Язык программирования Python для начинающих. Язык программирования Python: основы, особенности и примеры

Все ранее рассматриваемые программы имели линейную структуру: все инструкции выполнялись последовательно одна за одной, каждая записанная инструкция обязательно выполняется.

Допустим мы хотим по данному числу x определить его абсолютную величину (модуль). Программа должна напечатать значение переменной x, если x>0 или же величину -x в противном случае. Линейная структура программы нарушается: в зависимости от справедливости условия x>0 должна быть выведена одна или другая величина. Соответствующий фрагмент программы на Питоне имеет вид:

273 x = int(input()) if x > 0: print(x) else: print(-x)

В этой программе используется условная инструкция if (если). После слова if указывается проверяемое условие (x > 0) , завершающееся двоеточием. После этого идет блок (последовательность) инструкций, который будет выполнен, если условие истинно, в нашем примере это вывод на экран величины x . Затем идет слово else (иначе), также завершающееся двоеточием, и блок инструкций, который будет выполнен, если проверяемое условие неверно, в данном случае будет выведено значение -x .

Итак, условная инструкция в Питоне имеет следующий синтаксис:

If Условие: Блок инструкций 1 else: Блок инструкций 2

Блок инструкций 1 будет выполнен, если Условие истинно. Если Условие ложно, будет выполнен Блок инструкций 2 .

В условной инструкции может отсутствовать слово else и последующий блок. Такая инструкция называется неполным ветвлением. Например, если дано число x и мы хотим заменить его на абсолютную величину x , то это можно сделать следующим образом:

273 x = int(input()) if x < 0: x = -x print(x)

В этом примере переменной x будет присвоено значение -x , но только в том случае, когда x<0 . А вот инструкция print(x) будет выполнена всегда, независимо от проверяемого условия.

Для выделения блока инструкций, относящихся к инструкции if или else в языке Питон используются отступы. Все инструкции, которые относятся к одному блоку, должны иметь равную величину отступа, то есть одинаковое число пробелов в начале строки. Рекомендуется использовать отступ в 4 пробела и не рекомедуется использовать в качестве отступа символ табуляции.

Это одно из существенных отличий синтаксиса Питона от синтаксиса большинства языков, в которых блоки выделяются специальными словами, например, нц... кц в Кумире, begin... end в Паскале или фигурными скобками в Си.

2. Вложенные условные инструкции

Внутри условных инструкций можно использовать любые инструкции языка Питон, в том числе и условную инструкцию. Получаем вложенное ветвление - после одной развилки в ходе исполнения программы появляется другая развилка. При этом вложенные блоки имеют больший размер отступа (например, 8 пробелов). Покажем это на примере программы, которая по данным ненулевым числам x и y определяет, в какой из четвертей координатной плоскости находится точка (x,y):

2 -3 x = int(input()) y = int(input()) if x > 0: if y > 0: # x > 0, y > 0 print("Первая четверть") else: # x > 0, y < 0 print("Четвертая четверть") else: if y > 0: # x < 0, y > 0 print("Вторая четверть") else: # x < 0, y < 0 print("Третья четверть")

В этом примере мы использовали комментарии - текст, который интерпретатор игнорирует. Комментариями в Питоне является символ # и весь текст после этого символа до конца строки.

3. Операторы сравнения

Как правило, в качестве проверяемого условия используется результат вычисления одного из следующих операторов сравнения: < Меньше — условие верно, если первый операнд меньше второго.
> Больше — условие верно, если первый операнд больше второго.
<= Меньше или равно.
>= Больше или равно.
== Равенство. Условие верно, если два операнда равны.
!= Неравенство. Условие верно, если два операнда неравны.

Например, условие (x * x < 1000) означает “значение x * x меньше 1000”, а условие (2 * x != y) означает “удвоенное значение переменной x не равно значению переменной y ”.

Операторы сравнения в Питоне можно объединять в цепочки (в отличии от большинства других языков программирования, где для этого нужно использовать логические связки), например, a == b == c или 1 <= x <= 10 .

4. Тип данных bool

Операторы сравнения возвращают значения специального логического типа bool . Значения логического типа могут принимать одно из двух значений: True (истина) или False (ложь). Если преобразовать логическое True к типу int , то получится 1, а преобразование False даст 0. При обратном преобразовании число 0 преобразуется в False , а любое ненулевое число в True . При преобразовании str в bool пустая строка преобразовывается в False , а любая непустая строка в True .

