Виды сигналов: аналоговый, цифровой, дискретный. Аналоговые, дискретные и цифровые сигналы

Сигнал - это информационная функция, несущая сообщение о физических свойствах, состоянии или поведении какой-либо физической системы, объекта или среды, а целью обработки сигналов можно считать извлечение определенных информационных сведений, которые отображены в этих сигналах (кратко - полезная или целевая информация) и преобразование этих сведений в форму, удобную для восприятия и дальнейшего использования.

Информативным параметром сигнала может являться любой параметр носителя сигнала, функционально связанный со значениями информационных данных.

Сигнал, в самом общем смысле, это зависимость одной величины от другой, и с математической точки зрения представляет собой функцию.

Наиболее распространенное представление сигналов - в электрической форме в виде зависимости напряжения от времени U(t).

Под "анализом" сигналов (analysis) имеется в виду не только их чисто математические преобразования, но и получение на основе этих преобразований выводов о специфических особенностях соответствующих процессов и объектов.

С понятием сигнала неразрывно связан термин регистрации сигналов, использование которого также широко и неоднозначно, как и самого термина сигнал.

В наиболее общем смысле под этим термином можно понимать операцию выделения сигнала и его преобразования в форму, удобную для дальнейшего использования.

Аналоговый сигнал (АС)

Большинство сигналов имеют аналоговую природу, то есть изменяются непрерывно во времени и могут принимать любые значения на некотором интервале. Аналоговые сигналы описываются некоторой математической функцией времени.

Пример АС - гармонический сигнал - s(t) = A·cos(ω·t + φ).

Аналоговые сигналы используются в телефонии, радиовещании, телевидении. Ввести такой сигнал в компьютер и обработать его невозможно, так как на любом интервале времени он имеет бесконечное множество значений, а для точного (без погрешности) представления его значения требуются числа бесконечной разрядности. Поэтому необходимо преобразовать аналоговый сигнал так, чтобы можно было представить его последовательностью чисел заданной разрядности.

Дискретизация аналогового сигнала состоит в том, что сигнал представляется в виде последовательности значений, взятых в дискретные моменты времени. Эти значения называются отсчётами. Δt называется интервалом дискретизации.

Квантованный сигнал

При квантовании вся область значений сигнала разбивается на уровни, количество которых должно быть представлено в числах заданной разрядности. Расстояния между этими уровнями называется шагом квантования Δ. Число этих уровней равно N (от 0 до N-1). Каждому уровню присваивается некоторое число. Отсчёты сигнала сравниваются с уровнями квантования и в качестве сигнала выбирается число, соответствующее некоторому уровню квантования. Каждый уровень квантования кодируется двоичным числом с n разрядами. Число уровней квантования N и число разрядов n двоичных чисел , кодирующих эти уровни, связаны соотношением n ≥ log 2 (N).

Цифровой сигнал

Для того, чтобы представить аналоговый сигнал последовательностью чисел конечной разрядности, его следует сначала превратить в дискретный сигнал, а затем подвергнуть квантованию . Квантование является частным случаем дискретизации, когда дискретизация происходит по одинаковой величине называемой квантом. В результате сигнал будет представлен таким образом, что на каждом заданном промежутке времени известно приближённое (квантованное) значение сигнала, которое можно записать целым числом . Если записать эти целые числа в двоичной системе , получится последовательность нулей и единиц, которая и будет являться цифровым сигналом.

Передача, излучение и прием сообщений по электромагнитным системам называется электросвязью.

Сигналы, как и сообщения, могут быть непрерывными и дискретными . Информационный параметр непрерывного сигнала с течением времени может принимать любые мгновенные значения в определенных пределах.

Непрерывный сигнал часто называют аналоговым.

Дискретный сигнал характеризуется конечным числом значений информационного параметра. Часто этот параметр принимает всего два значения. Рассмотрим графическую модель, отображающую принципиальные отличия формирования аналогового и дискретного сигналов (рис. 3.4.).

Аналоговым сигналом в системах передачи называется непрерывный электрический или оптический сигналы F н (t), параметры которого (амплитуда, частота или фаза) изменяются по закону непрерывной функции времени источника информации , например, речевого сообщения, подвижного или неподвижного изображения и т. д. Непрерывные сигналы могут принимать любые значения (бесконечное множество) в некоторых пределах.

