Тепловыделение процессора amd athlon 64 x2. Двухъядерные процессоры

Athlon 64 X2 устарел, как физически, так и морально. Такие устройства
были представлены в далеком 2006 году. Это были первые многоядерные решения
компании АМД. Оценить их важность на сегодняшний день не представляет особого труда. Их выпуск стал первым эволюционным шагом данного производителя в сфере высокотехнологичных решений. Именно он существенно повлиял на развитие компьютерной индустрии. Сейчас уже никого не удивишь 8-ми ядерным ЦПУ. Это уже стало нормой. А вот тогда подобное решение произвело своеобразную революцию, плодами которой мы и по сей день пользуемся.

История

Первым 2-х ядерным ЦПУ в нише домашних ПК стал продукт извечного конкурента АМД - компании "Интел". Это был процессор "пентиум" с индексом ХЕ 840. Устанавливался он в который был в то время основным у данного производителя. Увеличение количества ядер вызвало необходимость снижения Это привело к снижению производительности в однопоточных приложениях. Аналогичный результат получил и продукт его постоянного конкурента - процессор AMD Athlon 64 X2. Но за счет того, что такие решения были изначально ориентированы под многопоточность, эффект был не настолько сильным, как у основного конкурента. По мере появления софта, который способен полностью загрузить два физических ядра, расстановка сил постепенно изменилась. И такие решения постепенно вытеснили ЦПУ с 1-им ядром из обихода. Да, сейчас еще продаются подобные устройства, но они большей часть используются для офисных ПК, где на первый план выходит работа в офисных приложениях и низкая стоимость готовой системы. А для игровых систем рекомендуется брать 4, 6 или 8 ядер. В крайнем случае можно остановить выбор и на 2-х ядрах, но это существенно скажется на качестве игры не в лучшую сторону. Такой расклад был заложен более 5 лет назад, и один из его основоположников - процессор AMD Athlon 64 X2.

Модификации

Изначально такие ЦПУ устанавливались в который был самым прогрессивным у данного производителя на то время. Сразу было представлено 4 модели процессора. Младшим из них стал именно AMD Athlon 64 X2 4200. Остальные имели схожее название, но отличались индексом. Появились модификации 4400, 4600, а флагман этой линейки имел индекс 4800. Также обязательным атрибутом обозначений этих ЦПУ был «+», который добавлялся в конце наименования. Частота базовой модели составляла 2200 МГц. Также среди архитектурных особенностей стоит отметить кеш, размер которого у младшей модели был 1Мб. При этом на каждое из ядер приходилась лишь его половина. Остальные модификации могли похвастаться более высокой частотой и увеличенным размером кеша.

Более поздние решения

Чуть позже на рынке появились и более производительные продукты. Логическим развитием в этом направлении стало появление таких ЦПУ под платформу АМ2. Размер кеша у них был аналогичным, как у предшественника. А вот частоты существенно выросли и составили, например, для ЦПУ модели AMD Athlon 64 X2 5000 - 2700 МГц. Также еще одним нововведением стала поддержка новой памяти, которая называлась DDR2. Но, в принципе, у этих процессоров, срок между появлением которых составляет чуть меньше 2-х лет, много общего.

Заключение

Процессор AMD Athlon 64 X2 является одним из родоначальников эры параллельных вычислений на одном кристалле. Если внимательно к нему присмотреться, то можно с легкостью найти много общего с новыми решениями АМД. И тут ничего удивительного, ведь они построены по схожей архитектуре, которая за последние 5 лет претерпела определенные изменения, но также и сохранила общие черты.

31 мая обещает быть очень интересным днём, так как именно тогда на сектор настольных ПК выйдут двуядерные процессоры. Конечно, двуядерный Pentium Extreme Edition 840 можно купить уже сегодня - скажем, в машинах Dell, - но моделей для массового рынка Pentium D вряд ли стоит ждать раньше июля. В то же время, AMD смогла побить Intel в прибыльном секторе серверов/рабочих станций, выпустив двуядерные Opteron x65/x70/x75. Второй шаг в стратегии AMD на 2005 год - двуядерные процессоры для настольного сектора. О них и пойдёт речь в нашем обзоре.

Первый сюрприз здесь заключается в том, что, в отличие от Intel, проблемы с тепловыделением не заставили AMD уменьшать тактовую частоту двух ядер на одном физическом чипе. То есть двуядерные процессоры AMD должны работать так же быстро, как их одноядерные версии с такой же частотой. Intel, напротив, заявила частоту самого быстрого двуядерного процессора 3,2 ГГц, в то время как одноядерные модели достигли 3,8 ГГц.

Переход со 130-нм на 90-нм техпроцесс и технология кремния на изоляторе (SOI) уменьшили тепловой пакет процессоров AMD с 89 Вт до 67 Вт, с частотой до 2,2 ГГц (Winchester 3500+). В то же время, Athlon 64 FX-55 на 2,6 ГГц отличается достаточно ёмким тепловым пакетом (104 Вт), что позволяет установить двуядерные чипы на большую часть систем Socket 939, уже присутствующих на рынке. Но если вы желаете попробовать Pentium D, то придётся потратиться на новую материнскую плату, хотя физически разъём процессора не изменился.

31 мая официально выходят четыре двуядерных процессора от AMD, и все они относятся к линейке Athlon 64 X2 (напомним, что Intel имеет три модели Pentium D плюс Extreme Edition). Два процессора X2 будут использовать сдвоенные ядра Manchester с 512 кбайт кэша L2 на ядро. Две оставшиеся версии построены на дизайне Toledo с 1 Мбайт кэша L2 на логический блок.

Если варианты Manchester для массового рынка будут "влезать" в тепловой пакет 95 Вт, то более производительным моделям потребуется пакет в 110 Вт, который, в принципе, легко обеспечивается любой материнской платой, поддерживающей Athlon 64 FX-55. Хотя рассеиваемую тепловую мощность нельзя назвать низкой, не следует забывать, что топовая модель Intel на частоте 3,2 ГГц даёт максимум в 130 Вт, при этом и среднее тепловыделение процессоров Pentium D тоже оказывается выше. Довольно интересна "связь" энергопотребления для массового рынка у обоих производителей, так как здесь в обоих случаях мы получаем 95 Вт.

Hyper-Threading против двух ядер

Любая современная операционная система способна выполнять несколько программ одновременно, динамически распределяя нагрузку между всеми доступными логическими процессорами (многозадачность). При возможности, операционная система будет распределять нагрузку и на более глубоком уровне - с помощью потоков (многопоточность). Многозадачное окружение позволяет запускать несколько приложений и большое число системных служб без особого ущерба для производительности. А переход на многопоточность обеспечит такой её прирост, который намного превосходит по эффекту все частотные продвижения в области процессоров за последние годы. Система, оснащённая двуядерным процессором, сможет дать производительность, очень близкую к настоящей двухпроцессорной системе.

В 2002 году Intel уже пыталась подчеркнуть значимость двух полноценных логических процессоров на чипе, представив технологию Hyper Threading (HT). Причиной появления HT в Pentium 4 можно считать гонку тактовых частот. К тому времени Intel достигла скорости 3,06 ГГц, а исполнительный конвейер Intel состоял из 20 ступеней. AMD Athlon XP, напротив, работал с 10/15 ступенями (ALU/FPU), в то время как у Pentium III число ступеней составляло 10 (12 для Tualatin и Pentium M). Процессоры AMD Athlon 64 тоже используют 12-ступенчатый конвейер.

С одной стороны, глубоко конвейеризированный процессор способен выполнять больше действий за один такт. Это бывает особенно хорошо при использовании расширенных наборов команд SSE2 и SSE3. С другой стороны, каждая операция в процессоре проходит через большинство ступеней, впустую теряя драгоценные такты. Чтобы это компенсировать, Intel добавила логику, позволяющую, в среднем, более эффективно нагрузить конвейер Pentium 4, который с архитектуры Prescott увеличился до 31 ступени, симулируя два логических процессора.

Хотя процессор с технологией Hyper-Threading никогда не даст производительность, близкую к настоящей двухпроцессорной системе, вы получаете компьютер с лучшей отзывчивостью. Если вы когда-нибудь работали на двухпроцессорной системе (или на системе с HT), вы поймёте, что мы имеем в виду. Кроме того, есть некоторые приложения, которые ускоряют свою работу при включении HT, в то время как другие, напротив, дают меньшую производительность.

Intel гордится технологией Hyper-Threading, считая её важным промежуточным шагом при переходе от одного ядра к нескольким. Компания верит, что технология HT проложила путь для многопоточных приложений, так как они работают существенно быстрее на машине с HT. Действительно, Intel немало сделала для развития программирования, ориентированного на многопоточность. AMD, с другой стороны, всегда считала Hyper-Threading временной технологией, которая в будущем будет не нужна, - именно поэтому процессоры AMD её не поддерживают.

Ответ на поставленный вопрос, как всегда, находится где-то посередине. Действительно, средний геймер не запускает несколько приложений одновременно, пытаясь обеспечить максимум ресурсов своей игре. В то же время, профессиональная работа на ПК часто подразумевает запуск нескольких приложений одновременно, позволяя Hyper-Threading развернуться. Кроме того, практически каждый пользователь сегодня запускает в фоне антивирусную программу и/или межсетевой экран. Пока число фоновых служб или уровень их активности не достигнут определённого порога, любой процессор без HT сможет справиться с ними без какого-либо замедления. Но по мере роста активности, которую система выполняет в данный момент времени, технология Hyper-Threading будет становиться всё важнее. То же самое относится и к новым двуядерным процессорам. Так что давайте вернёмся к теме нашей статьи.

Удовлетворят ли два ядра потребности в производительности?

Если вы обдумаете сказанное выше, то зададитесь вопросом: разве требования к производительности CPU сегодня опережают возможности? Конечно, если не принимать во внимание некоторые приложения типа кодирования аудио и видео, 3D-рендеринг, профессиональную обработку фотографий, звука и видео и т.д.

Посмотрите на систему двухлетней давности с Pentium 4 на частоте 2,8 ГГц. Разве сегодня можно найти настольное приложение, которое не запустится на этой машине из-за нехватки производительности? Насколько быстрее будет новая машина Pentium 4 с памятью DDR2 и шиной следующего поколения PCI Express? Конечно, такой компьютер позволит его владельцу ощущать себя на вершине технологий, но вряд ли он будет лучше справляться с ежедневными задачами в MS Office, Photoshop, Firefox, Skype и Miranda. Будучи безумно хорошей, новая технология не позволит уходить с работы раньше.

