержит рисунок одного из слоев будущей микросхемы. Свет, проходя сквозь такой шаблон, засвечивает только нужные участки поверхности слоя фоторези­ста. После облучения фоторезист подвергается проявлению, в результате которого удаляются ненужные участки слоя.

По мере возрастания плотности размещения транзисторов, формируемых в кристалле, литографический процесс усложняется. Минимальная толщина линии, получаемая в процессе ли­тографии, определяется размером пятна, в который удается сфокусировать лазерный луч. Поэтому при производстве совре­менных микропроцессоров для облучения используют ультра­фиолетовое излучение. Для производства микросхем по 130-на- нометровому технологическому процессу используется глубокое ультрафиолетовое излучение (Deep UltraViolet - DUV) с длиной волны 248 нм. На подходе литографический процесс с длиной волны 13 нм, получивший название EUV-литографии (Extreme UltraViolet - сверхжесткое ультрафиолетовое излучение). Обыч­ная литографическая технология позволяет наносить шаблон с минимальной шириной проводников 100 нм, а EUV-литография делает возможной печать линий гораздо меньшей ширины - до 30 нм.

После засвечивания слоя фоторезиста осуществляется трав­ление (etching) с целью удаления пленки диоксида кремния. По­сле процедуры травления, т. е. когда оголены нужные области чистого кремния, удаляется оставшаяся часть фотослоя, и на кремниевой основе остается рисунок, выполненный диоксидом кремния.

Процесс внедрения примесей осуществляется посредством диффузии - равномерного внедрения атомов примеси в кри­сталлическую решетку кремния. Для диффузии легирующей примеси применяется ионная имплантация, которая завершает­ся созданием необходимого слоя полупроводниковой структуры, в котором сосредоточены десятки миллионов транзисторов.

Осуществить требуемую разводку в пределах того же слоя, где расположены сами транзисторы, нереально - неизбежны пересечения между проводниками, потому для соединения тран­зисторов друг с другом применяют несколько слоев металлиза­ции, т. е. слоев с металлическими проводниками, причем, чем больше транзисторов насчитывается в микросхеме, тем больше слоев металлизации используется (см. рис. 1.23, б).

Для соединения транзисторов друг с другом прежде всего не­обходимо создать проводящие контакты стоков, истоков и затво­ров. Для этого по маске в нужных местах вытравливается слой диоксида кремния, и соответствующие окна заполняются атома­ми металла. Для создания очередного слоя на полученном ри­сунке схемы выращивается дополнительный тонкий слой диок­сида кремния. После этого наносится слой проводящего металла и еще один слой фоторезиста. Ультрафиолетовое излучение про­пускается сквозь вторую маску и высвечивает соответствующий рисунок на фоторезисте. Затем опять следуют этапы растворения фоторезиста и травления металла. В результате в новом слое об­разуются нужные проводящие полоски, напоминающие рельсы, а для межслойных соединений, т. е. соединений слоев друг с другом, в слоях оставляются окна, которые затем заполняются атомами металла. К примеру, при 0,25-микронном технологиче­ском процессе для осуществления разводки используется пять дополнительных слоев.

Процесс нанесения слоев заканчивается, когда схема собрана полностью. Поскольку за один раз на одной «таблетке» создается несколько десятков процессоров, на следующем этапе они разде­ляются на матрицы (dice), которые тестируются. Если на ранних этапах развития технологий отбраковывалось более 50 % схем, сейчас процент выхода выше, но никогда не достигает 100 %.

Прошедшая тестирование матрица помещается в керамиче­ский прямоугольный футляр, из которого выходят «ножки», микроразъемы (pin grid arrays - PGA) интерфейса процессора, с помощью которых процессор помещается и закрепляется в гнезде (socket) на системной плате компьютера (иногда интер­фейс оформляется в виде линейного разъема - slot). Количест­во контактов - от 169 (Socket 1, процессор Intel 80486) до 940 (Socket 940, AMD Opteron). В последнем случае часть соедине­ний зарезервирована для последующего расширения возможно­стей - размещения на плате процессора кэш-памяти уровня 3 (L3-cache), соединения с другими процессорами (для много­процессорных систем) и пр.

В настоящее время используется технология микроразъемов (micro pin grid array - (iPGA), существенно снижающая физиче­ские размеры интерфейса процессора.

В новом поколении процессоров используются такие ново­введения, как SOI-транзисторы (Silicon On Isolator - «кремний на изоляторе»), в которых за счет дополнительного слоя оксида снижаются емкость и токи утечки, а также транзисторы с дву­мерными затворами и другие новшества, позволяющие повысить быстродействие транзисторов при одновременном уменьшении их геометрических размеров.