4.1. Логические операторы

Иногда нужно проверить одновременно не одно, а несколько условий. Например, проверить, является ли данное число четным можно при помощи условия (n % 2 == 0) (остаток от деления n на 2 равен 0), а если необходимо проверить, что два данных целых числа n и m являются четными, необходимо проверить справедливость обоих условий: n % 2 == 0 и m % 2 == 0 , для чего их необходимо объединить при помощи оператора and (логическое И): n % 2 == 0 and m % 2 == 0 .

В Питоне существуют стандартные логические операторы: логическое И, логическое ИЛИ, логическое отрицание.

Логическое И является бинарным оператором (то есть оператором с двумя операндами: левым и правым) и имеет вид and . Оператор and возвращает True тогда и только тогда, когда оба его операнда имеют значение True .

Логическое ИЛИ является бинарным оператором и возвращает True тогда и только тогда, когда хотя бы один операнд равен True . Оператор “логическое ИЛИ” имеет вид or .

Логическое НЕ (отрицание) является унарным (то есть с одним операндом) оператором и имеет вид not , за которым следует единственный операнд. Логическое НЕ возвращает True , если операнд равен False и наоборот.

Пример. Проверим, что хотя бы одно из чисел a или b оканчивается на 0:

15 40 a = int(input()) b = int(input()) if a % 10 == 0 or b % 10 == 0: print("YES") else: print("NO")

Проверим, что число a — положительное, а b — неотрицательное:

If a > 0 and not (b < 0):

Или можно вместо not (b < 0) записать (b >= 0) .

5. Каскадные условные инструкции

Пример программы, определяющий четверть координатной плоскости, можно переписать используя “каскадную“ последовательность операцией if... elif... else:

5 7 x = int(input()) y = int(input()) if x > 0 and y > 0: print("Первая четверть") elif x > 0 and y < 0: print("Четвертая четверть") elif y > 0: print("Вторая четверть") else: print("Третья четверть")

В такой конструкции условия if , ..., elif проверяются по очереди, выполняется блок, соответствующий первому из истинных условий. Если все проверяемые условия ложны, то выполняется блок else , если он присутствует.

О Python (лучше произносить "питон", хотя некоторые говорят "пайтон") - предмете данного изучения, лучше всего говорит создатель этого языка программирования, голландец Гвидо ван Россум:

"Python - интерпретируемый, объектно-ориентированный высокоуровневый язык программирования с динамической семантикой. Встроенные высокоуровневые структуры данных в сочетании с динамической типизацией и связыванием делают язык привлекательным для быстрой разработки приложений ( RAD , Rapid Application Development ). Кроме того, его можно использовать в качестве сценарного языка для связи программных компонентов. Синтаксис Python прост в изучении, в нем придается особое значение читаемости кода, а это сокращает затраты на сопровождение программных продуктов. Python поддерживает модули и пакеты, поощряя модульность и повторное использование кода. Интерпретатор Python и большая стандартная библиотека доступны бесплатно в виде исходных и исполняемых кодов для всех основных платформ и могут свободно распространяться."

В процессе изучения будет раскрыт смысл этого определения, а сейчас достаточно знать, что Python - это универсальный язык программирования. Он имеет свои преимущества и недостатки, а также сферы применения. В поставку Python входит обширная стандартная библиотека для решения широкого круга задач. В Интернете доступны качественные библиотеки для Python по различным предметным областям: средства обработки текстов и технологии Интернет, обработка изображений, инструменты для создания приложений, механизмы доступа к базам данных, пакеты для научных вычислений, библиотеки построения графического интерфейса и т.п. Кроме того, Python имеет достаточно простые средства для интеграции с языками C, C++ (и Java) как путем встраивания (embedding) интерпретатора в программы на этих языках, так и наоборот, посредством использования библиотек, написанных на этих языках, в Python-программах. Язык Python поддерживает несколько парадигм программирования: императивное (процедурный, структурный, модульный подходы), объектно-ориентированное и функциональное программирование.

Можно считать, что Python - это целая технология для создания программных продуктов (и их прототипов). Она доступна почти на всех современных платформах (как 32-битных, так и на 64-битных) с компилятором C и на платформе Java.

Может показаться, что, в программной индустрии нет места для чего-то другого кроме C/C++, Java, Visual Basic, C#. Однако это не так. Возможно, благодаря данному курсу лекций и практических занятий у Python появятся новые приверженцы, для которых он станет незаменимым инструментом.

Как описать язык?