Теперь давайте взглянем с точки зрения геймера. Обновите графическую карту двухлетней давности моделью за $250, и вы обнаружите, что последние 3D-игры вполне нормально запускаются с разрешением 1280x1024 в 32-битном цвете (как мы полагаем, вы уже купили ЖК-дисплей, на котором лучше использовать "родное" разрешение). Похоже, что графическая карта была "узким местом" старой машины?

Подобные рассуждения ставят под вопрос и "разгон" системы. Изначально оверклокеры пытались улучшить производительность менее дорогого "железа", чтобы оно соответствовало уровню дорогих комплектующих. Целью оверклокеров была безупречная работа последнего "софта" без чрезмерных трат на "железо". Но если "разгон" по-прежнему является эффективным способом выжать дополнительную производительность бесплатно, то "железо" с достаточной для большинства задач производительностью сегодня стоит уже не так дорого. Более того, программы, которые являются движущей силой для создания более скоростного "железа", а именно игры, сегодня ограничиваются больше графической подсистемой, нежели CPU.

Мы слышим ворчание оверклокеров и энтузиастов по этому поводу, но следует понимать, что эта группа пользователей относительно невелика. Кроме того, они-то уж точно знают, на что потратить дополнительную производительность своего компьютера. Все остальные рано или поздно спросят: "А зачем мне всё это нужно?". Что ж, несмотря на указанные выше доводы, существуют хорошие перспективы развития, когда новые технологии смогут изменить способ использования компьютеров.



Источник: AMD.

Чтобы правильно оценивать двуядерные процессоры, мы должны пересмотреть характер использования компьютера. Системы с двумя логическими процессорами прекрасно подходят для выполнения нескольких работ одновременно - и вы это даже не заметите. Представьте себе игру в самый последний 3D-шутер, параллельно с которой будет выполняться кодирование звуковых файлов. Если вы решите добавить ещё одно задание и одновременно архивировать большой файл, то на качестве игры в шутер это никак не отразится. Добавьте к этому четвёртое задание - вы сможете уменьшить общее время выполнения работы, но на отзывчивость системы это особо не повлияет. Ниже, в разделе тестирования, мы покажем несколько примеров.

В среднесрочной перспективе пытайтесь перейти на программное обеспечение, оптимизированное под многопоточность. Все программы, разработанные или оптимизированные с учётом двух- или многопроцессорных машин, продемонстрируют существенный прирост производительности на двуядерном ПК по сравнению с одноядерным.

Будущие приложения станут более интеллектуальными

История с многопроцессорностью напоминает извечную проблему курицы и яйца. Если число систем с несколькими ядрами или процессорами будет велико, то программные разработчики смогут перейти на новые модели использования и приложения без каких-либо проблем. Но пока их число невелико. Почему же маленькая или средняя компания-разработчик должна тратить энергию и деньги на то, чтобы исследовать и использовать потенциал многопроцессорного или многоядерного окружения?

Выше мы уже упомянули несколько служб, которые сегодня очень важны, например антивирусные программы или межсетевой экран. Средний настольный компьютер обычно запускает не меньше, чем 5-10 не-Windows служб. Это, например, утилита графической карты, значки в трее для различных программ, утилита мониторинга, сетевые службы для различных устройств. Каждый значок в правом нижнем углу вашего экрана представляет собой службу, потребляющую память и процессорное время. Учитывая масштаб роста производительности компьютеров, в будущем мы не хотим, чтобы эти службы хоть как-нибудь отражались на скорости работы системы.

Но мы так и не ответили на вопрос: что делать с дополнительными ресурсами двуядерной системы? Что ж, давайте рассмотрим пример. Мы помним, как горячо Intel обсуждала технологию распознавания речи во время появления первого 1-ГГц Pentium III. Тогда эта технология вряд ли была доступной; по крайней мере, я не нашёл, как её включить в Windows XP. А как насчёт того, чтобы управлять вашим компьютером голосом? Ограничить голосовой доступ, чтобы компьютер откликался только на речь хозяина? Или представьте, как вы общаетесь с кем-то в чате, и компьютер автоматически переводит ваш голос в текст, а также читает ответы собеседника. Как насчёт свободы? Ведь вы можете в это время прогуливаться по комнате с Bluetooth-гарнитурой.

Поговорим об играх. Вы когда-нибудь встречали игру, где искусственный интеллект близок по уровню к человеческому? Сомневаюсь. Ведь при этом необходимо проводить более сложные оценки вероятностей, просчитывать сложные стратегии, оценивать риски и т.д.

Будущая версия Windows Longhorn является ещё одним примером использования возможностей компьютера. Операционная система должна интеллектуально выстраивать, организовывать и отображать данные, превосходя возможности иерархической системы. Например, если я получаю электронное письмо или создаю какой-либо документ, я хочу, чтобы система знала о сути информации, которую он содержит - это значительно упростило бы жизнь. Я не хочу тратить ни одной дополнительной секунды на то, чтобы решить, куда мне записывать звуковой файл: в папку с именем исполнителя или названную по стилю музыки.

Как видим, мы движемся в своеобразном направлении. Мы хотим получить более умные компьютеры, чтобы повысить эффективность общения друг с другом. Мы хотим, чтобы компьютеры справлялись с новым цифровым стилем жизни, столь усердно рекламируемым многими компаниями. Кроме того, для многих это уже не просто будущее, а повседневная необходимость. Уделите время и проверьте, сколько MP3-файлов, документов, таблиц, презентаций, фотографий и других объектов хранится на вашем компьютере? Полагаю, это количество сразу же отобьёт у вас желание на какое-либо упорядочивание коллекции. Не пора ли предоставить эту функцию компьютеру? Конечно, если он будет обладать достаточным "разумом".


А вот и он: двуядерный красавец AMD Athlon 64 X2.

С технической точки зрения, Athlon 64 X2 не далеко ушёл от процессора, известного нам под названием Athlon 64. Он основывается на последней 90-нм технологии AMD и содержит улучшения, внесённые в ядра San Diego и Venice, содержащие 1 Мбайт и 512 кбайт кэша L2, соответственно. Кстати, когда вы читаете эту статью, они уже должны появиться на рынке. Кроме того, все упомянутые ядра, включая двуядерный X2, теперь поддерживают SSE3.

Ядра подключены через коммутатор (crossbar), который отвечает за доступ обоих ядер к каналу HyperTransport и контроллеру памяти. AMD упоминает лишь небольшое падение производительности по сравнению с полноценной двухпроцессорной системой, связанное с коммутатором. И наши тесты доказывают, что падение действительно ничтожно.


Три канала HyperTransport актуальны только для Opteron - Athlon 64 X2 поставляется с одним каналом HyperTransport, который соединяет CPU и северный мост.


Socket 939 останется главной опорой AMD до начала 2006 года. Потом его должен сменить сокет M2.


CPU-Z 1.28 пока ещё не знает Athlon 64 X2.

На момент запуска будут доступны четыре различных двуядерных процессора Athlon 64 X2, которые будут основываться на разных 90-нм ядрах. Athlon 64 X2 4200+ и 4600+ будут использовать 512 кбайт кэша L2 на ядро, а частоты составят 2,2 и 2,4 ГГц, соответственно. Процессоры 4400+ и 4800+ будут работать на таких же тактовых частотах, но они будут оснащены 1 Мбайт кэша L2 на ядро.

Тепловой пакет 110 Вт

AMD указывает у двуядерных процессоров Toledo тепловой пакет в 110 Вт. Это чуть больше, чем максимальное тепловыделение Athlon 64 FX-55, но для существующих материнских плат Socket 939, соответствующих спецификациям AMD, это вряд ли составит проблему. Всё, что вам нужно сделать, - обновить версию BIOS, где добавлена поддержка Athlon 64 X2.

Cool & Quiet и защита от вирусов

С момента своего появления линейка AMD64 поддерживает технологию Cool & Quiet и бит NX (non-execute). Технология Cool & Quiet должна также поддерживаться BIOS материнской платы, после чего она позволяет операционной системе динамически снижать тактовую частоту CPU. Cool & Quiet позволяет снизить энергопотребление и тепловыделение процессора при низких нагрузках. Но будьте осторожны, если попытаетесь заняться "разгоном" с включённой Cool & Quiet. Этот механизм автоматически перезапишет все настройки множителя процессора, которые вы указали вручную, возвращая процессор к частоте по умолчанию.

Бит NX помогает предотвратить атаки методом переполнения буфера, которые используют многие вирусы и вредоносные программы. Но для этого вам понадобится Windows XP Service Pack 2.


AMD ясно указала на то, что Athlon 64 FX останется топовым процессором для геймеров и однопоточных приложений. В данном отношении, как мы предполагаем, летом на рынке появится 2,8-ГГц Athlon 64 FX-57. Что касается цены, то Athlon 64 X2 должен находиться где-то между текущими моделями FX и Athlon 64, при этом медленные модели X2 могут оказаться весьма привлекательными.


Процессор Модель Частота Кэш Техпроцесс Ядро
Athlon 64 X2 4800+ 2,4 ГГц 2x 1 Мбайт 90 нм Toledo
Athlon 64 X2 4600+ 2,4 ГГц 2x 512 кбайт 90 нм Manchester
Athlon 64 X2 4400+ 2,2 ГГц 2x 1 Мбайт 90 нм Toledo
Athlon 64 X2 4200+ 2,2 ГГц 2x 512 кбайт 90 нм Manchester
Athlon 64 FX 55 2,6 ГГц 1 Мбайт 130 нм Clawhammer
Athlon 64 4000+ 2,4 ГГц 1 Мбайт 90 нм San Diego
Athlon 64 4000+ 2,4 ГГц 1 Мбайт 130 нм Clawhammer
Athlon 64 3800+ 2,4 ГГц 512 кбайт 90 нм Venice
Athlon 64 3800+ 2,4 ГГц 512 кбайт 130 нм Newcastle
Athlon 64 3500+ 2,2 ГГц 512 кбайт 90 нм Venice
Athlon 64 3500+ 2,2 ГГц 512 кбайт 90 нм Winchester
Athlon 64 3500+ 2,2 ГГц 512 кбайт 130 нм Newcastle
Athlon 64 3200+ 2,0 ГГц 512 кбайт 90 нм Venice
Athlon 64 3200+ 2,0 ГГц 512 кбайт 90 нм Winchester
Athlon 64 3000+ 1,8 ГГц 512 кбайт 90 нм Venice
Athlon 64 3000+ 1,8 ГГц 512 кбайт 90 нм Winchester

В таблице приведены все модели Athlon 64, доступные на сегодняшний день, за исключением двуядерных X2. AMD планирует выпустить их на рынок в июне, причём, официальный анонс ожидается 31 мая - во время проведения выставки Computex в Тайбэе (Тайвань). Впрочем, мы сомневаемся, что X2 появятся в широкой продаже до третьего квартала.