Чипы памяти DRAM изготовляются на основе технологии, сходной с изготовлением процессора, - кремниевая основа с нанесенными примесями обрабатывается с маской, которая об­разует множество пар «транзистор-емкость», каждая из которых размещает 1 бит информации. Стоимость этих схем гораздо ниже, чем процессоров, поскольку они состоят из однородных повторяющихся структур, а также дешевле схем SRAM, посколь­ку в последних содержится в 2 раза больше транзисторов (каж­дый бит здесь содержится в триггере, который требует по мень­шей мере два транзистора).

Терагерц-технологии. Основная стратегия поставщиков мик­росхем всегда заключалась в уменьшении размера транзистора (схемного элемента) и повышении плотности упаковки на кри­сталле. В конечном итоге критическими факторами стали энер­гопотребление и разогрев платы.

В конце 2002 г. Intel Corporation объявила, что ее инженеры разработали инновационную структуру транзисторов и новые материалы, позволяющие снизить потребление энергии и выде­ление тепла. Новые структуры получили название Intel TeraHertz transistor (терагерц-транзисторы), в связи с их способностью пе­реключаться со скоростью выше триллиона раз в секунду. Пред­полагается, что новая технология позволит увеличить плотность в 25 раз, использовать «технологию 20 нм» (элемент схемы в 250 раз меньше толщины человеческого волоса) и разместить на кристалле до миллиарда транзисторов.

Терагерц-транзистор отличается от обычного (см. рис. 1.20, а) тремя важными особенностями (см. рис. 1.20, б):

источник и сток образуются из более толстых слоев в крем­ниевой пластине , что уменьшает электрическое сопротив­ление, потребление электроэнергии и тепловыделение;

ниже источника и стока помещается сверхтонкий слой изолятора . Это обеспечивает более высокие интенсивности тока в открытом состоянии транзистора и увеличивает ско­рость переключения. Кроме того, изолятор понижает утеч­ки тока при закрытом транзисторе (в 10 тыс. раз по сравне­нию с SOI). Это уменьшает вероятность случайного пере­ключения под влиянием блуждающих тепловых электронов и повышает надежность схемы;

химическое соединение, расположенное между затвором, источником, стоком, заменяется на новый материал «high-к gate dielectric» (оксид алюминия или титана), для нанесения которого используется технология наращивания слоя по одной молекуле.

Диэлектрико-металлические затворы транзисторов. Исполь­зование затвора из диэлектриков с высокой диэлектрической по­стоянной (High-k Gate Dielectrics) и металлических электродов затворов транзисторов (Metal Gate Electrodes) было впервые представлено в процессоре Intel Penryn (технология 45 нм) и по­зволило уменьшить размеры транзисторов и снизить энергопо­требление.

В обычном транзисторе снижение толщины слоя диоксида кремния необходимо для уменьшения размера и увеличения плотности размещения транзисторов на кристалле. Однако при достижении определенного предела возникает утечка тока под воздействием «туннельного эффекта» - когда электроны поки­дают транзистор и рассеиваются, что понижает надежность и увеличивает рассеяние мощности. Поэтому уменьшение разме­ров ниже данного предела становится нецелесообразным.

Диэлектрик (high-k dielectric или материал с высокой диэлек­трической постоянной) в новой технологии замещает слой диок­сида кремния в транзисторе и позволяет снизить токи утечки в технологии 45 нм в 5 раз по сравнению с технологией 65 нм.

Относительная легкость использования оксидов кремния в транзисторах ограничивала в течение многих лет применение других материалов при производстве микропроцессоров. Анало­гично, традиционная технология использования поликремния для затвора существенно проще, чем внедрение других, возможно более эффективных веществ в процесс производства (рис. 1.21, а).

Рис. 1.21. Обычный транзистор (а); транзистор с диэлектрическим затвором (б)

Использование металлического затвора в процессорах Penryn «сломало» эту традицию; эта технология позволяет улучить эф­фективность и снизить токи неконтролируемой утечки, посколь­ку проводимость металлического затвора существенно выше (рис. 1.21, б).

Технология медных проводников. Транзисторы на поверхности чипа - сложная комбинация из кремния, металлов и микродо­бавок, точно расположенных, чтобы образовать миллионы кро­хотных переключателей. Поскольку создавались все меньшие и быстрые транзисторы, упакованные все плотнее, их соединение между собой стало превращаться в проблему.

Для установления соединений длительное время использо­вался алюминий, однако к середине 1990-х гг. стало очевидным, что скоро будут достигнуты технологические и физические пре­делы существующей технологии. Относительно высокое удель­ное сопротивление алюминия при уменьшении диаметра про­водников приводит к потерям и перегреву схем. Однако длитель­ное время никому не удавалось создать конкурентоспособный чип с медными проводниками.

Основное преимущество медных соединений в данном слу­чае заключается в том, что медь обладает меньшей удельной проводимостью по сравнению с алюминием. При уменьшении площади сечения проводников (с уменьшением размера транзи­сторов) увеличивается и сопротивление проводников. Кроме того, медные проводники способны выдерживать значительно большую плотность тока, чем алюминиевые, и к тому же облада­ют более высокой устойчивостью к разрушению под воздействи­ем тока, что позволяет продлить время жизни микросхемы.