В этой лекции не ставится цели систематически описать Python: для этого существует оригинальное справочное руководство. Здесь предлагается рассмотреть язык одновременно в нескольких аспектах, что достигается набором примеров, которые позволят быстрее приобщиться к реальному программированию, чем в случае строгого академического подхода.

Однако стоит обратить внимание на правильный подход к описанию языка. Создание программы - это всегда коммуникация, в которой программист передает компьютеру информацию, необходимую для выполнения последним действий. То, как эти действия понимает программист (то есть "смысл"), можно назвать семантикой . Средством передачи этого смысла является синтаксис языка программирования. Ну а то, что делает интерпретатор на основании переданного, обычно называют прагматикой . При написании программы очень важно, чтобы в этой цепочке не возникало сбоев.

Синтаксис - полностью формализованная часть: его можно описать на формальном языке синтаксических диаграмм (что и делается в справочных руководствах). Выражением прагматики является сам интерпретатор языка. Именно он читает записанное в соответствии с синтаксисом "послание" и превращает его в действия по заложенному в нем алгоритму. Неформальным компонентом остается только семантика. Именно в переводе смысла в формальное описание и кроется самая большая сложность программирования. Синтаксис языка Python обладает мощными средствами, которые помогают приблизить понимание проблемы программистом к ее "пониманию" интерпретатором. О внутреннем устройстве Python будет говориться в одной из завершающих лекций.

История языка Python

Создание Python было начато Гвидо ван Россумом (Guido van Rossum) в 1991 году, когда он работал над распределенной ОС Амеба. Ему требовался расширяемый язык, который бы обеспечил поддержку системных вызовов. За основу были взяты ABC и Модула-3. В качестве названия он выбрал Python в честь комедийных серий BBC "Летающий цирк Монти-Пайтона", а вовсе не по названию змеи. С тех пор Python развивался при поддержке тех организаций, в которых Гвидо работал. Особенно активно язык совершенствуется в настоящее время, когда над ним работает не только команда создателей, но и целое сообщество программистов со всего мира. И все-таки последнее слово о направлении развития языка остается за Гвидо ван Россумом.

В которой, в сжатой форме,
рассказывают об основах языка Python. Я предлагаю вам перевод этой статьи. Перевод не дословный. Я постарался подробнее объяснить некоторые моменты, которые могут быть непонятны.

Если вы собрались изучать язык Python, но не можете найти подходящего руководства, то эта
статья вам очень пригодится! За короткое время, вы сможете познакомиться с
основами языка Python. Хотя эта статья часто опирается
на то, что вы уже имеете опыт программирования, но, я надеюсь, даже новичкам
этот материал будет полезен. Внимательно прочитайте каждый параграф. В связи с
сжатостью материала, некоторые темы рассмотрены поверхностно, но содержат весь
необходимый метриал.

Основные свойства

Python не требует явного объявления переменных, является регистро-зависим (переменная var не эквивалентна переменной Var или VAR - это три разные переменные) объектно-ориентированным языком.

Синтаксис

Во первых стоит отметить интересную особенность Python. Он не содержит операторных скобок (begin..end в pascal или {..}в Си), вместо этого блоки выделяются отступами : пробелами или табуляцией, а вход в блок из операторов осуществляется двоеточием. Однострочные комментарии начинаются со знака фунта «#», многострочные - начинаются и заканчиваются тремя двойными кавычками «"""».
Чтобы присвоить значение пременной используется знак «=», а для сравнения -
«==». Для увеличения значения переменной, или добавления к строке используется оператор «+=», а для уменьшения - «-=». Все эти операции могут взаимодействовать с большинством типов, в том числе со строками. Например


>>> myvar = 3
>>> myvar += 2
>>> myvar -= 1
""«Это многострочный комментарий
Строки заключенные в три двойные кавычки игнорируются»""

>>> mystring = «Hello»
>>> mystring += " world."
>>> print mystring
Hello world.
# Следующая строка меняет
значения переменных местами. (Всего одна строка!)

>>> myvar, mystring = mystring, myvar

Структуры данных

Python содержит такие структуры данных как списки (lists), кортежи (tuples) и словари (dictionaries ). Списки - похожи на одномерные массивы (но вы можете использовать Список включающий списки - многомерный массив), кортежи - неизменяемые списки, словари - тоже списки, но индексы могут быть любого типа, а не только числовыми. "Массивы" в Python могут содержать данные любого типа, то есть в одном массиве может могут находиться числовые, строковые и другие типы данных. Массивы начинаются с индекса 0, а последний элемент можно получить по индексу -1 Вы можете присваивать переменным функции и использовать их соответственно.