Обратите внимание, что некоторые процессоры базируются на устаревшем 130-нм техпроцессе. Их вряд ли стоит рекомендовать к покупке. Они поддерживают технологию Cool & Quiet и позволяют снижать тактовую частоту до 1 ГГц для экономии энергии и снижения тепловыделения. Но увеличенный размер ядра означает также и то, что они будут потреблять больше энергии, независимо от рабочей тактовой частоты. Кроме того, 90-нм ядра Venice и San Diego поддерживают расширения SSE3 и дают небольшой прирост производительности. В частности, потоковые расширения оказываются весьма полезны в растущем числе профессиональных приложений.

Тестовая система Athlon 64 X2

Для нашего тестирования AMD предоставила полную тестовую платформу. Она базируется на материнской плате Asus A8N-SLI Deluxe с чипсетом nVidia nForce4. На плате уже был предустановлен процессор Athlon 64 X2 4800+, а также пара 512-Мбайт модулей DDR400 с низкой задержкой от Corsair.

Плата A8N-SLI является на сегодня одной из самых привлекательных материнских плат - она поддерживает широкий диапазон процессоров (включая двуядерные модели, конечно же), а также обеспечивает установку двух графических карт PCI Express в режиме SLI, предоставляет два порта гигабитного Ethernet и дополнительный чип Serial ATA II RAID.

Линейку модулей памяти Corsair 3200XL Pro можно назвать довольно интересной, так как она сочетает чипы с самыми низкими задержками и светодиоды активности. Хотя память с задержками CL2,0-2-2-5 сегодня предлагают многие производители, Corsair можно признать хорошим выбором, так как эта компания уже достаточно давно выпускает память для энтузиастов.

Выход на рынок двуядерных процессоров ожидается где-то в конце этого месяца, во время проведения Computex. Если AMD говорит о том, что X2 не будут доступны в достаточных количествах до конца лета, то Intel, скорее всего, сможет выдать на рынок большое число двуядерных процессоров Pentium D. В то же время, чиповому гиганту приходится быть очень терпеливым и ждать, пока на рынок выйдут производители материнских плат со своими решениями 945.

Мы постарались собрать идеальные платформы для процессоров AMD и Intel, поэтому для Socket 775 мы выбрали Asus P5ND2. Эта плата использует чипсет nForce4 Intel Edition, который уже появился на рынке и даёт небольшое преимущество по производительности в сравнении с чипсетами Intel. Это связано с контроллером памяти nVidia, отражающим большой опыт компании в бизнесе 3D-графики. Кроме того, функции двух платформ nForce4 хорошо сравнимы между собой.


Процессор
Одноядерный CPU AMD Athlon 64 4000+ (2,4 ГГц, кэш L2 1 Мбайт)
Intel Pentium 4 Processor 660 (3,6 ГГц, кэш L2 2 Мбайт)
Двуядерные CPU AMD Athlon 64 X2 4800+ (2,4 ГГц, 2x кэш L2 1 Мбайт)
Intel Pentium D Processor 840 (3,2 ГГц, 2x кэш L2 1 Мбайт)
Память
Платформа AMD (DDR400) 2x 512 Мбайт - DDR400 (200 МГц)
Corsair Pro Series CMX512-3200XL (XMS3208 V1.1)
(CL2.0-2-2-5-1T @ 200 МГц)
Платформа Intel (DDR2-667) 2x 512 Мбайт - DDR2-667 (333 МГц)
Corsair CM2X512A-5400UL (XMS5400 V1.2)
(CL3-2-2-8-1T @ 333 МГц)
Материнские платы
Платформа AMD Asus A8N-SLI Deluxe (Rev. 1.02, BIOS 1007)
Чипсет nVidia nForce4 SLI
Платформа Intel Asus P5ND2-SLI (Rev. 1.02, BIOS 0601)
Чипсет nVidia nForce4 Intel Edition SLI
Системное аппаратное обеспечение
Графическая карта (PCIe) nVidia GeForce 6800 GT (эталонная плата)
GPU: NVIDIA GeForce 6800 GT (350 МГц)
Память: 256 Мбайт DDR SDRAM (500 МГц)
Жёсткий диск Western Digital WD740 Raptor
74 Гбайт, кэш 8 Мбайт, 10 000 об/мин
Сеть Встроенный гигабитный контроллер nVidia
DVD-ROM Gigabyte GO-D1600C (16x)
Блок питания Tagan TG480-U01, ATX 2.0, 480 Вт
Программное обеспечение
Драйверы чипсета nVidia Forceware 6.53
Драйвер процессора AMD CPU Driver 1.1.0.18
Графический драйвер nVidia Forceware 71.84
DirectX Version: 9.0c (4.09.0000.0904)
OS Windows XP Professional 5.10.2600,
Service Pack 2

Тесты и настройки

Тесты и настройки
OpenGL
Doom III Version: 1.0.1262
1280x1024, 32 Bit
Video Quality = High Quality
demo1
Graphics detail = High Quality
Wolfenstein
Enemy Territory
Version: 2.56 (Patch V 1.02)
1280x1024, 32 Bit
timedemo 1 / demo demo4
Geometric detail = high
Texture detail = high
DirectX 8
Unreal Tournament 2004 Version: 3204
1280x1024, 32 Bit, Audio = off
THG8-assault-single
3DMark2003 Version 3.6.0
1024x786, 32 Bit
DirectX 9
FarCry Version 1.1 Build 1256
1280x1024 - 32 Bit
qualtity options = High
3DMark 2005 Version 1.0
1024x786, 32 Bit
Graphics and CPU Default Benchmark
Видео
Pinnacle Studio 9 Plus Version: 9.4.1
from: 352x288 MPEG-2 41 MB
to: 720x576 MPEG-2 95 MB
Encoding and Transition Rendering to MPEG-2/DVD
no Audio
Auto Gordian Knot
DivX 5.2.1
XviD 1.0.3
Version: 1.95
Audio = AC3 6ch
Custom size = 100 MB
Resulution settings = Fixed width
Codec = XviD and DivX 5
Audio = CBR MP3, kbps 192
182 MB VOB MPEG2-source
Windows Media Encoder Version: 9.00.00.2980
720x480 DV to WMV
320x240 (29.97 fps)
282 kBps streaming
Аудио
Lame MP3 Version 3.97.1 Multi-threaded Alpha
Wave 17:14 minutes (182 MB) to mp3
32 - 320 kbit
VBR = level 3
Приложения
WinRAR Version 3.40
283 MB, 246 Files
Compression = Best
Dictionary = 4096 kB
Characters "Dragon_Charater_rig"
1600x1200
Rendering Single
Синтетические
PCMark 2004 Pro Version: 1.3.0
CPU and Memory Tests
SiSoftware Sandra Pro Version 2005, SR1
CPU Test = Multimedia Benchmark
Memory Test = Bandwidth Benchmark
ScienceMark Version 2.0
All Tests


Однопоточные приложения типа Prime95 могут нагрузить CPU, максимум, на 50%.

Чтобы оценить производительность в многозадачной среде мы провели два различных прогона. Во время первого мы запустили Doom 3, в то время как в фоне с помощью многопоточной версии Lame 3.97.1 кодировали большой аудио-файл в формат MP3. Во втором прогоне мы добавили сжатие 1,2-Гбайт файла с помощью WinRAR 3.4, чтобы ещё больше увеличить нагрузку.

Так как Doom 3 является однопоточной 3D-игрой, то планировщику Windows не особо сложно выдавать высокую частоту кадров, если одно ядро будет заниматься Doom 3. Чтобы создать более высокую нагрузку, во втором тесте мы перешли с Doom 3 на приложение, которое поддерживает многопоточность и способно более эффективно использовать два ядра. Мы выбрали 3DS Max 7 и повторили тесты с одним Lame 3.97, или с парой Lame и WinRAR 3.4.

Мы также постарались поработать с различными фоновыми службами типа антивирусной программы. Но к концу дня мы обнаружили, что имеет смысл показать только плохую отзывчивость одноядерных систем. Любая двуядерная система, в той или иной степени, с лёгкостью справляется с дополнительной нагрузкой.



Вот что мы запустили в фоне до старта основных приложений, Doom 3 или 3DS Max 7. С однопоточным приложением (WinRAR) и многопоточной программой (Lame 3.97.1) система и так уже немало загружена.


В диспетчере задач можно менять приоритет процессов. Полезно для работы некоторых задач в фоне.

Хватит сумасшедших fps

Если в обычных тестах процессоров или материнских плат мы понижаем разрешение и уровень детализации, чтобы графическая карта не стала "узким местом", то здесь мы решили отказаться от этой практики. Вряд ли кто-нибудь будет покупать high-end систему (с одним или двумя ядрами и 1-2 Гбайт памяти) и при этом решит оснащать её дешёвой графической картой стоимостью меньше $200. Сомневаемся, что такие пользователи будут довольны низким качеством графики.

Даже 3D-карты среднего ценового уровня сегодня обеспечивают приличные частоты и хорошее визуальное качество. Именно поэтому мы решили выбрать разрешение 1280x1024 на 32 битах с высокими настройками качества. Разрешение было выбрано с учётом того, что оно является "родным" на большинстве 17-19" ЖК-дисплеев.

В результате вы обнаружите лишь небольшую разницу в некоторых тестах типа Doom 3 и Unreal Tournament 2004. Возникает вопрос: столь ли она важна? Результаты всех систем достаточны для безупречной игры. Кроме того, они показывают, что графическая карта для хорошей 3D-производительности сегодня важнее.

Как видим, линейка Athlon 64 расходует энергию более экономно. Кроме того, чипсет nForce4 SLI построен на одном чипе, в то время как nForce4 Intel Edition использует традиционный дизайн с северным и южным мостами. Кроме того, системы Intel Pentium 4 и Pentium D потребляют немало энергии в режиме простоя - больше, чем Athlon 64 или Athlon 64 X2 при максимальной нагрузке.

Результаты не включают энергопотребление графической карты. В случае GeForce 6800 GT при запуске 3DMark 2005 следует добавить около 45 Вт. Если же две такие карты поставить в режим SLI, то добавлять придётся уже не меньше 100 Вт!

Заключение

Сразу же стоит отметить, что ни Athlon 64 X2, ни Pentium D не выйдут на рынок раньше лета. Хотя Intel уже выпустила двуядерный Pentium Extreme Edition, он встречается очень редко. Так что до официального выхода платформы 945 и процессора Pentium D два ядра вряд ли станут массовыми на рынке. AMD объявила о планах начала отгрузки процессоров X2 основным OEM-клиентам в конце лета, поэтому вряд ли стоит ожидать широкой доступности этих процессоров до конца третьего квартала.