Дискретные сигналы - состоят из отдельных элементов, принимающих конечное число различных значений. Аналоговые дискретные сигналы F д (t) можно получить из непрерывных F н (t), используя дискретизацию по времени (через интервал Т д), квантование по амплитуде, или их одновременно.

Цифровой сигнал F ц (t) формируется в виде группы импульсов в двоичной системе счисления, соответствующих амплитуде квантованного по уровню и дискретного по времени аналогового сигнала, при этом наличие электрического импульса соответствует "1" в двоичной системе счисления, а отсутствие - "0".

Основным преимуществом цифровых сигналов является высокая помехозащищенность, так как при наличии шумов и искажений при их передаче достаточно зарегистрировать на приеме наличие или отсутствие импульсов.

Таким образом, для получения цифрового сигнала принципиально необходимо произвести три основные операции над непрерывным сигналом: дискретизацию по времени, квантование по уровню и кодирование.

Рис. 3.4. Разновидности дискретных сигналов и их отличия по виду формирования от аналогового сигнала:

а) - дискретный по времени;

б) - дискретный по уровню;

в) - дискретный по времени и по уровню;

г) - цифровой двоичный сигнал.

Приложение к лекции.

Сигнал теории информации и связи ) - материальный носитель информации , используемый для передачи сообщений в системе связи . Сигнал может генерироваться , но его приём не обязателен, в отличие от сообщения , которое должно быть принято принимающей стороной, иначе оно не является сообщением. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением.

Сигнал, детерминированный или случайный, описывают математической моделью, функцией, характеризующей изменение параметров сигнала. Математическая модель представления сигнала, как функции времени, является основополагающей концепцией теоретической радиотехники, оказавшейся плодотворной как для анализа , так и для синтеза радиотехнических устройств и систем.

В радиотехнике альтернативой сигналу, который несёт полезную информацию, является шум - обычно случайная функция времени, взаимодействующая (например, путём сложения) с сигналом и искажающая его. Основной задачей теоретической радиотехники является извлечение полезной информации из сигнала с обязательным учётом шума.

Понятие сигнал позволяет абстрагироваться от конкретной физической величины , например тока, напряжения, акустической волны и рассматривать вне физического контекста явления связанные кодированием информации и извлечением её из сигналов, которые обычно искажены шумами . В исследованиях сигнал часто представляется функцией времени, параметры которой могут нести нужную информацию. Способ записи этой функции, а также способ записи мешающих шумов называют математической моделью сигнала .

В связи с понятием сигнала формулируются такие базовые принципы кибернетики , как понятие о пропускной способности канала связи, разработанное Клодом Шенноном и об оптимальном приеме , разработанная В. А. Котельниковым .

Любая система цифровой обработки сигналов независимо от ее сложности содержит цифровое вычислительное устройство - универсальную цифровую вычислительную машину, микропроцессор или специально разработанное для решения конкретной задачи вычислительное устройство. Сигнал, поступающий на вход вычислительного устройства, должен быть преобразован к виду, пригодному для обработки на ЭЦВМ. Он должен иметь вид последовательности чисел, представленных в коде машины.

В некоторых случаях задача представления входного сигнала в цифровой форме решается сравнительно просто. Например, если нужно передать словесный текст, то каждому символу (букве) этого текста нужно поставить в соответствие некоторое число и, таким образом, представить передаваемый сигнал в виде числовой последовательности. Легкость решения задачи в этом случае объясняется тем, что словесный текст по своей природе дискретен.

Однако большинство сигналов, с которыми приходится иметь дело в радиотехнике, являются непрерывными. Это связано с тем, что сигнал является отображением некоторого физического процесса, а почти все физические процессы непрерывны по своей природе.

Рассмотрим процесс дискретизации непрерывного сигнала на конкретном примере. Допустим, на борту некоторого космического аппарата производится измерение температуры воздуха; результаты измерения должны передаваться на Землю в центр обработки данных. Температура

Рис. 1.1. Виды сигналов: а - непрерывный (континуальный) сигнал; 6 - дискретный сигнал; в - АИМ-колебание; г - цифровой сигнал

воздуха измеряется непрерывно; показания датчика температуры также являются непрерывной функцией времени (рис. 1.1, а). Но температура изменяется медленно, достаточно передавать ее значения один раз в минуту. Кроме того, нет необходимости измерять ее с точностью выше чем 0,1 градуса. Таким образом, вместо непрерывной функции можно с интервалом в 1 мин передавать последовательность числовых значений (рис. 1.1, г), а в промежутках между этими значениями можно передавать сведения о давлении, влажности воздуха и другую научную информацию.