>>> sample = , («a» , «tuple» )] #Список состоит из целого числа, другого списка и кортежа
>>> #Этот список содержит строку, целое и дробное число
>>> mylist = «List item 1 again» #Изменяем первый (нулевой) элемент листа mylist
>>> mylist[-1 ] = 3 .14 #Изменяем последний элемент листа
>>> mydict = {«Key 1» : «Value 1» , 2 : 3 , «pi» : 3 .14 } #Создаем словарь, с числовыми и целочисленным индексами
>>> mydict[«pi» ] = 3 .15 #Изменяем элемент словаря под индексом «pi».
>>> mytuple = (1 , 2 , 3 ) #Задаем кортеж
>>> myfunction = len #Python позволяет таким образом объявлять синонимы функции
>>> print myfunction(list )
3

Вы можете использовать часть массива, задавая первый и последний индекс через двоеточие «:». В таком случае вы получите часть массива, от первого индекса до второго не включительно. Если не указан первый элемент, то отсчет начинается с начала массива, а если не указан последний - то масив считывается до последнего элемента. Отрицательные значения определяют положение элемента с конца. Например:


>>> mylist = [«List item 1» , 2 , 3 .14 ]
>>> print mylist[:] #Считываются все элементы массива
["List item 1" , 2 , 3 .1400000000000001 ]
>>> print mylist #Считываются нулевой и первый элемент массива.
["List item 1" , 2 ]
>>> print mylist[-3 :-1 ] #Считываются элементы от нулевого (-3) до второго (-1) (не включительно)
["List item 1" , 2 ]
>>> print mylist #Считываются элементы от первого, до последнего

Строки

Строки в Python обособляются кавычками двойными «"» или одинарными «"» . Внутри двойных ковычек могут присутствовать одинарные или наоборот. К примеру строка «Он сказал "привет"!» будет выведена на экран как «Он сказал "привет"!». Если нужно использовать строку из несколько строчек, то эту строку надо начинать и заканчивать тремя двойными кавычками «"""». Вы можете подставить в шаблон строки элементы из кортежа или словаря. Знак процента «%» между строкой и кортежем, заменяет в строке символы «%s» на элемент кортежа. Словари позволяют вставлять в строку элемент под заданным индексом. Для этого надо использовать в строке конструкцию «%(индекс)s». В этом случае вместо «%(индекс)s» будет подставлено значение словаря под заданным индексом.


>>>print «Name: %s\nNumber: %s\nString: %s» % (myclass .name, 3 , 3 * "-" )
Name: Poromenos
Number: 3
String: -
strString = ""«Этот текст расположен
на нескольких строках»""

>>> print «This %(verb)s a %(noun)s.» % {«noun» : «test» , «verb» : «is» }
This is a test.

Операторы

Операторы while, if , for составляют операторы перемещения. Здесь нет аналога оператора select, так что придется обходиться if . В операторе for происходит сравнение переменной и списка . Чтобы получить список цифр до числа - используйте функцию range(). Вот пример использования операторов


rangelist = range (10 ) #Получаем список из десяти цифр (от 0 до 9)
>>> print rangelist
for number in rangelist: #Пока переменная number (которая каждый раз увеличивается на единицу) входит в список…
# Проверяем входит ли переменная
# numbers в кортеж чисел (3 , 4 , 7 , 9 )
if number in (3 , 4 , 7 , 9 ): #Если переменная number входит в кортеж (3, 4, 7, 9)...
# Операция «break » обеспечивает
# выход из цикла в любой момент
break
else :
# «continue » осуществляет «прокрутку»
# цикла. Здесь это не требуется, так как после этой операции
# в любом случае программа переходит опять к обработке цикла
continue
else :
# «else » указывать необязательно. Условие выполняется
# если цикл не был прерван при помощи «break ».
pass # Ничего не делать

if rangelist == 2 :
print «The second item (lists are 0-based) is 2»
elif rangelist == 3 :
print «The second item (lists are 0-based) is 3»
else :
print «Dunno»

while rangelist == 1 :
pass

Функции

Для объявления функции служит ключевое слово «def » . Аргументы функции задаются в скобках после названия функции. Можно задавать необязательные аргументы, присваивая им значение по умолчанию. Функции могут возвращать кортежи, в таком случае надо писать возвращаемые значения через запятую. Ключевое слово «lambda » служит для объявления элементарных функций.