Наряду с рассмотренными преимуществами медь обладает рядом свойств, создающих немало сложностей в процессе про­изводства микросхем. Медь легко диффундирует в глубь кри­сталла, что вызывает порчу микросхемы и, в отличие от алю­миния, плохо поддается травлению, поэтому технологии созда­ния медных и алюминиевых внутрислойных соединений в корне различаются. В случае использования алюминия травле­нию по маске подлежит собственно алюминий, а при примене­нии меди травлению подлежит оксидная пленка, в результате этого образуются бороздки, которые впоследствии заполняются медью. Эта технология получила название Damascus, или узор­ная инкрустация. Поэтому процесс изготовления микросхем с использованием алюминиевых соединений технологически не совместим с аналогичным процессом с использованием медных соединений.

В сентябре 1998 г. IBM объявила о разработке нового техно­логического процесса, включающего создание медных провод­ников на чипе (Damascene процесс - 0,18 мкм CMOS 7SF). Создание каждого нового слоя начинается с получения оксид­ной пленки, которая покрывается слоем фоторезиста. Далее, по­средством литографического процесса, в оксидной пленке вы­травливаются бороздки и углубления требуемой формы. Эти бо­роздки и углубления необходимо заполнить медью. Но прежде, для предотвращения нежелательной диффузии меди, они запол­няются тонким слоем антидиффузионного вещества (diffusing barrier), изготовленного из устойчивого материала - титана или нитрида вольфрама. Толщина такой антидиффузионной плен­ки - всего 10 нм. Микроскопическая начальная пленка меди размещается выше, чтобы удерживать медный слой, который за­тем наносится на весь чип (рис. 1.22).

Рис. 1.22. Технология медных проводников: а - вытравливание соединений путем фотолитографии; б - нанесение защитно­го слоя; в - нанесение микроскопической пленки меди; г - нанесение рабочего слоя меди; д - удаление избыточного металла

Для осаждения меди используют гальванизацию из раствора медного купороса Cu 2 S0 4 , причем сама пластина, на которую осаждаются ионы меди Си ++ , выступает в роли катода. При галь­ванизации необходимо, чтобы медь равномерно осаждалась по всей пластине, поэтому подбирают такую плотность электроли­та, чтобы минимизировать разницу тока в центре и по краям и тем самым обеспечить равномерность осаждения меди. При электролизе происходит постепенное заполнение атомами меди вытравленных канавок, в результате этого образуются проводя­щие «рельсы». После заполнения медью канавок лишний слой меди удаляется с пластины посредством шлифования, а затем наносится очередной слой оксидной пленки и проводится фор­мирование следующего слоя. В результате образуется много­слойная система.

Технологический процесс 65 нм. Intel довела данную техноло­гию до стадии промышленного производства к концу 2005 г. В 65-нм процессе Intel использует УФ-литографию с длиной волны 193 нм, комбинируемую с технологией фазового сдвига. При этом удалось уменьшить до 35 нм эффективную ширину за­твора транзисторов (рис. 1.23, а), что приблизительно на 30% меньше, чем при производстве по технологии 90 нм.

Рис. 1.23. Транзисторы поколения 65 нм (в); восемь слоев медных соединений (б)

Остались прежними в новом процессе и используемые для создания транзисторов материалы. Дополнительные усилия были направлены на борьбу с токами утечки. Появившаяся в 90-нм тех­нологическом процессе технология напряженного кремния обре­ла в 65-нм технологии свою усовершенствованную версию - при сохранении толщины изоляционного слоя затвора на уровне 1,2 нм примерно на 15 % увеличилась деформация каналов тран­зисторов. Это дало четырехкратное уменьшение токов утечки, ко­торое в конечном итоге создает возможность примерно 30%-ного увеличения частоты срабатывания транзисторов без возрастания их тепловыделения.

И последнее изменение - увеличение числа слоев медных соединений. В новом процессе их восемь, что на один больше, чем в ядрах, выпускаемых по 90-нм процессу (рис. 1.23, б). Бла­годаря этому Intel надеется упростить проектирование будущих кристаллов.

Печатные платы

Плата, или printed circuit board, - изоляционная пластина, на которой устанавливаются и соединяются друг с другом элек­тронные элементы, перечисленные выше, и приборы меньшей степени интеграции - отдельные транзисторы, резисторы, кон­денсаторы и др.

Печатная плата изготавливается из пластмассы, гетинакса, текстолита либо другого изолятора (керамика).На плате с одной либо обеих сторон размещаются интегральные схемы, резисторы, диоды и другие полупроводниковые приборы. Для их соединения на поверхности платы наносятся тонкие электропроводящие по­лоски. Печатная плата может быть двух- либо многослойной.

