Задание по алгоритму дейкстры. Нахождение кратчайших путей

Алгоримтм Демйкстры (Dijkstra"s algorithm) - алгоритм на графах, изобретённый нидерландским ученым Э. Дейкстрой в 1959 году. Находит кратчайшее расстояние от одной из вершин графа до всех остальных. Алгоритм работает только для графов без рёбер отрицательного веса. Алгоритм широко применяется в программировании и технологиях, например, его использует протокол OSPF для устранения кольцевых маршрутов. Известен также под названием "Сначала Кратчайший Путь" (Shortest Path First).

Алгоритм Дейкстры решает задачу о кратчайших путях из одной вершины для взвешенного ориентированного графа G = (V, E) с исходной вершиной s, в котором веса всех рёбер неотрицательны ((u, v) ? 0 для всех (u, v) E). В случае, когда ребра графа не равны, целесообразно использовать этот алгоритм.

Формулировка задачи. Имеется граф. Некоторая его вершина обозначена как вершина 1. Необходимо найти минимальные пути от вершины 1 до каждой из вершин графа. Минимальным путём будем называть путь с минимальной суммой цен вдоль пути. Ценой назовем неотрицательное число являющееся весом ребра.

Идея алгоритма. Идея основывается на следующем очевидном утверждении: Пусть построен минимальный путь из вершины а в вершину B. И пусть вершина B связана с некоторым количеством вершин i . Обозначим через C i - цену пути из вершины B в вершину i. Выберем из C i минимальную величину. Тогда минимальное продолжение пути из точки B пойдёт через выбранную величину.

Это утверждение действительно не требует доказательства. И из него вытекает очень серьёзное следствие. Пусть есть множество вершин через которые уже проходят минимальные пути. Такое множество гарантированно есть, это вершина 1. Утверждение сформулированное выше даёт возможность добавлять к уже существующему множеству вершин (будем далее называть их выделенными) еще одну вершину, а так как в графе количество вершин конечно, то за конечное количество шагов все вершины графа окажутся выделенными, а это и будет решением.

Сущность алгоритма Дейкстры и заключается в процедуре добавления еще одной вершины к множеству выделенных. Эта процедура состоит из двух шагов:

1. Строим множество вершин инцидентных выделенным и находим среди их вершину с наименьшей ценой. Найденная вершина добавляется в множество выделенных.

2. Строим множество вершин инцидентных выделенным и определяем для них новые цены. Новая цена вершины это минимальная цена пути от множества выделенных вершин до данной вершины. Строится новая цена так:

a. Для невыделенной вершины во множестве выделенных определяется подмножество вершин инцидентных данной.

b. Для каждой вершины выделенной подмножества определяется цена пути до данной.

c. Определяется минимальная цена. Эта цена и становится ценой вершины.

Алгоритм работает с двумя типами цен: ценой ребра и ценой вершины. Цены ребер являются постоянной величиной. Цены же вершин постоянно пересчитываются. Смысл этих цен различен. Цена ребра это цена перехода из вершины в вершину соединённую этим ребром. А цена вершины это цена минимального пути. Ещё одно важное замечание касается пересчета предварительных цен. Фактически, есть смысл пересчитывать предварительные цены только для тех вершин которые связаны с вершиной добавленной во множество выделенных на последнем шаге, так как для других вершин нет причин изменения предварительной цены.

Известно, что все цены (например, прокладки пути или проезда) неотрицательны. Найти наименьшую стоимость пути 1->i для всех i=1. n за время O (n2).

В процессе работы алгоритма некоторые города будут выделенными (в начале - только город 1, в конце - все). При этом:

для каждого выделенного города i хранится наименьшая стоимость пути 1->i; при этом известно, что минимум достигается на пути, проходящем только через выделенные города;

для каждого невыделенного города i хранится наименьшая стоимость пути 1->i, в котором в качестве промежуточных используются только выделенные города.

Множество выделенных городов расширяется на основании следующего замечания: если среди всех невыделенных городов взять тот, для которого хранимое число минимально, то это число является истинной наименьшей стоимостью. В самом деле, пусть есть более короткий путь. Рассмотрим первый невыделенный город на этом пути - уже до него путь длиннее! (Здесь существенна неотрицательность цен.)

Добавив выбранный город к выделенным, мы должны скорректировать информацию, хранимую для невыделенных городов. При этом достаточно учесть лишь пути, в которых новый город является последним пунктом пересадки, а это легко сделать, так как минимальную стоимость пути в новый город мы уже знаем.

Другими словами, каждой вершине из V сопоставим метку - минимальное известное расстояние от этой вершины до a. Алгоритм работает пошагово - на каждом шаге он "посещает" одну вершину и пытается уменьшать метки. Работа алгоритма завершается, когда все вершины посещены.