Рассмотренный пример показывает, что процесс дискретизации непрерывных сигналов состоит из двух этапов: дискретизации по времени и дискретизации по уровню (квантования). Сигнал, дискретизированный только по времени, называют дискретным; он еще не пригоден для обработки в цифровом устройстве. Дискретный сигнал представляет собой последовательность, элементы которой в точности равны соответствующим значениям исходного непрерывного сигнала (рис. 1.1, б). Примером дискретного сигнала может быть последовательность импульсов с изменяющейся амплитудой - амплитудно-импульсно-модулированное колебание (рис. 1.1, в). Аналитически такой дискретный сигнал описывается выражением

где исходный непрерывный сигнал; единичный импульс АИМ-колебания.

Если уменьшать длительность импульса сохраняя его площадь неизменной, то в пределе функция стремится к -функции. Тогда выражение для дискретного сигнала можно представить в виде

Для преобразования аналогового сигнала в цифровой после дискретизации по времени должна следовать дискретизация по уровню (квантование). Необходимость квантования вызвана тем, что любое вычислительное устройство может оперировать только числами, имеющими конечное число разрядов. Таким образом, квантование представляет собой округление передаваемых значений с заданной точностью. Так в рассмотренном примере производится округление значений температуры до трех значащих цифр (рис. 1.1, г). В других случаях число разрядов передаваемых значений сигнала может быть иным. Сигнал, дискретизированный и по времени, и по уровню, называется цифровым.

Правильный выбор интервалов дискретизации по времени и по уровню очень важен при разработке цифровых систем обработки сигналов. Чем меньше интервал дискретизации, тем точнее дискретизированный сигнал соответствует исходному непрерывному. Однако при уменьшении интервала дискретизации по времени возрастает число отсчетов, и для сохранения общего времени обработки сигнала неизменным приходится увеличивать скорость обработки, что не всегда возможно. При уменьшении интервала квантования требуется больше разрядов для описания сигнала, вследствие чего цифровой фильтр становится более сложным и громоздким.

Дискретные сигналы естественно возникают в тех случаях, когда источник сообщений выдает информацию в фиксированные моменты времени. Примером могут служить сведения о температуре воздуха, передаваемые радиовещательными станциями несколько раз в сутки. Свойство дискретного сигнала проявляется здесь предельно ярко: в паузах между сообщениями никаких сведений о температуре нет. Фактически же температура воздуха изменяется во времени плавно, так что результаты измерения возникают за счет дискретизации непрерывного сигнала - операции, которая фиксирует отсчетные значения.

Дискретные сигналы приобрели особое значение в последние десятилетия под влиянием совершенствования техники связи и развития способов обработки информации быстродействующими вычислительными устройствами. Большие успехи достигнуты в разработке и использовании специализированных устройств для обработки дискретных сигналов, так называемых цифровых фильтров.

Настоящая глава посвящена рассмотрению принципов математического описания дискретных сигналов, а также теоретических основ построения линейных устройств для их обработки.

15.1. Модели дискретных сигналов

Различие между дискретными и аналоговыми (непрерывными) сигналами подчеркивалось в гл. 1 при классификации радиотехнических сигналов. Напомним основное свойство дискретного сигнала: его значения определены не во все моменты времени, а лишь в счетном множестве точек. Если аналоговый сигнал имеет математическую модель вида непрерывной или кусочно-непрерывной функции, то отвечающий ему дискретный сигнал представляет собой последовательность отсчетных значений сигнала в точках соответственно.

Дискретизирующая последовательность.

На практике, как правило, отсчеты дискретных сигналов берут во времени через равный промежуток А, называемый интервалом (шагом) дискретизации:

Операцию дискретизации, т. е. переход от аналогового сигнала к дискретному сигналу , можно описать, введя в рассмотрение обобщенную функцию

называемую дискретизирующей последовательностью.