Существует несколько технологий монтажа элементов (в том числе и интегральных схем) на печатных платах. Наиболее ста­рая из них - монтаж в сквозные отверстия. Здесь элементы соз­даваемой схемы устанавливаются с одной стороны платы. Вслед за этим появился способ укладки интегральных схем прямо на поверхности этой платы. Вначале интегральные схемы припаи­вались к печатным платам. Теперь все чаще они приклеиваются без использования припоя. Малая высота интегральных схем, монтируемых на поверхность, позволяет устанавливать их на обеих сторонах платы.

Печатные платы перестают быть только плоскими. Происхо­дит переход от двух измерений к криволинейным поверхностям и созданию печатных дорожек на геометрически изогнутых фор­мах. Все это связано с тем, что по мере усложнения электронных компонентов становится все трудней размещать плоские платы в корпусы, удовлетворяющие требованиям потребителя. Для изго­товления основы трехмерных печатных плат используется пласт­масса, пригодная для литья.

Электроника (электронные технологии) - наука о взаимодействии электронов с электромагнитными полями, основанная на электронной теории¹, и о методах создания электронных приборов и устройств, в которых это взаимодействие используется для преобразования электромагнитной энергии, в основном для передачи, обработки и хранения информации . На основе электроники электронная промышленность разрабатывает и производит электронные приборы, ЭВМ и широкий спектр других изделий, используемых во всех областях науки, техники и современной человеческой деятельности.

История возникновения и развития электроники

Предыстория - изобретение телефона, фонографа, кинематографа

Ко второй половине прошлого столетия относятся попытки создания телефона. С развитием теории электричества, в частности теории электромагнетизма, была создана научная база для его изобретения. Еще в 1837 г. американец Ч. Пейдус установил, что магнитная полоса может издавать звук, если ее подвергнуть быстрому перемагничиванию. В 1849—1854 гг. вице-инспектор Парижского телеграфа Шарль Бурсёль теоретически сформулировал принцип устройства телефонного аппарата. Первым образцом телефонного аппарата был прибор, сконструированный немецким физиком Филиппом Рейсом в 1861 г. (рис. 1).

Рис. 1. Телефон Рейса (1861 г.).

Телефон Рейса состоял из двух частей: передающего и приемного аппарата, действие которых было взаимосвязано. В передающем аппарате при передаче роисходило периодическое размыкание и замыкание цепи тока, чему в приемном аппарате соответствовало дрожание металлического стержня, воспроизводившего звук. С помощью аппарата Рейса можно было хорошо передавать музыку , но передача речи была затруднена.

В 1876 г. американский техник А. Белл (1847—1922) родом из Шотландии создал первую удовлетворительную конструкцию телефона. В этом же году он получил патент на его изобретение (рис. 2).

Рис. 2. Телефон А. Белла (1876 г.).

Однако телефонные трубки Белла могли хорошо передавать речь лишь на сравнительно небольшом расстоянии и, кроме того, обладали целым рядом других недостатков, делавших невозможным их практическое применение. К этому времени идея создания телефона распространилась очень широко. В США, например, было в 70-х годах взято свыше 30 патентов на телефонные аппараты. Так же обстояло дело и в Европе.

Над усовершенствованием телефона работали многие изобретатели. Наиболее существенные усовершенствования в телефон в 1878 г. независимо друг от друга внесли англичанин Д. Юз (1831—1900) и американец Т. Эдисон . Они изобрели важнейшую часть телефонного аппарата — микрофон. Микрофон Юза — Эдисона являлся только передатчиком, который воспринимал звуковые колебания и усиливал индуктивный ток в катушке телефона Белла. С изобретением микрофона стало возможно разговаривать на больших расстояниях, а звук в телефоне получался чище. Затем Эдисон предложил использовать в телефоне индукционную катушку. С введением ее в телефонный аппарат в основном закончилось его конструирование. Дальнейшая работа целого ряда изобретателей в различных странах сводилась к улучшению существующих конструкций.

Телефон в отличие от других новейших технических изобретений весьма быстро вошел в обиход почти во всех странах. Первая городская телефонная станция была введена в эксплуатацию в США в 1878 г. в Ныо-Гаване. В 1879 г. телефонные сети имелись уже в 20 городах в США. Первая телефонная станция в Париже была открыта в 1879 г., в Берлине—в 1881 г.

Пионером телефонии в России был инженер П. М. Голубицкий (1845—1911), внесший много существенных усовершенствований в конструкцию телефона. В 1878 г. Голубицкий построил первую серию многополюсных телефонов. Он доказал также возможность действия телефонов на расстоянии до 350 км.

В 1881 г. в России было учреждено Русское акционерное общество «для устройства и эксплуатации телефонных сообщений в различных городах Российской империи». Первые телефонные линии в России были построены в 1881 г. одновременно в пяти городах — Петербурге, Москве, Варшаве, Риге и Одессе. Интереснейшим изобретением этого периода явился фонограф— аппарат для записи и воспроизведения звука. Этот прибор, изобретенный в 1877 г. Эдисоном, обладал способностью сохранять, а затем в любое время воспроизводить и повторять записанные на нем звуковые колебания, вызванные ранее голосом человека, музыкальными инструментами и т. п. (рис. 3).