Инициализация. Метка самой вершины a полагается равной 0 , метки остальных вершин - бесконечности. Это отражает то, что расстояния от a до других вершин пока неизвестны. Все вершины графа помечаются как непосещенные.

Шаг алгоритма. Если все вершины посещены, алгоритм завершается. В противном случае из еще не посещенных вершин выбирается вершина u , имеющая минимальную метку. Мы рассматриваем всевозможные маршруты, в которых u является предпоследним пунктом. Вершины, соединенные с вершиной u ребрами, назовем соседями этой вершины. Для каждого соседа рассмотрим новую длину пути, равную сумме текущей метки u и длины ребра, соединяющего u с этим соседом. Если полученная длина меньше метки соседа, заменим метку этой длиной. Рассмотрев всех соседей, пометим вершину u как посещенную и повторим шаг.

Поскольку алгоритм Дейкстры всякий раз выбирает для обработки вершины с наименьшей оценкой кратчайшего пути, можно сказать, что он относится к жадным алгоритмам.

Опишем более подробно схему работы алгоритма Дейкстры.

Алгоритм использует три массива из N (= числу вершин сети) чисел каждый. Первый массив A содержит метки с двумя значения: 0 (вершина еще не рассмотрена) и 1 (вершина уже рассмотрена); второй массив B содержит расстояния - текущие кратчайшие рас - стояния от до соответствующей вершины; третий массив с содержит номера вершин - k-й элемент С [k] есть номер предпоследней вершины на текущем кратчайшем пути из Vi в Vk. Матрица расстояний D задает длины дуге D ; если такой дуги нет, то D присваивается большое число Б, равное "машинной бесконечности".

Теперь можно описать:

1. (инициализация). В цикле от 1 до N заполнить нулями массив A; заполнить числом i массив C; перенести i-ю строку матрицы D в массив B, A [i]: =1; C [i]: =0 (i - номер стартовой вершины)

2. (общий шаг). Hайти минимум среди неотмеченных (т.е. тех k, для которых A [k] =0); пусть минимум достигается на индексе j, т.е. B [j] <=B [k] Затем выполняются следующие операции: A [j]: =1; если B [k] >B [j] +D , то (B [k]: =B [j] +D ; C [k]: =j) (Условие означает, что путь Vi. Vk длиннее, чем путь Vi. Vj Vk). (Если все A [k] отмечены, то длина пути от Vi до Vk равна B [k]. Теперь надо) перечислить вершины, входящие в кратчайший путь).

3. (выдача ответа). (Путь от Vi до Vk выдается в обратном порядке следующей процедурой:)

2. Выдать z;

3. z: =C [z]. Если z = О, то конец, иначе перейти к 3.2.

Для выполнения алгоритма нужно N раз просмотреть массив B из N элементов, т.е. алгоритм Дейкстры имеет квадратичную сложность: O (n2).

Ниже приведена блок-схема алгоритма Дейкстры (см. рис.2).

Рис.2. Блок-схема алгоритма Дейкстры

В начале алгоритма расстояние для начальной вершины полагается равным нулю, а все остальные расстояния заполняются большим положительным числом (бомльшим максимального возможного пути в графе). Массив флагов заполняется нулями. Затем запускается основной цикл.

На каждом шаге цикла мы ищем вершину с минимальным расстоянием и флагом равным нулю. Затем мы устанавливаем в ней флаг в 1 и проверяем все соседние с ней вершины. Если в ней расстояние больше, чем сумма расстояния до текущей вершины и длины ребра, то уменьшаем его. Цикл завершается когда флаги всех вершин становятся равны 1.

5.4.3. Задача о кратчайшем пути и алгоритм Дейкстры ее решения

Пусть задан орграф G (V , E ), каждой дуге которого поставлено в соответствие число
, называемое длиной дуги .

Определение. Длиной пути называется сумма длин дуг, составляющих этот путь. Задача о кратчайшем пути ставится так.

Вариант 1. Найти длины кратчайших путей (путей минимальной длины) и сами пути от фиксированной вершины s до всех остальных вершин графа.

Вариант 2. Найти длины кратчайших путей и сами пути между всеми парами вершин данного графа.

Если в графе имеются дуги отрицательной длины, задача может не иметь решений (потеряет смысл). Это происходит из-за того, что в графе может присутствовать контур отрицательной длины. Наличие контуров отрицательной длины означает, что длину пути можно сделать равной
. А если контуров отрицательной длины нет, то кратчайшие пути существуют и любой кратчайший путь – это простая цепь.