# arg2 и arg3 - необязательые аргументы, принимают значение объявленное по умолчни,
# если не задать им другое значение при вызове функци.
def myfunction(arg1, arg2 = 100 , arg3 = «test» ):
return arg3, arg2, arg1
#Функция вызывается со значением первого аргумента - "Argument 1", второго - по умолчанию, и третьего - "Named argument" .
>>>ret1, ret2, ret3 = myfunction(«Argument 1» , arg3 = «Named argument» )
# ret1, ret2 и ret3 принимают значения "Named argument", 100, "Argument 1" соответственно
>>> print ret1, ret2, ret3
Named argument 100 Argument 1

# Следующая запись эквивалентна def f(x): return x + 1
functionvar = lambda x: x + 1
>>> print functionvar(1 )
2

Классы

Язык Python ограничен в множественном наследовании в классах. Внутренние переменные и внутренние методы классов начинаются с двух знаков нижнего подчеркивания «__» (например «__myprivatevar»). Мы можем также присвоить значение переменной класса извне. Пример:


class Myclass :
common = 10
def __init__(self ):
self .myvariable = 3
def myfunction(self , arg1, arg2):
return self .myvariable

# Здесь мы объявили класс Myclass . Функция __init__ вызывается автоматически при инициализации классов.
>>> classinstance = Myclass () # Мы инициализировали класс и переменная myvariable приобрела значение 3 как заявлено в методе инициализации
>>> #Метод myfunction класса Myclass возвращает значение переменной myvariable
3
# Переменная common объявлена во всех классах
>>> classinstance2 = Myclass ()
>>> classinstance.common
10
>>> classinstance2.common
10
# Поэтому, если мы изменим ее значение в классе Myclass изменятся
# и ее значения в объектах, инициализированных классом Myclass
>>> Myclass.common = 30
>>> classinstance.common
30
>>> classinstance2.common
30
# А здесь мы не изменяем переменную класса. Вместо этого
# мы объявляем оную в объекте и присваиваем ей новое значение
>>> classinstance.common = 10
>>> classinstance.common
10
>>> classinstance2.common
30
>>> Myclass.common = 50
# Теперь изменение переменной класса не коснется
# переменных объектов этого класса
>>> classinstance.common
10
>>> classinstance2.common
50

# Следующий класс является наследником класса Myclass
# наследуя его свойства и методы, ктому же класс может
# наследоваться из нескольких классов, в этом случае запись
# такая: class Otherclass(Myclass1, Myclass2, MyclassN)
class Otherclass(Myclass):
def __init__(self , arg1):
self .myvariable = 3
print arg1

>>> classinstance = Otherclass(«hello» )
hello
>>> classinstance.myfunction(1 , 2 )
3
# Этот класс не имеет совйтсва test, но мы можем
# объявить такую переменную для объекта. Причем
# tэта переменная будет членом только class instance.
>>> classinstance.test = 10
>>> classinstance.test
10

Исключения

Исключения в Python имеют структуру try -except [except ionname]:


def somefunction():
try :
# Деление на ноль вызывает ошибку
10 / 0
except ZeroDivisionError :
# Но программа не "Выполняет недопустимую операцию"
# А обрабатывает блок исключения соответствующий ошибке «ZeroDivisionError»
print «Oops, invalid.»

>>> fnexcept ()
Oops, invalid.

Импорт

Внешние библиотеки можно подключить процедурой «import », где - название подключаемой библиотеки. Вы так же можете использовать команду «from import », чтобы вы могли использовать функцию из библиотеки


import random #Импортируем библиотеку «random»
from time import clock #И заодно функцию «clock» из библиотеки «time»

Randomint = random .randint(1 , 100 )
>>> print randomint
64

Работа с файловой системой

Python имеет много встроенных библиотек. В этом примере мы попробуем сохранить в бинарном файле структуру списка, прочитать ее и сохраним строку в текстовом файле. Для преобразования структуры данных мы будем использовать стандартную библиотеку «pickle»


import pickle
mylist = [«This» , «is» , 4 , 13327 ]
# Откроем файл C:\binary.dat для записи. Символ «r»
# предотвращает замену специальных сиволов (таких как \n, \t, \b и др.).
myfile = file (r«C:\binary.dat» , «w» )
pickle .dump(mylist, myfile)
myfile.close()

Myfile = file (r«C:\text.txt» , «w» )
myfile.write(«This is a sample string» )
myfile.close()

Myfile = file (r«C:\text.txt» )
>>> print myfile.read()
"This is a sample string"
myfile.close()

# Открываем файл для чтения
myfile = file (r«C:\binary.dat» )
loadedlist = pickle .load(myfile)
myfile.close()
>>> print loadedlist
["This" , "is" , 4 , 13327 ]