Рис. 3. Фонограф Т. А. Эдисона, (1877 г.)

Устройство и принцип действия фонографа сводятся к следующему. Звуковые колебания в фонографе передавались очень тонкой стеклянной или слюдяной пластинке, а при помощи прикрепленной к ней пишущей иглы (резца с сапфировым наконечником) переносились на поверхность вращающегося валика, обернутого оловянной фольгою или покрытого особым восковым слоем. Пишущая игла была связана с мембраной, воспринимающей или излучающей звуковые колебания. Ось валика фонографа имела резьбу, и поэтому при каждом обороте валик смещался вдоль оси вращения на одну и ту же величину. В результате этого пишущая игла на восковом слое выдавливала винтовую канавку. При движении по этой канавке игла и связанная с ней мембрана совершали механические колебания, воспроизводя записанные звуки. На основе фонографа затем возникли граммофон и другие приборы, применяемые при механической звукозаписи.

В 90-х годах XIX в. появляется кинематограф, совместивший в себе ряд изобретений и открытий, которые позволили осуществить основные процессы, необходимые для воспроизводства сфотографированного движения. Ближайшими предшественниками кинематографа, позволившими осуществить процесс кинематографирования, явились «аппарат для анализа стробоскопических явлений» русского изобретателя Тимченко (1893 г.), совмещавший проекцию на экран с прерывистой сменой изображений, хронофотограф французского физиолога Ж. Демени, сочетавший хронофотографию на пленке и проекцию на экран (1894 г.), а также созданный американским изобретателем У. Латамом в 1895 г. «паноптикум», соединивший хронофотографию с проекцией на экран, и другие изобретения.

Аппарат, в котором сочетались все основные элементы кинематографа, был впервые изобретен во Франции Луи Ж. Люмьером (1864— 1948). В 1895 г. он совместно со своим братом Огюстом разработал конструкцию киноаппарата для съемки. Люмьер назвал свое изобретение кинематографом. Опытная демонстрация фильма, заснятого на кинопленке с помощью этого аппарата, состоялась в марте 1895 г., а в декабре этого же года в Париже начал функционировать первый кинотеатр. В 90-е годы кинематограф появляется и в других странах, причем почти в каждой европейской стране был свой изобретатель этого аппарата. В Германии пионерами кинематографии были М. Складановский (1895 г.) и О. Местер (1896 г.); в Англии — Р. Поул (1896 г.); в России — А. Самарский (1896 г.) и И. Акимов (1896 г.); в США — Ф. Дженкинсон (1897 г.) и Т. Армат (1897 г.).

Одним из величайших открытий в области техники явилось изобретение радио. Честь его изобретения принадлежит великому русскому ученому А. С. Попову (1859—1906). Еще в 1886 г. немецкий ученый Г. Герц (1857—1894) впервые экспериментально доказал факт излучения электромагнитных волн. Он установил, что электромагнитные волны подчиняются тем же основным законам, что и световые волны. В конце 90-х годов Н. Тесла в Европе и Америке прочел ряд докладов, сопровождавшихся демонстрированием экспериментов . Он возбуждал длинные волны с помощью генераторов высокой частоты, зажигал лампы и посылал сигналы на расстояние. Тесла уверенно предсказывал возможность применения этих волн для телефонии и даже для передачи электрической энергии. Попов еще в 1889 г., работая в области исследования электромагнитных колебаний, впервые высказал мысль о возможности использования электромагнитных волн для передачи сигналов на расстояние.

7 мая 1895 г. А С. Попов на заседании Русского физико-математического общества в Петербурге впервые продемонстрировал радиоприемник. В работе над повышением чувствительности приборов для обнаруживания электромагнитных колебаний Попов шел своим оригинальным путем. Он впервые применил антенну и, видя несовершенство вибраторов как источников электромагнитных волн, приспособил приемник для регистрации грозовых разрядов атмосферного электричества. Радиоприемник, изобретенный Поповым, был назван им грозоотметчиком (рис. 4).

Рис. 4. Радиоприемник А. С. Попова (1895 г.).