Очевидно, дискретный сигнал представляет собой функционал (см. гл. 1), определенный на множестве всевозможных аналоговых сигналов и равный скалярному произведению функции

Формула (15.3) указывает путь практической реализации устройства для дискретизации аналогового сигнала. Работа дискретизатора основана на операции стробирования (см. гл. 12) - перемножения обрабатываемого сигнала и «гребенчатой» функции Поскольку длительность отдельных импульсов, из которых складывается дискретизирующая последовательность, равна нулю, на выходе идеального дискретизатора в равноотстоящие моменты времени возникают отсчетные значения обрабатываемого аналогового сигнала.

Рис. 15.1. Структурная схема импульсного модулятора

Модулированные импульсные последовательности.

Дискретные сигналы начали использовать еще в 40-х годах при создании радиотехнических систем с импульсной модуляцией. Этот вид модуляции отличается тем, что в качестве «несущего колебания» вместо гармонического сигнала служит периодическая последовательность коротких импульсов.

Импульсный модулятор (рис. 15.1) представляет собой устройство с двумя входами, на один из которых подается исходный аналоговый сигнал На другой вход поступают короткие синхронизирующие импульсы с интервалом повторения . Модулятор построен таким образом, что в момент подачн каждого синхронизирующего импульса происходит измерение мгновенного значения сигнала х(t). На выходе модулятора возникает последовательность импульсов, каждый из которых имеет площадь, пропорциональную соответствующему отсчетному значению аналогового сигнала.

Сигнал на выходе импульсного модулятора будем называть модулированной импульсной последовательностью (МИП). Естественно, что дискретный сигнал является математической моделью МИП.

Отметим, что с принципиальной точки зрения характер импульсов, из которых складывается МИП, безразличен. В частности, эти импульсы могут иметь одинаковую длительность, в то время как их амплитуда пропорциональна отсчетным значениям дискретизируемого сигнала. Такой вид преобразования непрерывного сигнала получил название амплитудно-импульсной модуляции (АИМ). Возможен другой способ - широтно-импульсная модуляция (ШИМ). Здесь амплитуды импульсов на выходе модулятора постоянны, а их длительность (ширина) пропорциональна мгновенным значениям аналогового колебания.

Выбор того или иного способа импульсной модуляции диктуется рядом технических соображений, удобством схемной реализации, а также характерными особенностями передаваемых сигналов. Например, нецелесообразно использовать АИМ в случае, если полезный сигнал изменяется в очень широких пределах, т. е., как часто говорят, имеет широкий динамический диапазон. Для неискаженной передачи такого сигнала требуется передатчик со строго линейной амплитудной характеристикой. Создание такого передатчика - самостоятельная, технически сложная проблема. Системы ШИМ не предъявляют требований к линейности амплитудных характеристик передающего устройства. Однако их схемная реализация может оказаться несколько сложнее по сравнению с системами АИМ.

Математическую модель идеальной МИП можно получить следующим образом. Рассмотрим формулу динамического представления сигнала (см. гл. 1):

Поскольку МИП определена лишь в точках интегрирование в формуле (15.4) следует заменить суммированием по индексу к. Роль дифференциала будет играть интервал (шаг) дискретизации . Тогда математическая модель модулированной импульсной последовательности, образованной бесконечно короткими импульсами, окажется заданной выражением

где - выборочные значения аналогового сигнала.

Спектральная плотность модулированной импульсной последовательности.

Исследуем спектр сигнала, возникающего на выходе идеального импульсного модулятора и описываемого выражением (15.5).

Заметим, что сигнал вида МИП с точностью до коэффициента пропорциональности А равен произведению функции и дискретизирующей последовательности

Известно, что спектр произведения двух сигналов пропорционален свертке их спектральных плотностей (см. гл. 2). Поэтому бели известны законы соответствия сигналов и спектров:

то спектральная плотность МИП-сигнала

Чтобы найти спектральную плотность дискретизирующей последовательности, разложим периодическую функцию в комплексный ряд Фурье:

Коэффициенты этого ряда

Обратившись к формуле (2.44), получаем

т. е. спектр дискретизирующей последовательности состоит из бесконечной совокупности дельта-импульсов в частотной области. Данная спектральная плотность является периодической функцией с периодом

Наконец, подставив формулу (15.8) в (15.7) и изменив порядок следования операций интегрирования и суммирования, находим

Итак, спектр сигнала, полученного в результате идеальной дискретизации бесконечно короткими стробирующими импульсами, представляет собой сумму бесконечного числа «копий» спектра исходного аналогового сигнала. Копии располагаются на оси частот через одинаковые интервалы равные значению угловой частоты первой гармоники дискретизирующей импульсной последовательности (рис. 15.2, а, б).