Особенности

  • Условия могут комбинироваться. 1 < a < 3 выполняется тогда, когда а больше 1, но меньше 3.
  • Используйте операцию «del » чтобы очищать переменные или элементы массива .
  • Python предлагает большие возможности для работы со списками . Вы можете использовать операторы объявлении структуры списка. Оператор for позволяет задавать элементы списка в определенной последовательности, а if - позволяет выбирать элементы по условию.
>>> lst1 =
>>> lst2 =
>>> print
>>> print
# Оператор «any» возвращает true, если хотя
# бы одно из условий, входящих в него, выполняется.
>>> any(i % 3 for i in )
True
# Следующая процедура подсчитывает количество
# подходящих элементов в списке
>>> sum (1 for i in if i == 3 )
3
>>> del lst1
>>> print lst1
>>> del lst1
  • Глобальные переменные объявляются вне функций и могут быть прочитанны без каких либо объявлений. Но если вам необходимо изменить значение глобальной переменной из функции, то вам необходимо объявить ее в начале функции ключевым словом «global », если вы этого не сделаете, то Python объявит переменную, доступную только для этой функции.
number = 5

def myfunc():
# Выводит 5
print number

def anotherfunc():
# Это вызывает исключение, поскольку глобальная апеременная
# не была вызванна из функции. Python в этом случае создает
# одноименную переменную внутри этой функции и доступную
# только для операторов этой функции.
print number
number = 3

def yetanotherfunc():
global number
# И только из этой функции значение переменной изменяется.
number = 3

Эпилог

Разумеется в этой статье не описываются все возможности Python. Я надеюсь что эта статья поможет вам, если вы захотите и в дальнейшем изучать этот язык программирования.

Преимущества Python

  • Скорость выполнения программ написанных на Python очень высока. Это связанно с тем, что основные библиотеки Python
    написаны на C++ и выполнение задач занимает меньше времени, чем на других языках высокого уровня.
  • В связи с этим вы можете писать свои собственные модули для Python на C или C++
  • В стандартныx библиотеках Python вы можете найти средства для работы с электронной почтой, протоколами
    Интернета, FTP, HTTP, базами данных, и пр.
  • Скрипты, написанные при помощи Python выполняются на большинстве современных ОС. Такая переносимость обеспечивает Python применение в самых различных областях.
  • Python подходит для любых решений в области программирования, будь то офисные программы, вэб-приложения, GUI-приложения и т.д.
  • Над разработкой Python трудились тысячи энтузиастов со всего мира. Поддержкой современных технологий в стандартных библиотеках мы можем быть обязаны именно тому, что Python был открыт для всех желающих.

Теги:

  • Python
  • программирование
  • урок
Добавить метки

Синтаксис языка Python, как и сам язык, очень прост.

Синтаксис

    Конец строки является концом инструкции (точка с запятой не требуется).

    Вложенные инструкции объединяются в блоки по величине отступов. Отступ может быть любым, главное, чтобы в пределах одного вложенного блока отступ был одинаков. И про читаемость кода не забывайте. Отступ в 1 пробел, к примеру, не лучшее решение. Используйте 4 пробела (или знак табуляции, на худой конец).

    Вложенные инструкции в Python записываются в соответствии с одним и тем же шаблоном, когда основная инструкция завершается двоеточием, вслед за которым располагается вложенный блок кода, обычно с отступом под строкой основной инструкции.

    Основная инструкция : Вложенный блок инструкций

Несколько специальных случаев

  • Иногда возможно записать несколько инструкций в одной строке, разделяя их точкой с запятой:

    a = 1 ; b = 2 ; print (a , b )

    Но не делайте это слишком часто! Помните об удобочитаемости. А лучше вообще так не делайте.

    Допустимо записывать одну инструкцию в нескольких строках. Достаточно ее заключить в пару круглых, квадратных или фигурных скобок:

    if (a == 1 and b == 2 and c == 3 and d == 4 ): # Не забываем про двоеточие print ("spam" * 3 )
  • Тело составной инструкции может располагаться в той же строке, что и тело основной, если тело составной инструкции не содержит составных инструкций. Ну я думаю, вы поняли:). Давайте лучше пример приведу.

Перейдем к теоретически-практической части и начнем с того что из себя представляет интерпретатор.

Интерпретатор

Интерпретатор - это такая программа, которая выполняет другие программы. Когда вы пишете программу на языке Python, интерпретатор читает вашу программу и выполняет содержащиеся в ней инструкции. В действительности, интерпретатор - это слой программной логики между вашим программным кодом и аппаратурой вашего компьютера.