Устройство грозоотметчика сводилось к следующему: в цепь батареи включалась трубка с металлическими опилками и реле. В обычных условиях сила тока в обмотке реле была слабой, и якорь реле не притягивался. Но во время грозы грозовые разряды вызывали появление электромагнитных волн. Это приводило к тому, что сопротивление опилок в трубке падало и реле срабатывало, подключая электрический звонок, который и подавал сигнал о поступлении электромагнитных волн. Грозоотметчик Попова позволял принимать радиоволны на расстоянии нескольких километров. Доклад А. С. Попова в мае 1895 г. был через несколько месяцев полностью опубликован в январском выпуске «Журнала Русского физико-химического общества» под названием «Прибор для обнаружения и регистрирования электрических колебаний». Затем этот доклад был напечатан в 1896 г. в журнале «Электричество» и в журнале «Метеорологический вестник». В результате многочисленных экспериментов 24 марта 1896 г. Попов осуществил первую в мире радиотелеграфную передачу. Его доклад в Физико-химическом обществе сопровождался работой грозоотметчика, который принимал телеграфные сигналы на расстоянии 250 м. В передаче были применены передающая и приемная антенны. В 1897 г. Попов устанавливает связь между кораблями «Африка» и «Европа» на расстоянии 5 км. А осенью 1899 г. при спасении наскочившего на камни броненосца «Генерал-адмирал Апраксин» А. С. Попов установил постоянную радиотелеграфную связь на расстоянии более 46 км. А. С. Попов не опубликовал подробного отчета о своих опытах. Русское военное ведомство предложило засекретить эти работы. Через год после первого доклада Попова и через два месяца после его второго доклада, в 1897 г., итальянец Г. Маркони взял патент в Англии на прибор для телеграфирования без проводов. Из описания видно, что радиоприемник Маркони весьма близко воспроизводил грозоотметчик А. С. Попова. В 1897 г. в Англии было образовано специальное акционерное общество по эксплуатации изобретения Маркони. Судьба Попова и Маркони сложилась по-разному. В то время как Маркони, получив финансовую поддержку, смог развернуть в большом масштабе работы по усовершенствованию радиоаппаратуры, А. С. Попову пришлось работать в очень тяжелых условиях. Средств на усовершенствование его гениального изобретения отпускалось мало, а результаты работ в печати почти не освещались. Радиотехника, основы которой были заложены работами А. С. Попова, стала особенно быстро развиваться после первой мировой войны, во время которой радиосвязь становится важнейшей формой связи в армии и флоте. Радио получило широкое применение затем и для гражданских целей. Эти отрасли техники в рассматриваемый период не имели большого значения, но, несмотря на свою незначительную роль, они явились вершиной технического прогресса конца XIX — начала XX в. и стали отправными точками технического прогресса в современную эпоху.

Электроника зародилась в начале 20 в. после создания основ электродинамики (1856—73), исследования свойств термоэлектронной эмиссии (1882—1901), фотоэлектронной эмиссии (1887—1905), рентгеновских лучей (1895—97), открытия электрона (Дж. Дж. Томсон, 1897), создания электронной теории (1892—1909). Развитие электроники началось с изобретения лампового диода (Дж. А. Флеминг, 1904), трёхэлектродной лампы — триода (Л. де Форест, 1906); использования триода для генерирования электрических колебаний (немецкий инженер А. Мейснер, 1913); разработки мощных генераторных ламп с водяным охлаждением (М. А. Бонч-Бруевич, 1919—25) для радиопередатчиков, используемых в системах дальней радиосвязи и радиовещания.

Вакуумные фотоэлементы (экспериментальный образец создал А. Г. Столетов, 1888; промышленные образцы — немецкие учёные Ю. Эльстер и Г. Хейтель, 1910); фотоэлектронные умножители — однокаскадные (П. В. Тимофеев, 1928) и многокаскадные (Л. А. Кубецкий, 1930) — позволили создать звуковое кино, послужили основой для разработки передающих телевизионных трубок: видикона (идея предложена в 1925 А. А. Чернышевым), иконоскопа (С. И. Катаев и независимо от него В. К. Зворыкин, 1931—32), супериконоскопа (П. В. Тимофеев, П. В. Шмаков, 1933), суперортикона (двухсторонняя мишень для такой трубки была предложена советским учёным Г. В. Брауде в 1939; впервые суперортикон описан американскими учёными А. Розе, П. Веймером и Х. Лоу в 1946) и др.

Создание многорезонаторного магнетрона (Н. Ф. Алексеев и Д. Е. Маляров, под руководством М. А. Бонч-Бруевича, 1936—37), отражательного клистрона (Н. Д. Девятков и другие и независимо от них советский инженер В. Ф. Коваленко, 1940) послужило основой для развития радиолокации в сантиметровом диапазоне волн; пролётные клистроны (идея предложена в 1932 Д. А. Рожанским, развита в 1935 советским физиком А. Н. Арсеньевой и немецким физиком О. Хайлем, реализована в 1938 американскими физиками Р. и 3. Варианами и др.) и лампы бегущей волны (американский учёный Р. Компфнер, 1943) обеспечили дальнейшее развитие систем радиорелейной связи, ускорителей элементарных частиц и способствовали созданию систем космической связи. Одновременно с разработкой вакуумных электронных приборов создавались и совершенствовались газоразрядные приборы (ионные приборы), например ртутные вентили, используемые главным образом для преобразования переменного тока в постоянный в мощных промышленных установках; тиратроны для формирования мощных импульсов электрического тока в устройствах импульсной техники; газоразрядные источники света.