Intel и AMD позволили нашему сайту протестировать грядущие технологические новинки ещё до момента официального выхода. После оценки обеих двуядерных технологий, результаты оказались весьма разочаровывающими - для Intel.

Что касается производительности, то здесь следует добавить несколько комментариев. Если приложение получает прирост от двух ядер (см. тесты), то в большинстве случаев Athlon 64 X2 обгоняет Pentium D 840. Кроме того, этот процессор ничуть не медленнее одноядерного аналога Athlon 64 4000+. Обратите внимание, что мы использовали процессор со старым ядром Clawhammer, что объясняет некоторые различия в производительности X2. Последнее ядро San Diego должно работать на том же уровне, что и X2.

Если посмотреть на линейку Intel, то двуядерные Pentium D останавливаются на частоте 3,2 ГГц, в то время как одноядерные варианты могут похвастаться частотой до 3,8 ГГц (Pentium 4 570). В итоге, если вы решите перейти на новую систему в ближайшем будущем, двуядерные процессоры Intel будут чуть медленнее в однопоточном окружении.

Давайте посмотрим на платформы. Любой из грядущих двуядерных процессоров Athlon 64 X2 может работать на стандартных материнских платах Socket 939 (AGP и PCI Express), если производитель платы выпустит обновлённую версию BIOS. Вряд ли стоит лишний раз упоминать, что X2 является прекрасным чипом для модернизации. Что же касается Intel, то вам придётся купить материнскую плату на nForce4 Intel Edition, 955X или 945 (ещё не вышел) по причине мелких изменений в раскладке разъёма. Обидно видеть, как текущая стабильная платформа 915P не сможет поддерживать двуядерные Pentium D. Хотя те же материнские платы на nVidia nForce3 или VIA K8T800 Pro можно обновить до двух ядер - и они прослужат ещё не меньше года.

Отставание в производительности со стороны Intel вполне можно принести в жертву многозадачному окружению, так что вряд ли у Pentium D возникнут проблемы в распространении на рынке. Однако есть одно большое "но": система Pentium D будет "проедать" не меньше 200 Вт сразу же после включения, даже если вы ничего не будете на ней делать. При максимальной нагрузке энергопотребление достигает 310 Вт и превышает 350 Вт, если добавить графическую карту. У AMD ситуация намного лучше: система будет потреблять от 125 до 190 Вт (235 Вт с видеокартой) в зависимости от нагрузки. И это без включения Cool & Quiet.

Инструкция

Необходимо помнить при этом, что процесс разгонки процессора довольно опасен и при отсутствии должной аккуратности и внимательности может привести к нестабильной работе, сбоям и даже к выходу системы из строя. Если вы новичок в теме оверклокинга (от англ. overclocking - разгон) вам необходимо разобраться с инструкцией к вашему процессору и другому оборудованию, желательно также найти перемычки/джамперы/пункты меню BIOS, отвечающие за частоту FSB, шины памяти, коэффициента умножения, делителя для PCI и AGP.

«Начинка» процессора AMD Athlon 64 X2 представляет собой кристалл, объединяющий в себе два ядра, каждое из которых обладает собственным кэшем L2. Для процессоров AMD Athlon актуальным является , основанный на увеличении коэффициента умножения.

Для тестирования процессора после разгонки вам понадобится программа S&M или подобная ей. Ее легко можно найти в интернете. Скачайте программу и установите ее.

Процесс разгонки начинается в BIOS. Для входа в BIOS нажмите клавишу DEL при начальной стадии загрузки системы. Откройте вкладку Power Bios Setup, в ней выберите пункт Memory Frequency и установите значение DDR400 (200Mhz). Снижение частоты памяти позволит вам снизить уровень лимитирования разгона процессора. Далее сохраните изменения с помощью опции Save changes and exit и перезагрузите компьютер.

После перезагрузки вновь зайдите в BIOS. Откройте вкладку Advanced Chipset Features и выберите пункт DRAM Configuration. В открывшемся окне в каждом пункте, вместо Auto, установите значения, которые находятся справа от знака slash (/). Этим вы ещё дальше отодвинете предел стабильной работы для вашей памяти.

Снова выйдите в меню Advanced Chipset Features и найдите пункт HyperTransport Frequency. Этот параметр также может называться HT Frequency или LDT Frequency. Выберите его и уменьшите частоту до 400 или 600 МГц (х2 или х3). Далее перейдите в меню Power Bios Setup, выберите пункт Memory Frequency и установите значение DDR200 (100Mhz). Снова сохраните настройки (Save changes and exit). После перезапуска - снова в BIOS.

Начинается самая интересная часть - непосредственно разгон процессора. Откройте меню Power Bios Setup, выберите CPU Frequency. Далее вам необходимо выбрать пункт, который, в зависимости от версии BIOS, может иметь названия CPU Host Frequency, CPU/Clock Speed или External Clock. Повысьте значение с 200 до 250 MHz - этим вы непосредственно разгоняете процессор. Снова сохраните настройки и загрузите операционную систему. Запустите программу S&M и в главном меню нажмите кнопку «Начать». Если в результате проверки система покажет высокую стабильность, увеличьте значение CPU Host Frequency еще на несколько пунктов и снова проведите . Повторяйте действия до тех пор, пока не найдете оптимальный баланс между разгоном системы и ее стабильностью. Вы достигли цели - ваш процессор разогнан.

Обратите внимание

Не забывайте контролировать температуру процессора, очень нежелательно превышать 60°.

Источники:

  • как разогнать процессор amd athlon 64 x2
  • Ситуация со старшими Socket 939 Athlon 64 FX/Athlon 64 X2

Процесс разгона процессора – процедура не такая уж и сложная, как может показаться на первый взгляд. В процессе выполнения этой задачи следует соблюдать некоторые меры предосторожности и быть очень внимательным, чтобы не переборщить и не «убить» системную плату.

Вам понадобится

  • Инструкция к материнской плате компьютера, утилиты для проведения анализа и теста системы (например Everest), термопаста для процессора (может понадобиться в некоторых случаях), программа для разгона процессора (в случае программного разгона процессора).

Инструкция

Перед тем, как приступить непосредственно к процедуре разгона , необходимо изучить некоторую техническую документации, а именно инструкцию, прилагаемую к материнской плате. Необходимо это для того, чтобы найти в BIOS, соответствующие разделы.

Затем следует определиться, каким их способов будет выполняться процедура. Существует два способа – программный (при помощи специальных программ, предназначенных для этого) и аппаратный (способ разгона посредствам стандартных средств BIOS). Программный способ разгона процессора в данной статье рассматриваться не будет, ввиду того, что с программами, как правило, идут подробные инструкции.

Перед началом разгона необходимо проверить состояние . В случае, если она , ее необходимо заменить. Затем нужно почистить и обеспечить поступление как можно большего количества воздуха в системный блок (для этого одна из боковых крышек). Затем необходимо зайти в BIOS (делается это при помощи нажатия клавиши F2 или Del при загрузке системы). Теперь в Биосе необходимо найти функцию, определяющую частоту работы памяти, и установить ее минимальное значение (делается это для того, чтобы процесс разгона процессора не лимитировался памятью). Находиться эта функция может в разделах, которые к разгону процессора или к разгона и тайминга памяти, в большинстве случаев она носит одно из приведенных названий: Advanced Chipset Features, либо Memclock index value, или Advanced, или POWER BIOS Features, либо System Memory Frequency, или же Memory Frequency.

Далее заходим в меню Frequency/Voltage Control (POWER BIOS Features, либо JumperFree Configuration, или?Guru Utility – другие варианты названия). Здесь необходимо найти пункт, определяющий значение частоты FSB (варианты названия пункта: CPU Host Frequency, либо CPU/Clock Speed,или External Clock). После того, как нужный пункт , его нужно плавно повышать. Вот здесь необходимо проявить внимательность и терпение. При повышении показаний пункта не нужно увеличивать их на много, а по чуть-чуть. После каждого увеличения необходимо сохранить настройки (соответствующий запрос из Биоса) и перезагрузить компьютер. После этого нужно при помощи определенных утилит проверить, разогнался ли , а также стабильность работы системы.

Видео по теме

Разгон («оверклокинг») процессора подразумевает программное или аппаратное изменение качества его работы. Производители интегральной электроники (AMD, Intel и др.) во избежание произвольного увеличения тактовой частоты ставят ограничители и снимают свои продукты с гарантийного обслуживания. Пользователи в свою очередь хотят почти за бесплатно заставить работать железо на грани возможного. Поэтому имеет смысл на примере процессора AMD Athlon ознакомиться с некоторыми нюансами типичного «оверклокинга».

Вам понадобится

  • Компьютер, процессор AMD Athlon, дополнительный кулер, программы Everest Ultimate Edition и CPU-Z

Инструкция

В первую очередь, подготовьте систему. Позаботьтесь об охлаждении процессора Athlon. Установите один для своевременного теплообмена с внешней средой. Иногда лишние 10-15° С уменьшают рабочие ресурсы этого процессора в два и более раза. Поэтому качественная вентиляция крайне необходима. В редких случаях энтузиасты даже срезают верхнюю часть системного корпуса и устанавливают еще один кулер для прохладного воздуха к основному вентилятору.

Загрузите программы Everest Ultimate Edition и CPU-Z последних версий. Они необходимы для тестов и мониторинга системы. После того как собрали все необходимые данные о и материнской плате, а также о рабочих характеристиках системы, перезагрузите компьютер.

При начальной загрузке нажмите «Delete» либо «F2» (в зависимости от того, какая у вас материнская плата). Настройте BIOS следующим образом: CPU Host Clock Control – (ручной режим); CPU Frequency – (частоту системной шины прибавляйте постепенно, по 10-15 MHz); HT Frequency – (частота обмена данными по шине HyperTransport); Set memory clock – (режим оперативной памяти – ручной); Memory clock – (оперативная ); System Voltage Control – (при выставлении ручного режима замигает надпись-предупреждение); CPU Voltage Control – (при слишком высоком значение процессор изнашивается ). Сохраните вышеупомянутые пропорции и перезагрузите компьютер.

После запуска дайте полностью загрузиться вашей операционной системе. Откройте программы CPU-Z и Everest Ultimate Edition и убедитесь в увеличении измененных в BIOS параметров и рабочей температуры процессора (с 32° до 40°). Стоит заметить, что для разных моделей материнских плат настройки будут незначительно отличаться. Поэтому будьте внимательны.