Рис. 15.2. Спектральная плотность модулированной импульсной последовательности при различных значениях верхней граничной частоты: а - верхняя граничная частота велика; б - верхняя граничная частота мала (цветом обозначена спектральная плотность исходного сигнала, подвергнутого дискретизации)

Восстановление непрерывного сигнала по модулированной импульсной последовательности.

В дальнейшем будем полагать, что вещественный сигнал имеет низкочастотный спектр, симметричный относительно точки и ограниченный верхней граничной частотой Из рис. 15.2, б следует, что если , то отдельные копии спектра не накладываются друг на друга.

Поэтому аналоговый сигнал с таким спектром, подвергнутый импульсной дискретизации, может быть совершенно точно восстановлен с помощью идеального ФНЧ, на вход которого подана импульсная последовательность вида (15.5). При этом наибольший допустимый интервал дискретизации , что согласуется с теоремой Котельникова.

Действительно, пусть фильтр, восстанавливающий непрерывный сигнал, имеет частотный коэффициент передачи

Импульсная характеристика этого фильтра описывается выражением

Принимая во внимание, что МИП-сигнал вида (15.5) есть взвешенная сумма дельта-импульсов, находим отклик на выходе восстанавливающего фильтра

Данный сигнал с точностью до масштабного коэффициента повторяет исходное колебание с ограниченным спектром.

Идеальный ФНЧ физически нереализуем и может служить лишь теоретической моделью для объяснения принципа восстановления сообщения по его дискретным импульсным отсчетам. Реальный фильтр нижних частот имеет АЧХ, которая либо охватывает несколько лепестков спектральной диаграммы МИП, либо, концентрируясь вблизи нулевой частоты, оказывается значительно уже центрального лепестка спектра. Для примера на рис. 15.3, б-е приведены кривые, характеризующие сигнал на выходе RC-цепи, используемой в качестве восстанавливающего фильтра (рис. 15.3, а).

Рис. 15.3. Восстановление непрерывного сигнала по его импульсным отсчетам с помощью RC-цепи: а - схема фильтра; б - дискретный входной сигнал; в, г - АЧХ фильтра и сигнал на его выходе в случае ; д, е - то же, для случая

Из приведенных графиков видно, что реальный восстанавливающий фильтр неизбежно искажает входное колебание.

Заметим, что для восстановления сигнала можно использовать как центральный, так и любой боковой лепесток спектральной диаграммы.

Определение спектра аналогового сигнала по совокупности отсчетов.

Располагая МИП-представлением, можно не только восстановить аналоговый сигнал, но и найти его спектральную плотность. Для этого следует прежде всего непосредственно связать спектральную плотность МИП с отсчетными значениями:

(15.13)

Данная формула исчерпывающе решает поставленную задачу при указанном выше ограничении.