Использование кристаллических полупроводников в качестве детекторов для радиоприёмных устройств (1900—05), создание купроксных и селеновых выпрямителей тока и фотоэлементов (1920—1926), изобретение кристадина (О. В. Лосев, 1922), изобретение транзистора (У. Шокли, У. Браттейн, Дж. Бардин, 1948) определили становление и развитие полупроводниковой электроники. Разработка планарной технологии полупроводниковых структур (конец 50 — начало 60-х гг.) и методов интеграции многих элементарных приборов (транзисторов, диодов, конденсаторов, резисторов) на одной монокристаллической полупроводниковой пластине привело к созданию нового направления в электроники — микроэлектроники (интегральной электроники). Основные разработки в области интегральной электроники направлены на создание интегральных схем — микроминиатюрных электронных устройств (усилителей, преобразователей, процессоров ЭВМ, электронных запоминающих устройств и т. п.), состоящих из сотен и тысяч электронных приборов, размещаемых на одном полупроводниковом кристалле площадью в несколько мм 2 . Микроэлектроника открыла новые возможности для решения таких проблем, как автоматизация управления технологическими процессами, переработка информации, совершенствование вычислительной техники и др., выдвигаемых развитием современного общественного производства . Создание квантовых генераторов (Н. Г. Басов, А. М. Прохоров и независимо от них Ч. Таунс, 1955) — приборов квантовой электроники — определило качественно новые возможности электроники, связанные с использованием источников мощного когерентного излучения оптического диапазона (лазеров) и построением сверхточных квантовых стандартов частоты.

Советские учёные внесли крупный вклад в развитие электроники. Фундаментальные исследования в области физики и технологии электронных приборов выполнили М. А. Бонч-Бруевич, Л. И. Мандельштам, Н. Д. Папалекси, С. А. Векшинский, А. А. Чернышев, М. М. Богословский и многие др.; по проблемам возбуждения и преобразования электрических колебаний, излучения, распространения и приёма радиоволн, их взаимодействия с носителями тока в вакууме, газах и твёрдых телах — Б. А. Введенский, В. Д. Калмыков, А. Л. Минц, А. А. Расплетин , М. В. Шулейкин и др.; в области физики полупроводников — ; люминесценции и по другим разделам физической оптики — С. И. Вавилов; квантовой теории рассеяния света излучения, фотоэффекта в металлах — И. Е. Тамм и многие др.

Электронные науки и технологии

Электроника опирается на многие разделы физики — электродинамику, классическую и квантовую механику , физику твёрдого тела, оптику, термодинамику, а также на химию , кристаллографию и другие науки. Используя результаты этих и ряда других областей знаний, электроника, с одной стороны, ставит перед другими науками новые задачи, чем стимулирует их дальнейшее развитие, с другой — создаёт новые электронные приборы и устройства и тем самым вооружает науки качественно новыми средствами и методами исследования.

Электроника - наука о методах создания электронных приборов и устройств, в которых это взаимодействие используется для преобразования электромагнитной энергии. Наиболее характерные виды преобразований электромагнитной энергии - генерирование, усиление и приём электромагнитных колебаний с частотой до 10 12 гц, а также инфракрасного, видимого, ультрафиолетового и рентгеновского излучений (10 12 - 10 20 гц). Преобразование до столь высоких частот возможно благодаря исключительно малой инерционности электрона — наименьшей из ныне известных заряженных частиц. В электронике исследуются взаимодействия электронов как с макрополями в рабочем пространстве электронного прибора, так и с микрополями внутри атома, молекулы или кристаллической решётки.

Прикладные задачи электроники: разработка электронных приборов и устройств, выполняющих различные функции в системах преобразования и передачи информации, в системах управления, в вычислительной технике, а также в энергетических устройствах; разработка научных основ технологии производства электронных приборов и технологии, использующей электронные и ионные процессы и приборы для различных областей науки и техники.

Электроника сыграла ведущую роль в научно-технической революции . Внедрение электронных приборов в различные сферы человеческой деятельности в значительной мере (зачастую решающей) способствовала успешной разработке сложнейших научно-технических проблем, повышению производительности физического и умственного труда , улучшению экономических показателей производства. На основе достижений электроники развивается , выпускающая электронную аппаратуру для различных видов связи, автоматики, телевидения, радиолокации, вычислительной техники, систем управления технологическими процессами, приборостроения, а также аппаратуру светотехники, инфракрасной техники, рентгенотехники и многих других.

Электроника включает в себя 3 области исследований :

Каждая область подразделяется на ряд разделов и ряд направлений. Раздел объединяет комплексы однородных физико-химических явлений и процессов, которые имеют фундаментальное значение для разработки многих классов электронных приборов данной области. Направление охватывает методы конструирования и расчётов электронных приборов, родственных по принципам действия или по выполняемым ими функциям, а также способы изготовления этих приборов. Электроника находится в стадии интенсивного развития, для неё характерно появление новых областей и создание новых направлений в уже существующих областях.