Видео по теме

Полезный совет

Аппаратные модификации сложнее и опаснее не только для процессора, но и для любого находящегося в системном блоке устройства. Поэтому, рискнуть и проверить максимальные возможности своего микропроцессора или осторожничать и обеспечить постоянную работу на высоких скоростях, решать вам.

Источники:

  • сравнительные характеристики процессоров AMD Athlon
  • как разогнать атлон

Разгон комплектующих (оверклокинг) позволяет получить от компьютера, куда большую производительность, чем есть изначально. Данную процедуру не рекомендуется проводить неопытным пользователям, чтобы не повредить детали компьютера.

Вам понадобится

  • - компьютер;
  • - программа S&M.

Инструкция

Далее перейдите в меню Power Bios Setup, выберите пункт меню Memory Frequency, установите значение DDR400 (200Mhz), чтобы разогнать процессор. Щелкните клавишу Esc, чтобы выйти из данного подменю. Затем перейдите к пункту AMD K8 Cool & Quiet, установите в нем значение Disable, если такая опция имеется. Далее сохраните изменения и перезагрузите компьютер. Для этого нажмите Escape, после появления сообщения о сохранении настроек введите Y, нажмите клавишу Enter.

Перезагрузите систему, снова зайдите в Bios, перейдите к вкладке вкладку Advanced Chipset Features, выберите опцию DRAM Configuration, эта вкладка предназначена для того, чтобі отредактировать параметры таймингов памяти. В каждой строчке замените значение Auto следующими числами: для опции HT Frequency – 3х, для пункта Power Bios Setup – DDR200 (100Mhz). Этот пункт содержит делитель частоты памяти. Снова сохраните изменения, выйдите из Bios, чтобы продолжить разгон процессора Amd, зайдите в Bios после перезагрузки компьютера.

Перейдите в пункт меню Power Bios Setup, далее выберите опцию CPU Frequency, повысьте значение параметра HTT до 250, можно и больше. Далее сохраните изменения, загрузите операционную систему. Запустите программу S&M, чтобы проверить стабильность процессора.

Перейдите в пункт «Настройки», установите следующие параметры теста: время «Долго» либо «Норма», далее Load – 100%, снимите все флажки во вкладке «Процессор», оставьте только тест CPU. Запустите тест. Если не возникает проблем, постепенно повышайте частоту, выполняя действие, описанное в начале данного шага. Таким образом, вы можете разогнать процессор Amd до оптимального значения.

Видео по теме

Совет 5: Как разогнать процессор intel pentium dual-core

Производительность большинства современных компьютеров можно увеличить без установки нового оборудования. Такой процесс называется «разгон». Выполнять его необходимо крайне аккуратно.

Вам понадобится

  • Программа Clock Gen.

Инструкция

Начинать лучше с разгона центрального процессора . Производительность этого устройства напрямую влияет на скорость работы всего компьютера. Все необходимые манипуляции можно выполнить через меню BIOS материнской платы. Перезагрузите компьютер и откройте это меню, нажав клавишу Delete.

Перейдите в меню Advanced Chipset Setup и найдите пункты, отвечающие за параметры работы центрального процессора . В данном случае вас интересует три параметра: напряжение, частота шины и множитель. Самый простой способ увеличить общую тактовую частоту работы ЦП – изменить показатель множителя. К сожалению, данный метод не всегда дает желаемый прирост производительности остальных устройств. Начните с увеличения частоты шины.

Поднимите этот показатель на 50-60 МГц. Будьте крайне внимательными при настройке двухъядерного процессора . Если система позволяет изменять параметры работы каждого ядра отдельно, то выбирайте идентичные значения. Это положительно скажется на работе ЦП. После увеличения частоты шины измените показатель напряжения. Лучше первоначально повысить уровень напряжения на 0.1-0.2 Вольт.

Вернитесь в главное меню BIOS и выделите пункт Save & Exit. Нажмите клавишу Enter и дождитесь перезагрузки компьютера. Установите утилиту Clock Gen для проверки состояния работы центрального процессора и оценки его производительности. Повторяйте алгоритм повышения частоты шины ЦП и проверки его работы до тех пор, пока утилита не выявит ошибок.

Установите оптимальные параметры. Проверяйте температуру процессора , чтобы предотвратить перегрев данного устройства. Для этого используйте утилиты Everest или Speed Fan. При помощи второй программы настройте работу кулеров, чтобы обеспечить максимальное охлаждение персонального компьютера.

Почти каждый пользователь смартфона на базе Android сталкивался с такой проблемой, как «зависание» телефона, если открыть сразу несколько приложений или задать смартфону несколько задач одновременно. А если любимый телефон не может справиться с понравившейся новой игрушкой? - огорчению нет предела. С этой задачей поможет справиться разгон процессора Android до более высокой частоты.

Оригинальный смартфон на Android имеет встроенный процессор от компании Linux. Он адаптирован специально под OC Android и изменение частоты не предусмотрено производителем. Поэтому разгонять процессор нужно с помощью специальных программ. Самыми простыми по работе и интерфейсу являются программы SetCPU и Antutu CPU Master. Эти программы можно легко скачать в Google Play. Чтобы использовать их необходимо иметь Root–права.

Разгон процессора с помощью SetCPU

Когда приложение SetCPU загрузится, на экране смартфона появится окно, в котором необходимо выбрать режим сканирования устройства. Режима всего два: «рекомендуемый» - для обычных пользователей и «ручная настройка» - для более продвинутых пользователей. При выборе рекомендуемого режима сканирования, программа сразу выдает базовую частоту и режим активности процессора. Повышаем значение частоты в два раза. Выбираем режим работы процессора ondemand и ставим галочку напротив «set on boot». Ставя галочку напротив «set on boot», мы подтверждаем наши действия и система сможет сразу принять настройки после перезагрузки. Повышать максимальную частоту лучше всего в несколько этапов. По прошествии нескольких дней необходимо повторить процедуру, тогда максимальная частота повысится в 4 раза, причинив наименьший вред устройству.

Разгон процессора с помощью Antutu CPU Master Pro

Эта программа имеет бесплатную версию, что выгодно отличает ее от платной SetCPU. Интерфейс программы практически аналогичен SetCPU. При ее запуске на экране появляется окно программы с указанием максимальной и минимальной частоты процессора. Внизу представлена шкала с ползунком для регулировки этих частот.

Для того чтобы смартфон хорошо справлялся с 3D играми с высококачественной графикой и быстрым геймплеем необходимо увеличить максимальную частоту процессора. Для повышения скорости работы интерфейса и приложений нужно увеличить минимальную частоту процессора.

Разгон процессора на Android довольно опасен. Наиболее безопасным для смартфона является увеличение частоты до 30-40%, так как при этом не сильно увеличивается напряжение на процессоре. В любом случае при увеличении частоты процессора смартфон будет быстрее расходовать заряд аккумулятора.

Видео по теме

Представляем горячую новинку этого лета: массовый двухъядерный процессор от AMD. За $354 вы можете получить два ядра, работающие на частоте 2 ГГц и имеющие по 512 Кбайт L2 кеша. Но достаточно ли этого для удовлетворительной производительности? Ответ – в нашем обзоре, в котором вы найдёте и дополнительные бонусы: тестирование энергопотребления, оверклокинг и бенчмарки в 64-битной версии Windows.

Появление на рынке двухъядерных процессоров для настольных компьютеров было встречено пользователями с воодушевлением. Новые архитектуры, позволяющие объединить два процессорных ядра на одном полупроводниковом кристалле, дали существенный толчок в увеличении производительности современных CPU. В свете того, что производители процессоров в последнее время испытывают очень большие трудности в части дальнейшего наращивания тактовых частот, появление двухъядерных CPU трудно переоценить. Однако, как и любые другие новые продукты, процессоры с двумя ядрами оказались достаточно дорогими, чтобы в короткий срок стать массовыми решениями. В первую очередь это касается двухъядерных процессоров семейства AMD Athlon 64 X2. CPU этой линейки изначально позиционировались производителем как процессоры более высокого класса, нежели обычные Athlon 64. Это вылилось в то, что стоимость процессоров линейки Athlon 64 X2 лежала в пределах от $500 до $1000.

При этом Intel в ценообразовании на свои двухъядерные процессоры проявил более демократичный подход. Стоимость процессоров линейки Pentium D начинается с отметки в $241, что позволяет этим CPU попадать в настольные компьютеры класса mainstream. Впрочем, такое различие в ценах возникает не на пустом месте: производительность двухъядерных процессоров AMD, предлагаемых до сегодняшнего дня, значительно выше быстродействия CPU класса Pentium D.

Надо сказать, что такое положение дел вряд ли нравилось AMD. То, что Intel предлагает гораздо более дешёвые двухъядерные процессоры, вряд ли устраивало маркетологов AMD. Поэтому, сразу вслед за анонсом первых CPU с двумя ядрами инженерам AMD была дана команда по поиску путей удешевления двухъядерных процессоров. И задача эта была решена: сегодня, 1 августа 2005 года компания анонсирует младшую модель в линейке Athlon 64 X2 с рейтингом 3800+, стоимость которой (согласно официальному прайс-листу) опустилась до отметки $354. Не менее приятный факт заключается и в том, что данный анонс носит отнюдь не "бумажный" характер, AMD Athlon 64 X2 3800+ появится в магазинах с минуты на минуту.

Стоимость младшей модели линейки Athlon 64 X2 снижена достаточно стандартным методом. Во-первых, тактовая частота этого процессора опущена ниже частоты остальных двухъядерных CPU от AMD, а во-вторых, этот процессор имеет уменьшенный размер кеш-памяти второго уровня. Благодаря урезанию L2 кеша AMD получила возможность уменьшить ядро, что естественно, положительным образом сказывается на себестоимости. Так, первые процессоры Athlon 64 X2 основывались на ядре с кодовым именем Toledo, состоящем из 233.2 млн. транзисторов и имеющем площадь 199 кв. мм. Новое же ядро Manchester, нашедшее применение как в новом Athlon 64 X2 3800+, так и в некоторых других процессорах линейки, имеет площадь 147 кв. мм и содержит лишь 154 млн. транзисторов. Это, конечно, больше, чем содержится в одноядерных CPU от AMD, но, тем не менее, позволяет увеличить выход кристаллов с одной 200 мм пластины на 38%. Кстати, благодаря сокращению кеш-памяти второго уровня, площадь ядра процессоров Athlon 64 X2 с ядром Manchester вплотную приблизилась к площади ядра CPU серии Pentium 4 6XX, что само по себе уже говорит о многом.