Существуют аналоговые, дискретные и цифровые сигналы. Аналоговые сигналы описываются непрерывной во времени функцией , которая может принимать любые значения в определенном интервале; дискретные сигналы представляют собой последовательности или отсчеты функции , взятые в определенные дискретные моменты времени nT ; цифровыми являются сигналы, которые в дискретные моменты времени nT принимают конечные дискретные значения – уровни квантования, которые затем кодируются двоичными числами. Если в цепь микрофона (рис. 1), где ток является непрерывной функцией времени, встроить ключ и периодически на короткие мгновения замыкать его, то ток в цепи будет иметь вид узких импульсов с амплитудами, повторяющими форму непрерывного сигнала. Последовательность этих импульсов, которые называют отсчетами непрерывного сигнала, и представляет собой, не что иное, как дискретный сигнал.
Рис. 1 В отличие от непрерывного сигнала дискретный сигнал можно обозначить . Однако, чаще его обозначают , заменяя непрерывное время t дискретными моментами nT , следующими строго через интервал T . Используются и более краткие обозначения: и . Причем, во всех этих записях n – целое число, принимающее как положительные, так и отрицательные значения. Так, на рис. 1 при n < 0 дискретный сигнал . При n = 0 значение равно значению сигнала в момент времени t = 0. При n > 0 отсчеты повторяют форму сигнала , т.к. их амплитуды равны значениям непрерывного сигнала в моменты времени nT . Рис. 2 Дискретные сигналы можно задавать графиками, как это показано на рис. 1, формулами, например, , в виде таблиц дискретных значений или в виде комбинации этих способов. Рассмотрим примеры некоторых дискретных сигналов, полученных из типовых аналоговых сигналов. Все средства связи, которые на сегодняшний день используются в мире, основаны на передаче электрического тока из одной точки в другую. Как работа в сети Internet, так и разговор с другом по телефону обеспечиваются за счет постоянного протекания тока по оборудованию телекоммуникационной инфраструктуры. По каналам связи могут передаваться различные типы сигналов. В этой книге рассматриваются два основных типа сигналов: аналоговые и цифровые. Некоторые виды физической передающей среды, как, например, волоконно-оптический кабель, используются для передачи данных в сети провайдера в виде световых сигналов. Принципы цифровой передачи для такой среды такие же, однако для ее организации используются лазеры и светодиоды. Аналоговые и цифровые сигналы коренным образом отличаются друг от друга. Условно можно сказать, что они находятся на разных концах одного и того же спектра. Из-за таких существенных различий между двумя типами сигналов для организации "моста" между ними приходится использовать промежуточные устройства, наподобие цифро-аналоговых преобразователей (они рассматриваются ниже в текущей главе). Основное различие между аналоговыми и цифровыми сигналами заключается в самой структуре сигнального потока. Аналоговые сигналы представляют собой непрерывный поток, характеризующийся изменениями частоты и амплитуды. Это означает, что форма аналогового сигнала обычно похожа на синусоиду (т.е. гармоническую волну), представленную на рис. 1.2. Зачастую на иллюстрациях, изображающих гармоническую волну, весь сигнал характеризуется одним и тем же соотношением частоты и амплитуды, однако при графическом представлении сложной волны видно, что такое соотношение изменяется в зависимости от частоты.
Цифровым сигналам соответствуют дискретные электрические значения, которые передаются индивидуально по некоторой физической передающей среде. В отличие от аналоговых сигналов, в которых количество возможных значений амплитуды почти бесконечно, для цифровых сигналов она может принимать одно из двух (или четырех) различных значений - как положительных, так и отрицательных. Цифровые сигналы передаются в виде единиц и нулей, которые обычно называют двоичными. Более подробно потоки цифровых сигналов рассматриваются в главе 3, "Аналого-цифровое преобразование". Как и в любой другой технологии, для описания аналоговых сигналов используются базовые концепции и собственная терминология. Непрерывные аналоговые сигналы имеют три основные характеристики: амплитуду; длину волны; частоту.

Человек ежедневно разговаривает по телефону, смотрит передачи различных телеканалов, слушает музыку, бороздит по просторам интернета. Все средства связи и иная информационная среда основываются на передаче сигналов различных типов. Многие задаются вопросами о том, чем отличается аналоговая информация от других видов данных, что такое цифровой сигнал. Ответ на них можно получить, разобравшись в определении различных электросигналов, изучив их принципиальное отличие между собой.

Аналоговый сигнал

Аналоговый сигнал (континуальный) – естественный инфосигнал, имеющий некоторое число параметров, которые описываются временной функцией и беспрерывным множеством всевозможных значений.

Человеческие органы чувств улавливают всю информацию из окружающей среды в аналоговом виде. Например, если человек видит рядом проезжающий грузовик, то его движение наблюдается и изменяется непрерывно. Если бы мозг получал информацию о передвижении автотранспорта раз в 15 секунд, то люди всегда бы попадали под его колеса. Человек оценивает расстояние моментально, и в каждый временной момент оно определено и различно.

То же самое происходит и с иной информацией – люди слышат звук и оценивают его громкость, дают оценку качеству видеосигнала и тому подобное. Соответственно, все виды данных имеют аналоговую природу и постоянно изменяются.

На заметку. Аналоговый и цифровой сигнал учувствует в передаче речи собеседников, которые общаются по телефону, сеть интернет работает на основе обмена этих каналов сигналов по сетевому кабелю. Такого рода сигналы имеют электрическую природу.