В зависимости от используемой версии Python сам интерпретатор может быть реализован как программа на языке C, как набор классов Java и в каком-либо другом виде, но об этом позже.

Запуск сценария в консоли

Давайте запустите в консоле интерпретатор:

Теперь он ожидает ввода комманд, введите туда следующую инструкцию:

Print "hello world!"

ура, наша первая программа! :D

Запуск сценария из файла

Создайте файл "test.py", с содержимым:

# вывести "hello world" print "hello world" # вывести 2 в 10 степени print 2 ** 10

и выполните этот файл:

# python /path/to/test.py

Динамическая компиляция и байт-код

После того, как запустите сценарий, сначала компилирует исходный текст сценария в байт-код для виртуальной машины. Компиляция - это просто этап перевода, а байт-код это низкоуровневое платформонезависимое представление исходного текста программы. Python транслирует каждую инструкцию в исходном коде сценария в группы инструкций байт-кода для повышения скорости выполнения программы, так как байт-код выполняется намного быстрее. После компиляции в байт-код, создается файл с расширением ".pyc" по соседству с исходным текстом сценария.

В следующий раз, когда вы запустите свою программу интерпретатор минует этап компиляции и отдаст на выполнение откомпилированный файл с расширением ".pyc". Однако, если вы изменили исходные тексты вашей программы, то снова произойдет этап компиляции в байт-код, так как Python автоматически следит за датой изменения файла с исходным кодом.

Если Python окажется не в состоянии записать файл с байт-кодом, например из-за отсутствия прав на запись на диск, то программа не пострадает, просто байт-код будет собран в памяти и при завершении программы оттуда удален.

Виртуальная машина Python (PVM)

После того как пройдет процесс компиляции, байт-код передается механизму под названием виртуальная машина , которая и выполнит инструкции из байт-кода. Виртуальная машина - это механизм времени выполнения, она всегда присутствует в составе системы Python и это крайняя составляющая системы под названием "Интерпретатор Python".

Для закрепления пройденного еще раз проясним ситуацию, компиляция в байт-код производится автоматически, а PVM - это всего лишь часть системы Python, которую вы установили вместе с интерпретатором и компилятором. Все происходит прозрачно для программиста, и вам не надо выполнять эти операции вручную.

Производительность

Программисты имеющие опыт работы с такими языками как C и C++, могут заметить некоторые отличия в модели выполнения Python. Первое - это отсутствие этапа сборки или вызова утилиты "make", программы на Python могут быть сразу же запущены после написания исходного кода. Второе отличие - байт-код не является двоичным машинным кодом (например инструкции для микропроцессора Intel), он является внутренним представлением программы на языке Python.

По этим причинам программы на Python не могут выполняться также быстро как на C/C++. Обход инструкций выполняет виртуальная система, а не микропроцессор, и чтобы выполнить байт-код, необходима дополнительная интерпретация, инструкции которой требуют большего времени, чем машинные инструкции микропроцессора.

Однако, с другой стороны, в отличии от традиционных интерпретаторов, например как в PHP, здесь присутствует дополнительный этап компиляции - интерпретатору не требуется каждый раз анализировать исходный текст программы.

В итоге, Python по производительности находится между традиционными компилирующими и традиционными интерпретирующими языками программирования.

Альтернативные реализации Python

То что было сказано выше о компиляторе и виртуальной машине, характерно для стандартной реализации Python, так называемой CPython (реализации на ANSI C). Однако также существует альтернативные реализации, такие как Jython и IronPython, о которых пойдет сейчас речь.

Это стандартная и оригинальная реализация Python, названа так, потому что написана на ANSI C. Именно ее мы установили, когда выбрали пакет ActivePython или установили из FreeBSD портов. Поскольку это эталонная реализация, она как правило работает быстрее, устойчивее и лучше , чем альтернативные реализации.

Jython

Первоначальное название JPython, основная цель - тесная интеграция с языком программирования Java . Реализация Jython состоит из Java-классов, которые выполняют компиляцию программного кода на языке Python в байт-код Java и затем передают полученный байт-код виртуальной машине Java (JVM) .