Технология электронных приборов . Конструирование и изготовление электронных приборов базируются на использовании сочетания разнообразных свойств материалов и физико-химических процессов. Поэтому необходимо глубоко понимать используемые процессы и их влияние на свойства приборов, уметь точно управлять этими процессами. Исключительная важность физико-химических исследований и разработка научных основ технологии в электронике обусловлены, во-первых, зависимостью свойств электронных приборок от наличия примесей в материалах и веществ, сорбированных на поверхностях рабочих элементов приборов, а также от состава газа и степени разряжения среды, окружающей эти элементы; во-вторых, — зависимостью надёжности и долговечности электронных приборов от степени стабильности применяемых исходных материалов и управляемости технологии. Достижения технологии нередко дают толчок развитию новых направлений в электронике. Общие для всех направлений электроники особенности технологии состоят в исключительно высоких (по сравнению с другими отраслями техники) требованиях, предъявляемых в электронной промышленности к свойствам используемых исходных материалов; степени защиты изделий от загрязнения в процессе производства; геометрической точности изготовления электронных приборов. С выполнением первого из этих требований связано создание многих материалов, обладающих сверхвысокими чистотой и совершенством структуры, с заранее заданными физико-химическими свойствами — специальных сплавов монокристаллов, керамики, стекол и др. Создание таких материалов и исследование их свойств составляют предмет специальной научно-технической дисциплины — электронного материаловедения . Одной из самых острых проблем технологии, связанных с выполнением второго требования, является борьба за уменьшение запылённости газовой среды, в которой проходят наиболее важные технологические процессы. В ряде случаев допустимая запылённость — не свыше трёх пылинок размером менее 1 мкм в 1 м 3 . О жёсткости требований к геометрической точности изготовления электронных приборов свидетельствуют, например, следующие цифры: в ряде случаев относительная погрешность размеров не должна превышать 0,001%; абсолютная точность размеров и взаимного расположения элементов интегральных схем достигает сотых долей мкм. Это требует создания новых, более совершенных методов обработки материалов, новых средств и методов контроля. Характерным для технологии в электронике является необходимость широкого использования новейших методов и средств: электроннолучевой, ультразвуковой и лазерной обработки и сварки, фотолитографии, электронной и рентгеновской литографии, электроискровой обработки, ионной имплантации, плазмохимии, молекулярной эпитаксии, электронной микроскопии, вакуумных установок, обеспечивающих давление остаточных газов до 10-13 мм рт. ст. Сложность многих технологических процессов требует исключения субъективного влияния человека на процесс, что обусловливает актуальность проблемы автоматизации производства электронных приборов с применением ЭВМ. Эти и другие специфические особенности технологии в электронике привели к необходимости создания нового направления в машиностроении — электронного машиностроения.

Перспективы развития электроники . Одна из основных проблем, стоящих перед электроникой, была связана с требованием увеличения количества обрабатываемой информации вычислительными и управляющими электронными системами с одновременным уменьшением их габаритов и потребляемой энергии. Эта проблема была решена путём создания полупроводниковых интегральных схем, обеспечивающих время переключения до 10 -11 сек; увеличения степени интеграции на одном кристалле более миллиона транзисторов размером менее 1 мкм; использования в интегральных схемах устройств оптической связи и оптоэлектронных преобразователей, сверхпроводников; разработки запоминающих устройств ёмкостью несколько гигагабит на одном кристалле; применения лазерной и электроннолучевой коммутации; расширения функциональных возможностей интегральных схем; перехода от двумерной (планарной) технологии интегральных схем к трёхмерной (объёмной) и использования сочетания различных свойств твёрдого тела в одном устройстве; разработки и реализации принципов и средств стереоскопического телевидения, обладающего большей информативностью по сравнению с обычным; создания электронных приборов, работающих в диапазоне миллиметровых и субмиллиметровых волн, для широкополосных (более эффективных) систем передачи информации, а также приборов для линий оптической связи; разработки мощных, с высоким кпд, приборов СВЧ и лазеров для энергетического воздействия на вещество и направленной передачи энергии (например, из космоса). Одна из тенденций развития электроники — проникновение её методов и средств в биологию (для изучения клеток и структуры живого организма и воздействия на него) и медицину (для диагностики, терапии, хирургии). По мере развития электроники и совершенствования технологии производства электронных приборов расширяются области использования достижения электроники во всех сферах жизни и деятельности людей, возрастает роль электроники в ускорении научно-технического прогресса.

Рекомендованная литература

Алферов А. В., Резник И. С., Шорин В. Г., Оргатехника, М., 1973.

Власов В. Ф., Электронные и ионные приборы, 3 изд., М., 1960;

Кушманов И. В., Васильев Н. Н., Леонтъев А. Г., Электронные приборы, М., 1973.