Таким образом, новый Athlon 64 X2 3800+ представляет собой весьма любопытный объект для исследования. Этот двухъядерный процессор от AMD попадает в несколько иную ценовую категорию, нежели его предшественники, что в теории может сделать его хитом продаж. Конечно, при условии, что его производительность окажется на хорошем уровне. В этом обзоре мы как раз и поговорим о перспективности этой новинки, располагая результатами тестов.

Подробности о AMD Athlon 64 X2 3800+

Подробно о двухъядерных процессорах AMD мы уже говорили в статье "Обзор двухъядерного процессора AMD Athlon 64 X2 4800+ ". Отличия Athlon 64 X2 3800+ от его старших собратьев состоят в уменьшенном размере кеш-памяти второго уровня, составляющем по 512 Кбайт на каждое из ядер (такой же размер L2 кеша имеют и Athlon 64 X2 4600+ и 4200+), а также в пониженной до 2.0 ГГц тактовой частоте. Таким образом, с учётом новинки полная линейка двухъядерных CPU от AMD принимает следующий вид:

Тактовая частота Объём L2 кеша Цена
Athlon 64 X2 4800+ 2.4 ГГц 1 Мбайт + 1 Мбайт $1001
Athlon 64 X2 4600+ 2.4 ГГц 512 Кбайт + 512 Кбайт $803
Athlon 64 X2 4400+ 2.2 ГГц 1 Мбайт + 1 Мбайт $581
Athlon 64 X2 4200+ 2.2 ГГц 512 Кбайт + 512 Кбайт $537
Athlon 64 X2 3800+ 2.0 ГГц 512 Кбайт + 512 Кбайт $354

Полные же спецификации новинки, процессора Athlon 64 X2 3800+, мы приводим в таблице ниже:

Athlon 64 X2 3800+
Маркировка ADA3800DAA5BV
Частота 2.0 GHz
Тип упаковки 939-pin organic micro-PGA
Размер L2 кеша 512 Кбайт + 512 Кбайт
Контроллер памяти 128-бит, двухканальный
Поддерживаемые типы памяти DDR400 SDRAM
Частота шины HyperTransport 1 ГГц
Степпинг ядра E4
Технология производства 90 нм, SOI
Число транзисторов 154 млн.
Площадь ядра 147 кв. мм
Типичное тепловыделение 89 Вт
Максимальная температура корпуса 65 град.
Напряжение питания ядра 1.35В
Поддержка технологии AMD64 Есть
Поддержка NX-бит Есть
Поддержка технологии Cool’n’Quiet Есть

Хочется обратить внимание читателя на тот факт, что тепловой пакет для Athlon 64 X2 3800+ установлен в 89 Вт. Это означает, что этот процессор может работать со всеми теми материнскими платами и системами охлаждения, которые совместимы с обычными CPU семейства Athlon 64. Примечательность данного факта состоит в том, что предыдущие модели Athlon 64 X2, за исключением модели 4200+, имели типичное тепловыделение 110 Вт.

Достаточно любопытным представляется и то, что Athlon 64 X2 3800+ имеет чётко обозначенное напряжение питания в 1.35В. Очевидно, что повышение напряжения питания до 1.4В для выпуска младшей модели в семействе не требуется.

Диагностическая утилита CPU-Z выдаёт об Athlon 64 X2 3800+ следующую информацию:

Здесь нас никакие сюрпризы не поджидают, утилита детектирует ядро Manchester, работающее на 2-гигагерцовой частоте.

Энергопотребление и технология Cool’n’Quiet

Измеренное нами практическое энергопотребление рассматриваемого процессора в режиме максимальной загрузки (создаваемой специализированной утилитой S&M 1.7.2) составило 65.1 Вт. Давайте сравним эту величину с энергопотреблением других процессоров:

Как видим, Athlon 64 X2 3800+ вполне оправдывает установленную для него величину типичного тепловыделения. Процессор, хотя и потребляет больше одноядерных собратьев семейства Athlon 64 (на ядре Venice), до энергопотребления Athlon 64 FX-57 с тепловым пакетом 104 Вт всё-таки не дотягивает. Сравнение же с процессорами конкурента в данном контексте вообще бессмысленно, любые CPU от Intel потребляют примерно в два раза больше своих прямых соперников от AMD.

Пару слов необходимо сказать о технологии Cool’n’Quiet, которая перекочевала в двухъядерные процессоры AMD из своих одноядерных предшественников. Эта технология поддерживается в Athlon 64 X2 3800+ в полной мере, единственная особенность состоит в том, что оба ядра снижают частоту и напряжение питания при низкой загрузке синхронно.

В состоянии пониженного энергопотребления частота Athlon 64 X2 3800+ падает до 1 ГГц, а напряжение уменьшается до 1.1В. В результате, в состоянии покоя энергопотребление процессора снижается до 5.8 Вт, что делает Athlon 64 X2 3800+ весьма экономичным CPU. Впрочем, ещё большей экономии можно было бы добиться, если бы ядра могли входить в состоянии пониженного энергопотребления независимо друг от друга. Однако, данная возможность, видимо, будет реализована лишь в двухъядерных CPU, нацеленных на использование в мобильных компьютерах.

Как мы тестировали

Тестирование производительности AMD Athlon 64 X2 3800+ мы выполняли, сравнивая результаты этого CPU с показателями быстродействия процессоров близкой стоимости. В их число вошли Athlon 64 3800+, его цена на сегодня составляет $373; Pentium 4 650 cо стоимостью $401 и Pentium D 830 с ценой в $316.

Таким образом, в тестировании приняло участие несколько систем, состояли которые из перечисленного ниже набора комплектующих:

  • Процессоры:
    • AMD Athlon 64 X2 3800+ (Socket 939, 2.0 ГГц, 2 x 512KB L2, ревизия ядра E4 - Manchester);
    • AMD Athlon 64 3800+ (Socket 939, 2.4 ГГц, 512KB L2, ревизия ядра E3 - Venice);
    • Intel Pentium D 830 (LGA775, 3.0 ГГц, 2 x 1MB L2);
    • Intel Pentium 4 650 (LGA775, 3.4 ГГц, 2MB L2).
  • Материнские платы:
    • ASUS P5WD2 Premium (LGA775, Intel 955X);
    • DFI NF4 Ultra-D (Socket 939, NVIDIA nForce4 Ultra).
  • Память:
    • 1024MB DDR400 SDRAM (Corsair CMX512-3200XLPRO, 2 x 512MB, 2-2-2-10);
    • 1024MB DDR2-667 SDRAM (Corsair CM2X512A-5400UL, 2 x 512MB, 4-4-4-14).
  • Графическая карта: PowerColor RADEON X850 XT (PCI-E x16).
  • Дисковая подсистема: Maxtor MaXLine III 250GB (SATA150).
  • Операционные системы:
    • Microsoft Windows XP Professional SP2;
    • Microsoft Windows XP Professional x64 Edition.

Особенностью этого тестирования стало использование сразу двух операционных систем: 32-битной и 64-битной версий Windows XP. Тестируя производительность процессоров в 64-битном режиме, мы в первую очередь старались использовать "родные" 64-битные приложения, которых уже стало достаточно много. Таким образом, полученные результаты дадут нам возможность оценить не только производительность процессоров в обычном 32-битном режиме, но и посмотреть, как поведут себя испытуемые CPU при задействовании технологий AMD64 и EM64T.

Впрочем, справедливости ради следует заметить, что большое число 64-битных приложений, доступных сегодня, представляют собой сделанные энтузиастами порты Open Source программ. Соответственно, такие программы весьма специфичны. К сожалению, крупных коммерческих продуктов от известных производителей в 64-битных версиях пока крайне мало.

Производительность

Новая редакция теста PCMark принципиально не отличается от прошлых версий. Тест CPU из этого пакета основывается на реальных алгоритмах шифрования и сжатия данных, плюс активно использует многопоточность. Соответственно, неудивителен и полученный результат. Двухъядерные процессоры показывают лучшую производительность, чем одноядерные, а CPU с NetBurst архитектурой, традиционно показывающие более высокое быстродействие в PCMark, вновь могут похвастать лучшими результатами по данным этого теста.

Также, необходимо отметить, что производительность процессоров с технологиями AMD64 и EM64T в PCMark05 совершенно одинакова как в 32-битной операционной системе, так и в 64-битной ОС. Это как раз наглядно подтверждает эффективность x86-64 архитектуры: исполняемые в 64-битной операционной системе в режиме совместимости 32-битные приложения работают с той же скоростью, что и в родной для них 32-битной среде.

То же самое можно сказать и про результаты в 3DMark05. Использование 64-битной системы Microsoft Windows XP Professional x64 Edition с соответствующими драйверами не приводит к падению производительности в 32-битных DirectX программах. Так что геймеры, по всей видимости, не должны опасаться миграции в 64-битную среду, поддерживаемую процессорами AMD с технологией AMD64 и процессорами Intel с технологией EM64T.

Сам по себе тест 3DMark05, как и большинство игр, не поддерживает многопоточность. Поэтому двухъядерные процессоры никак не проявляют себя здесь. Однако в состав этого тестового пакета входят специализированные тесты CPU, в которых многопоточность используется для расчёта шейдеров и одновременного моделирования игровой среды.

Новый процессор Athlon 64 X2 3800+ показывает здесь вполне адекватную своей стоимости производительность. В первом игровом тесте он обгоняет своих одноядерных конкурентов, немного уступая Pentium D 830 с тактово й частотой 3.0 ГГц. Зато во втором тесте его быстродействие оказывается недосягаемым для всех CPU той же что и он ценовой категории.

Производительность в играх

Современные игры не используют многопоточность, поэтому двухъядерные процессоры в приложениях этого типа не могут похвастать высокими результатами. Так, Athlon 64 X2 3800+ здесь показывает такое же число fps, как демонстрировал бы одноядерный Athlon 64 3200+:

Впрочем, благодаря тому, что архитектура K8 показывает себя очень эффективной именно в игровых приложениях, Athlon 64 X2 3800+ в играх уступает аналогичному по цене одноядерному CPU семейства Pentium 4 не так уж и значительно. Кроме того, мы вновь можем отметить, что переход в 64-битный режим мало сказывается на скорости работы 32-битных игровых приложений.

Несмотря на то, что разработчики игр не балуют нас использованием преимуществ многоядерных архитектур, 64-битные расширения худо-бедно всё же начинают использоваться. Не так давно появился патч для популярной игры Far Cry, позволяющий её использование в Microsoft Windows XP Professional x64 Edition в 64-битном режиме. Естественно, мы не смогли обойти стороной этот факт и протестировали производительность процессоров не только в стандартной 32-битной, но и в 64-битной версии этой игры.