Аналоговый сигнал описывается математической временной функцией, похожей на синусоиду. Если совершить замеры, к примеру, температуры воды, периодически нагревая и охлаждая ее, то на графике функции будет отображена беспрерывная линия, которая отражает ее значение в каждый временной промежуток.

Во избежание помех такие сигналы требуется усиливать посредством специальных средств и приборов. Если уровень помех сигнала высокий, то и усилить его нужно сильнее. Этот процесс сопровождается большими затратами энергии. Усиленный радиосигнал, например, нередко сам может стать помехой для иных каналов связи.

Интересно знать. Аналоговые сигналы ранее применялись в любых видах связи. Однако сейчас он повсеместно вытесняется или уже вытеснен (мобильная связь и интернет) более совершенными цифровыми сигналами.

Аналоговое и цифровое телевидение пока сосуществуют вместе, но цифровой тип телерадиовещания с большой скоростью сменяет аналоговый способ передачи данных из-за своих существенных преимуществ.

Для описания этого типа инфосигнала применяются три основных параметра:

  • частота;
  • протяженность волны;
  • амплитуда.

Недостатки аналогового сигнала

Аналоговый сигнал имеют нижеследующие свойства, в которых прослеживается их разница от цифрового варианта:

  1. Этот вид сигналов характеризуется избыточностью. То есть аналоговая информация в них не отфильтрована – несут много лишних информационных данных. Однако пропустить информацию через фильтр возможно, зная дополнительные параметры и природу сигнала, например, частотным методом;
  2. Безопасность. Он практически полностью беспомощен перед неавторизированными вторжениями извне;
  3. Абсолютная беспомощность перед разнородными помехами. Если на канал передачи данных наложена любая помеха, то она будет в неизменном виде передана сигнальным приемником;
  4. Отсутствие конкретной дифференциации уровней дискретизации – качество и количество передаваемой информации ничем не ограничивается.

Вышеприведенные свойства являются недостатками аналогового способа передачи данных, на основании которых можно считать его полностью себя изжившим.

Цифровой и дискретный сигналы

Цифровые сигналы – искусственные инфосигналы, представленные в виде очередных цифровых значений, которые описывают конкретные параметры предаваемой информации.

Для информации. Сейчас преимущественно применяется простой в кодировании битовый поток – двоичный цифровой сигнал. Именно такой тип может использоваться в двоичной электронике.

Различие цифрового типа передачи данных от аналогового варианта состоит в том, что такой сигнал имеет конкретное число значений. В случае с битовым потоком их два: «0» и «1».

Переход от нулевого значения к максимальному в цифровом сигнале производится резко, что позволяет принимающему оборудованию более четко считывать его. При появлении определенных шумов и помех приемнику будет легче декодировать цифровой электросигнал, чем при аналоговой информационной передаче.

Однако цифровые сигналы отличаются от аналогового варианта одним недостатком: при высоком уровне помех их восстановить невозможно, а из континуального сигнала присутствует возможность извлечения информации. Примером этому может послужить разговор по телефону двух человек, в процессе которого могут пропадать целые слова и даже словосочетания одного из собеседников.

Этот эффект в цифровой среде называется эффектом обрыва, который можно локализовать уменьшением протяженности линии связи или установкой повторителя, какой полностью копирует изначальный вид сигнала и передает его дальше.

Аналоговая информация может передаваться по цифровым каналам, пройдя процесс оцифровки специальными устройствами. Такой процесс именуется аналогово-цифровым преобразованием (АЦП). Данный процесс может быть и обратным – цифро-аналоговое преобразование (ЦАП). Примером устройства ЦАП может послужить приемник цифрового ТВ.

Цифровые системы также отличает возможность шифрования и кодирования данных, которая стала важной причиной оцифровывания мобильной связи и сети интернет.

Дискретный сигнал

Существует и третий тип информации – дискретная. Сигнал такого рода является прерывистым и меняется за момент времени, принимая любое из возможных (предписанных заранее) значений.

Дискретная передача информации характеризуется тем, что изменения происходят по трем сценариям:

  1. Электросигнал меняется только по времени, оставаясь непрерывным (неизменным) по величине;
  2. Он изменяется только по уровню величины, оставаясь непрерывным по временному параметру;
  3. Также он может изменяться одномоментно и по величине, и по времени.

Дискретность нашла применение при пакетной передаче большого объема данных в вычислительных системах.