Цель Jython состоит в том, чтобы позволить программам на языке Python управлять Java-приложениями, точно также как CPython может управлять компонентами на языках C/C++. Эта реализация имеет беcшовную интеграцию с Java. Поскольку программный код на Python транслируется в байт-код Java, во время выполнения он ведет себя точно также, как настоящая программа на языке Java. Программы на Jython могут выступать в качестве апплетов и сервлетов, создавать графический интерфейс с использованием механизмов Java и т.д. Более того, Jython обеспечивает поддержку возможности импортировать и использовать Java-классы в программном коде Python.

Тем не менее, поскольку реализация Jython обеспечивает более низкую скорость выполнения и менее устойчива по сравнению с CPython, она представляет интерес скорее для разработчиков программ на языке Java, которым необходим язык сценариев в качестве интерфейса к Java-коду.

Реализация предназначена для обеспечения интеграции программ Python с приложениями, созданными для работы в среде Microsoft .NET Framework операционной системы Windows, а также в Mono - открытом эквиваленте для Linux. Платформа.NET и среда выполнения языка C# предназначены для обеспечения взаимодействия между программными объектами - независимо от используемого языка программирования, в духе более ранней модели COM компании Microsoft.

IronPython позволяет программам на языке Python играть роль как клиентских, так и серверных компонентов, доступных из других языков программирования.NET. Поскольку разработка ведется компанией Microsoft , от IronPython, помимо прочего, можно было бы ожидать существенной оптимизации производительности.

Средства оптимизации скорости выполнения

Существуют и другие реализации, включая динамический компилятор Psyco и транслятор Shedskin C++, которые пытаются оптимизировать основную модель выполнения.

Динамический компилятор Psyco

Система Psyco - это компонент, расширяющий модель выполнения байт-кода, что позволяет программам выполняться быстрее. Psyco является расширением PVM , которое собирает и использует информацию о типах, чтобы транслировать части байт-кода программы в истинный двоичный машинный код, который выполняется гораздо быстрее. Для такой трансляции не требуется вносить изменения в исходный код или производить дополнительную компиляцию в ходе разработки.

Во время выполнения программы, Psyco собирает информацию о типах объектов, и затем эта информация используется для генерации высокоэффективного машинного кода, оптимизированного для объектов этого типа. После этого произведенный машинный код заменяет соответствующие участки байт-кода, тем самым увеличивается скорость выполнения.

В идеале некоторые участки программного кода под управление Psyco могут выполняться также быстро, как скомпилированный код на языке Си .

Psyco обеспечивает увеличение скорости от 2 до 100 раз, но обычно в 4 раза, при использовании немодифицированного интерпретатора Python. Единственный минус у Psyco, это то обстоятельство, что в настоящее время он способен генерировать машинный код только для архитектуры Intel x86 .

Psyco не идет в стандартной поставке, его надо скачать и установить отдельно. Еще есть проект PyPy , который представляет собой попытку переписать PVM с целью оптимизации кода как в Psyco , проект PyPy собирается поглотить в большей мере проект Psyco .

Транслятор Shedskin C++

Shedskin - это система, которая преобразует исходный код на языке Python в исходный код на языке C++, который затем может быть скомпилирован в машинный код. Кроме того, система реализует платформонезависемый подход к выполнению программного кода Python.

Фиксированные двоичные файлы (frozen binaries)

Иногда необходимо из своих программ на Python создавать самостоятельные исполняемые файлы. Это необходимо скорее для упаковки и распространения программ.

Фиксированные двоичные файлы объединяют в единый файл пакета байт-код программ, PVM и файлы поддержки, необходимые программам. В результате получается единственный исполняемый файл, например файл с расширение ".exe" для Windows.

На сегодняшний день существует три основных инструмента создания "frozen binaries":

  • py2exe - он может создавать автономные программы для Windows, использующие библиотеки Tkinter, PMW, wxPython и PyGTK для создания графического интерфейса, программы использующие программные средства создания игр PyGame, клиентские программы win32com и многие другие;
  • PyInstaller - напоминает py2exe, но также работает в Linux и UNIX и способен производить самоустанавливающиеся исполняемые файлы;
  • freeze - оригинальная версия.

Вам надо загружать эти инструменты отдельно от Python, они распространяются бесплатно.

Фиксированные двоичные файлы имеют немалый размер, ибо они содержат в себе PVM, но по современным меркам из все же нельзя назвать необычно большими. Так как интерпретатор Python встроен непосредственно в фиксированные двоичные файлы, его установка не является обязательным требованием для запуска программ на принимающей стороне.

Резюме

На сегодня всё, в следующей статье расскажу о стандартных типах данные в Python, ну и в последующих статьях рассмотрим каждый тип в отдельности, а также функции и операторы для работы с этими типами.