Как видим, 64-битный Far Cry способен продемонстрировать более высокий уровень fps. Так, использование 64-битной операционной системы и 64-битной версии игры позволяет получить дополнительное преимущество порядка 3-5%.

Сжатие данных

Популярный архиватор WinRAR многопоточность не поддерживает, поэтому результаты, показанные в нём рассматриваемым в этом обзоре процессором Athlon 64 X2 3800+ относительно невысоки. По крайней мере, он уступает в быстродействии одноядерным CPU той же ценовой категории. Впрочем, если сравнивать результат Athlon 64 X2 3800+ с показателями двухъядерного процессора Intel Pentium D 830, то всё выглядит не так уж и плохо: производительность у этих двух CPU примерно одинакова.

Также следует обратить внимание на тот факт, что запуск 32-битной утилиты WinRAR в 64-битной операционной системе несколько снижает её быстродействие. По всей видимости, это замедление вносит интерпретатор WoW64, благодаря которому реализуется функционирование 32-битных программ в Microsoft Windows XP Professional x64 Edition.

Среди архиваторов есть и программы, поддерживающие многопоточность. К таким утилитам относится, например 7zip. Помимо возможности эффективной работы с многоядерными процессорами, 7zip отличается ещё и тем, что существует и в 64-битной версии. Поэтому, тестирование производительности с его использованием представляется нам очень любопытным.

Алгоритм сжатия данных в 7zip эффективно использует технологию Hyper-Threading. Тем не менее, производительность процессора Pentium D 830 с частотой 3 ГГц оказывается примерно равной производительности Pentium 4 650 с частотой 3.4 ГГц. Одноядерный Athlon 64 3800+ уступает здесь процессорам от Intel, а Athlon 64 X2 3800+, хотя и показывает на 22% более высокий результат, чем Athlon 64 3800+, догнать конкурентов в семействах Pentium 4 и Pentium D не может.

Сказанное выше относилось лишь к 32-битной версии архиватора. Использование же 64-битной версии изменяет изложенный расклад. Дело в том, что процессоры Athlon 64 от задействования 64-битных регистров получают осязаемый выигрыш в производительности, чего никак нельзя сказать о процессорах Pentium 4 и Pentium D. Быстродействие CPU с NetBurst архитектурой в 64-битном режиме, как мы видим на примере 7zip, может оказаться ниже производительности CPU в 32-битном режиме. Поэтому, 64-битная версия 7zip ставит на первое место процессор Athlon 64 X2 3800+.

При разархивации и Athlon 64, и Pentium 4 работают быстрее при использовании 64-битного режима. Однако, в данном случае, процессоры c архитектурой K8 более эффективны: лидирует одноядерный Athlon 64 3800+, двухъядерный же Athlon 64 X2 3800+, отставая на 18%, демонстрирует второй результат.

Кодирование медиа данных

В первую очередь остановимся на кодировании аудио в формат mp3 популярным кодеком lame. Для целей тестирования мы использовали неофициальную версию 3.97, поддерживающую многопоточность и имеющую 64-битный вариант.

При кодировании аудио процессоры с двухъядерной архитектурой могут похвастать более высокой скоростью, нежели их одноядерные собратья, несмотря на их более низкую тактовую частоту. Если использовать 32-битный кодек, то по данным этого теста лидирует двухъядерный Intel Pentium D 830. Если же прибегать к 64-битной версии кодека, то картина меняется. По странному стечению обстоятельств, 64-битная версия LAME работает медленнее 32-битной. При этом, если замедление процессоров Athlon 64 составляет менее 10%, то процессоры Pentium 4 и Pentium D теряют в скорости около 20%. В итоге, при использовании 64-битной версии LAME лучший результат показывает Athlon 64 X2 3800+.

Столь странное поведение 64-битного порта LAME связано, скорее всего, с проблемами компилятора от Microsoft, который использовался для сборки кода. Впрочем, в таких "клинических" случаях, когда 64-битная версия программы оказывается медленнее 32-битной, никто не мешает в 64-битной операционной системе использовать более быстрый вариант, хоть он и приводит к активации режима совместимости.

Также, в природе существует и 64-битный порт видеокодека XviD. Используя этот кодек, мы провели тестирование скорости кодирования видео в 32-битной и 64-битной операционной системе.

Таких же неожиданностей, как в случае с LAME здесь нет. 64-битная версия кодека работает явно быстрее 32-битной. Однако при этом получить выигрыш от использования процессоров с двухъядерной архитектурой при кодировании XviD, к сожалению, не даёт. Таким образом, в выбранной ценовой категории, самую высокую скорость при сжатии видео кодеком XviD обеспечивает процессор Athlon 64 3800+.

Рассмотрим теперь производительность тестируемых процессоров в кодеках, не имеющих 64-битных клонов.

Двухъядерная архитектура процессора Athlon 64 X2 3800+, вместе с поддержкой им набора инструкций SSE3, к сожалению, не позволяет этому CPU продемонстрировать высший результат. Лидером здесь оказывается Pentium D 830. Заметим, что в этом кодеке двухъядерный процессор AMD работает немного медленнее одноядерного CPU той же ценовой категории, в то время как с процессорами Intel всё происходит наоборот: одноядерный Pentium 4 650 проигрывает Pentium D 830.

Результаты при кодировании кодеком DivX вполне предсказуемы. Архитектура NetBurst здесь эффективнее, чем K8. Кроме того, несмотря на поддержку этим кодеком многопоточности, более высокая частота одноядерных процессоров оказывается важнее дополнительного ядра, которым располагают CPU семейств Athlon 64 X2 и Pentium D. Также, хочется отметить весьма любопытный факт, что в 64-битной операционной системе Microsoft Windows XP Professional x64 Edition 32-битный кодек DivX работает слегка быстрее, чем в родной для него 32-битной среде. Размер этого преимущества составляет порядка 3-5%.

Во время предыдущих тестирований двухъядерных процессоров мы уже отмечали, что Windows Media Encoder является отличным примером приложения, эффективно задействующих два ядра. Так, преимущество Athlon 64 X2 3800+ над Athlon 64 3800+ составляет тут более 30%, несмотря на то, что двухъядерный процессор имеет на 17% более низкую тактовую частоту. В целом же Athlon 64 X2 3800+ удаётся слегка обойти в этом тесте даже Pentium D 830, несмотря на то, что архитектура NetBurst весьма неплохо показывает себя при кодировании медиа данных.

Вычислительные задачи

Популярный бенчмарк SuperPi многопоточность не поддерживает. Поэтому в нём процессоры с двумя ядрами уступают одноядерным CPU.

Тест ScienceMark 2.0 весьма интересен. Во-первых, он поддерживает все современные наборы инструкций и многопоточность, а во-вторых, существует и в версии для Microsoft Windows XP Professional x64 Edition. Причём, использование 64-битного кода для математического моделирования физических процессов, выполняемого в рамках этого бенчмарка, позволяет получить довольно-таки весомый рост производительности, который в подтесте Molecular Dynamics превышает даже 100%.

Процессоры AMD в этом тесте, задействующем вычислительные ресурсы CPU по полной программе, показывают более высокие результаты, нежели конкурирующие продукты от Intel. При этом новый двухъядерный CPU Athlon 64 X2 3800+ в обоих подтестах опережает одноядерного собрата Athlon 64 3800+, автоматически становясь лидером.

Профессиональные приложения

В Adobe Photoshop CS2, поддерживающем многопоточность, Athlon 64 X2 3800+ оказывается быстрее всех остальных процессоров той же ценовой категории, включая и двухъядерный Pentium D 830.

Выигрывает у конкурентов Athlon 64 X2 3800+ и в 3ds max во время измерения производительности при финальном рендеринге. Следует заметить, что подобные задачи хорошо распараллеливаются, и благодаря этому Athlon 64 X2 3800+ обгоняет одноядерный Athlon 64 3800+ на 49%, то есть даже сильнее, чем при кодировании в Windows Media Encoder 9.

А вот работа в 3ds max в Viewports быстрее осуществляется всё-таки при применении одноядерных CPU.

Кстати, заметим сильное падение производительности в данном тесте при использовании 64-битной версии операционной системы. Создаётся впечатление, что проблема заключается в не до конца оптимизированных драйверах.

Photoshop и 3ds max – это 32-приложения. К сожалению, производители не предлагают (пока?) версии этих программ, скомпилированные специально для Microsoft Windows XP Professional x64 Edition. Однако, к счастью, один из профессиональных пакетов 3D графики уже доступен в версии для x86-64. Это – CINEMA 4D от MAXON. Естественно, мы не смогли обойти стороной это приложение и измерили производительность в нём при помощи специального теста CINEBENCH 2003.

Как и в 3ds max, двухъядерный процессор демонстрирует наивысшую производительность при финальном рендеринге и в CINEMA 4D. При этом следует заметить, что скорость финального рендеринга в 64-битных режимах возрастает ещё сильнее, так что в задачах подобного типа сам бог велел использовать двухъядерные 64-битные CPU.

При работе в OpenGL мы можем наблюдать тот же эффект, который наблюдался и в 3ds max, только в данном случае он проявляется на нативном 64-битном приложении. Использование Microsoft Windows XP Professional x64 Edition и приложения, использующего процессорный Long Mode, приводит к некоторому падению производительности. Списать этот эффект, видимо, вновь придётся на драйвера. Что же касается производительности рассматриваемого процессора, то в тестах, использующих OpenGL, вновь лучше себя показывают одноядерные CPU.

Разгон

Поскольку новый процессор Athlon 64 X2 3800+ стал младшей моделью в линейке двухъядерных CPU от AMD, именно он в первую очередь будет интересовать оверклокеров. Для тестирования разгонных возможностей этого процессора мы собрали систему из тех же комплектующих, что и использовались во время измерения производительности, то есть на основе отлично зарекомендовавшей себя материнской платы DFI NF4 Ultra-D. В качестве устройства охлаждения CPU нами был использован воздушный кулер Thermaltake CL-P0200.

Штатный коэффициент умножения процессора Athlon 64 X2 3800+ - 10x, изменять его можно лишь в сторону уменьшения (благодаря поддержке технологии Cool’n’Quiet). Соответственно, разгонять процессор приходится увеличением частоты тактового генератора. Чтобы при оверклокинге не "упереться" в предельные режимы других комплектующих, во время наших испытаний частоты шин PCI Express и PCI фиксировались на штатных значениях, а коэффициент для шины HyperTransport уменьшался до 4x. Для частоты памяти также устанавливался уменьшающий делитель, гарантирующий полную работоспособность модулей DIMM при увеличении частоты тактового генератора.

В процессе наших экспериментов мы установили максимальную частоту тактового генератора, при которой процессор сохраняет стабильность. Она составила 240 МГц. Для покорения этого предела нам даже пришлось несколько увеличить напряжение питания процессорного ядра – до 1.45В. Достигнутая частота процессора при этом составила 2.4 ГГц.

Таким образом, в процессе экспериментов по разгону нам удалось поднять частоту Athlon 64 X2 3800+ на базе ядра Manchester на 20%. Надо отметить, что это не так уж и много, на такой же частоте работают двухъядерные процессоры Athlon 64 X2 4800+ и Athlon 64 X2 4600+. Причём, последний основывается как раз на ядре Manchester. То есть, нам удалось разогнать Athlon 64 X2 3800+ только лишь до уровня Athlon 64 X2 4600+. Видимо, для производства младшей модели в своей двухъядерной линейке AMD использует не самые лучшие ядра. Например, при испытаниях Athlon 64 X2 4800+, правда, на ядре Toledo, нам удалось добиваться работы процессора на частоте в 2.7 ГГц.

Впрочем, чем богаты, тем и рады. Чтобы понять, насколько быстр разогнанный Athlon 64 X2 3800+ по сравнению со старшими процессорами от AMD, мы провели несколько тестов, в которых сравнили нашего "подопытного кролика" с Athlon 64 FX-57 и Athlon 64 X2 4800+. Для чистоты эксперимента память во всех тестах работала на частоте 200 МГц с минимальными таймингами 2-2-2-10.

Как видим, разогнанный до 2.4 ГГц Athlon 64 3800+ ни в одном из проведённых тестов лидирующей позиции не занимает. Однако его производительность при этом всё равно находится на очень хорошем уровне. Например, в приложениях, поддерживающих многопоточность, он может обгонять Athlon 64 FX-57. Отставание же от Athlon 64 X2 4800+, оснащённого кеш-памятью второго уровня объёмом по 1 Мбайту на каждое из ядер, составляет в среднем лишь 1-2%.

Впрочем, при этом встречаются и приложения, весьма критичные к объёму кеш-памяти. В них уровень отставания разогнанного Athlon 64 X2 3800+ от Athlon 64 X2 4800+ может доходить и до 10%. Хотя, конечно, это вряд ли может расстроить владельцев Athlon 64 X2 3800+, который стоит втрое дешевле, чем Athlon 64 X2 4800+ и Athlon 64 FX-57.

Выводы

С выпуском процессора Athlon 64 X2 3800+ компания AMD понизила ценовую планку для систем, основанных на двухъядерных CPU. Теперь платформы среднего уровня могут оснащаться процессорами с двумя ядрами не только от Intel, но и от AMD. Таким образом, выход Athlon 64 X2 3800+ внёс некоторую симметрию: в предложениях обоих компаний теперь есть не только экстремально дорогие двухъядерные CPU, но и аналогичные процессоры среднего уровня.

Мы не будем повторяться, рассказывая о том, в каких приложениях выгодно использование двухъядерных архитектур. Скажем лишь то, что в среднем, по результатам наших тестов, Athlon 64 X2 3800+ показал себя более быстрым процессором, чем двухъядерный конкурент от Intel, Pentium D 830. Таким образом, у этой новинки от AMD есть очень неплохие рыночные перспективы. Особенно, если принять во внимание совместимость двухъядерных процессоров от AMD с существующей инфраструктурой, относительно низкое тепловыделение, поддержку технологии Cool’n’Quiet и возможность перехода на 64-битные операционные системы и соответствующие приложения.

В качестве "ложки дёгтя" для Athlon 64 X2 3800+ следует разве только заметить, что этот процессор почему-то не смог нас поразить чудесами оверклокинга, разогнавшись всего лишь до 2.4 ГГц. Впрочем, даже в таком режиме его производительность такова, что он уступает старшим процессорам в семействах Athlon 64 X2 и Athlon 64 FX не столь значительно.

4600+ . В представленном процессоре применяется Ядро Brisbane, CPU построен по техн.процессу 65 нм. Число ядер в этом процессоре 2, а тактовая частота составляет 2400MHz. В данном CPU марки AMD применён сокет (разъём) подключения к (материнской) системной плате AM2. Объём кэша памяти 3-го уровня -, в свою очередь память кэша 2-го уровня составляет 1024 Кб. Информация о максимальн. полосе пропускания памяти: 12.8 Гб/с. Производителем - компанией AMD данный процессор представляется как вычислительный процессор для систем уровня: Настольные ПК. Найденная информация о дате старта производства (или выпуска) процессора: 05.12.2006.

Процессор AMD Athlon 64 X2-5600+ Brisbane (2900MHz, AM2, L3 -, L2 1024 Кб)

Процессор от компании AMD из модельного ряда Athlon 64 X2 имеющим номер процессора: 5600+ . В представленном процессоре применяется Ядро Brisbane, CPU построен по техн.процессу 65 нм. Число ядер в этом процессоре 2, а тактовая частота составляет 2900MHz. В данном CPU марки AMD применён сокет (разъём) подключения к (материнской) системной плате AM2. Объём кэша памяти 3-го уровня -, в свою очередь память кэша 2-го уровня составляет 1024 Кб. Информация о максимальн. полосе пропускания памяти: 12.8 Гб/с. Производителем - компанией AMD данный процессор представляется как вычислительный процессор для систем уровня: Настольные ПК. Найденная информация о дате старта производства (или выпуска) процессора: 05.12.2006.

Процессор AMD Athlon 64 X2-5400+ Brisbane (2800MHz, AM2, L3 -, L2 1024 Кб)

Процессор от компании AMD из модельного ряда Athlon 64 X2 имеющим номер процессора: 5400+ . В представленном процессоре применяется Ядро Brisbane, CPU построен по техн.процессу 65 нм. Число ядер в этом процессоре 2, а тактовая частота составляет 2800MHz. В данном CPU марки AMD применён сокет (разъём) подключения к (материнской) системной плате AM2. Объём кэша памяти 3-го уровня -, в свою очередь память кэша 2-го уровня составляет 1024 Кб. Информация о максимальн. полосе пропускания памяти: 12.8 Гб/с. Производителем - компанией AMD данный процессор представляется как вычислительный процессор для систем уровня: Настольные ПК. Найденная информация о дате старта производства (или выпуска) процессора: 05.12.2006.

Процессор AMD Athlon 64 X2-6000+ Brisbane (3100MHz, AM2, L3 -, L2 1024 Кб)

Процессор от компании AMD из модельного ряда Athlon 64 X2 имеющим номер процессора: 6000+ . В представленном процессоре применяется Ядро Brisbane, CPU построен по техн.процессу 65 нм. Число ядер в этом процессоре 2, а тактовая частота составляет 3100MHz. В данном CPU марки AMD применён сокет (разъём) подключения к (материнской) системной плате AM2. Объём кэша памяти 3-го уровня -, в свою очередь память кэша 2-го уровня составляет 1024 Кб. Информация о максимальн. полосе пропускания памяти: 12.8 Гб/с. Производителем - компанией AMD данный процессор представляется как вычислительный процессор для систем уровня: Настольные ПК. Найденная информация о дате старта производства (или выпуска) процессора: 05.12.2006.

Процессор AMD Athlon 64 X2-3600+ Brisbane (1900MHz, AM2, L3 -, L2 1024 Кб)

Процессор от компании AMD из модельного ряда Athlon 64 X2 имеющим номер процессора: 3600+ . В представленном процессоре применяется Ядро Brisbane, CPU построен по техн.процессу 65 нм. Число ядер в этом процессоре 2, а тактовая частота составляет 1900MHz. В данном CPU марки AMD применён сокет (разъём) подключения к (материнской) системной плате AM2. Объём кэша памяти 3-го уровня -, в свою очередь память кэша 2-го уровня составляет 1024 Кб. Информация о максимальн. полосе пропускания памяти: 12.8 Гб/с. Производителем - компанией AMD данный процессор представляется как вычислительный процессор для систем уровня: Настольные ПК. Найденная информация о дате старта производства (или выпуска) процессора: 05.12.2006.

Процессор AMD Athlon 64 X2-4400+ Brisbane (2300MHz, AM2, L3 -, L2 1024 Кб)

Процессор от компании AMD из модельного ряда Athlon 64 X2 имеющим номер процессора: 4400+ . В представленном процессоре применяется Ядро Brisbane, CPU построен по техн.процессу 65 нм. Число ядер в этом процессоре 2, а тактовая частота составляет 2300MHz. В данном CPU марки AMD применён сокет (разъём) подключения к (материнской) системной плате AM2. Объём кэша памяти 3-го уровня -, в свою очередь память кэша 2-го уровня составляет 1024 Кб. Информация о максимальн. полосе пропускания памяти: 12.8 Гб/с. Производителем - компанией AMD данный процессор представляется как вычислительный процессор для систем уровня: Настольные ПК. Найденная информация о дате старта производства (или выпуска) процессора: 05.12.2006.

Процессор AMD Athlon 64 X2-4800+ Brisbane (2500MHz, AM2, L3 -, L2 1024 Кб)

Процессор от компании AMD из модельного ряда Athlon 64 X2 имеющим номер процессора: 4800+ . В представленном процессоре применяется Ядро Brisbane, CPU построен по техн.процессу 65 нм. Число ядер в этом процессоре 2, а тактовая частота составляет 2500MHz. В данном CPU марки AMD применён сокет (разъём) подключения к (материнской) системной плате AM2. Объём кэша памяти 3-го уровня -, в свою очередь память кэша 2-го уровня составляет 1024 Кб. Информация о максимальн. полосе пропускания памяти: 12.8 Гб/с. Производителем - компанией AMD данный процессор представляется как вычислительный процессор для систем уровня: Настольные ПК. Найденная информация о дате старта производства (или выпуска) процессора: 05.12.2006.

Процессор AMD Athlon 64 X2-4000+ Brisbane (2100MHz, AM2, L3 -, L2 1024 Кб)

Процессор от компании AMD из модельного ряда Athlon 64 X2 имеющим номер процессора: 4000+ . В представленном процессоре применяется Ядро Brisbane, CPU построен по техн.процессу 65 нм. Число ядер в этом процессоре 2, а тактовая частота составляет 2100MHz. В данном CPU марки AMD применён сокет (разъём) подключения к (материнской) системной плате AM2. Объём кэша памяти 3-го уровня -, в свою очередь память кэша 2-го уровня составляет 1024 Кб. Информация о максимальн. полосе пропускания памяти: 12.8 Гб/с. Производителем - компанией AMD данный процессор представляется как вычислительный процессор для систем уровня: Настольные ПК. Найденная информация о дате старта производства (или выпуска) процессора: 05.12.2006.