Заметим, что если кратчайший путь существует, то любой его подпуть – это тоже кратчайший путь между соответствующими вершинами.

Алгоритм Дейкстры решения задачи о кратчайшем пути.

Алгоритм работает с дугами положительной длины и определяет кратчайшие пути от фиксированной вершины s до всех остальных вершин графа. Обозначим эти вершины v 1 , v 2 ,…, v n .

Определение. Назовем вершину u лежащей ближе к вершине s , чем вершина v , если длина кратчайшего пути от s до u меньше длины кратчайшего пути от s до v . Будем говорить, что вершины u и v равноудалены от вершины s , если длины кратчайших путей от s до u и от s до v совпадают.

Алгоритм Дейкстры последовательно упорядочивает вершины графа в смысле близости к вершине s и основан на следующих базовых принципах.

Если длины дуг – положительные числа, то

    ближайшая к s вершина – она сама. Длина кратчайшего пути от s до s равна 0;

    ближайшая к s вершина, отличная от s , лежит от s на расстоянии одной дуги  самой короткой из всех дуг, выходящих из вершины s ;

    любая промежуточная вершина кратчайшего пути от s до некоторой вершины v лежит ближе к s , чем конечная вершина v ;

    кратчайший путь до очередной упорядоченной вершины может проходить только через уже упорядоченные вершины.

Пусть алгоритм уже упорядочил вершины v 1 , v 2 v k . Обозначим через
,
длину кратчайшего пути до вершины v i .

Рассмотрим все дуги исходного графа, которые начинаются в одной из вершин множества
и оканчиваются в еще неупорядоченных вершинах. Для каждой такой дуги, например
, вычислим сумму
. Эта сумма равна длине пути из s в y , в котором вершина v i есть предпоследняя вершина, а путь из s в v i – кратчайший из всех путей, соединяющих s и v i .

Этим самым определены длины всех путей из s в еще не упорядоченные вершины, в которых промежуточными вершинами являются только вершины из числа k ближайших к s . Пусть кратчайший из этих путей оканчивается на вершине w . Тогда w и есть
по близости к s вершина.

Технически действия по алгоритму Дейкстры осуществляются при помощи аппарата меток вершин. Метка вершины v обозначается как
. Всякая метка – это число, равное длине некоторого пути от s до v . Метки делятся на временные и постоянные. На каждом шаге только одна метка становиться постоянной. Это означает, что ее значение равно длине кратчайшего пути до соответствующей вершины, а сама эта вершина упорядочивается. Номер очередной упорядоченной вершины обозначим буквой р .

Описание алгоритма .

Шаг 1. (Начальная установка) . Положить
и считать эту метку постоянной. Положить
,
и считать эти метки временными. Положить
.

Шаг 2. (Общий шаг). Он повторяется n раз, пока не будут упорядочены все вершины графа.

Пересчитать временную метку
всякой неупорядоченной вершины v i , в которую входит дуга, выходящая из вершины р, по правилу

Выбрать вершину с минимальной временной меткой. Если таких вершин несколько, выбрать любую.

Пусть w - вершина с минимальной временной меткой. Считать метку
постоянной и положить
.

Шаги алгоритма Дейкстры удобно оформлять в таблице, каждый столбец которой соответствует вершине графа. Строки таблицы соответствуют повторению общего шага.

Пример . Для графа на рис. 4. найти кратчайшие пути от вершин
до всех остальных вершин графа. Ребра означают две разнонаправленные дуги одинаковой длины.

Решение. В табл. 1 записаны метки вершин на каждом шаге. Постоянные метки помечены знаком «+». Подробно опишем, как вычисляются метки вершин.

    Из вершины 1 выходят дуги в вершины 2, 5, 6. Пересчитываем метки этих вершин и заполним вторую строку таблицы.

Метка вершины 6 становиться постоянной,
.

    Из вершины 6 выходят дуги в еще неупорядоченные вершины 2, 5, 8, 9. Пересчитываем их временные метки

Заполняем 3 строку таблицы. Минимальная из временных меток равна 3 (метка вершины 9),
.

    Из вершины 9 выходят дуги в еще неупорядоченные вершины 5, 8, 11, 12. Тогда

Заполняем четвертую строку таблицы. В этой строке две вершины  2 и 12 имеют минимальные временные метки, равные 4. Сначала упорядочим, например, вершину 2. Тогда на следующем шаге будет упорядочена вершина 12.

Таблица 1

Итак,
.

    Из вершины 2 выходят дуги в еще неупорядоченные вершины 3, 4, 5. Пересчитываем временные метки этих вершин

Заполняем 5 строку таблицы. Минимальная из временных меток равна 4 (метка вершины 12),
.

Заполняем 6 строку таблицы. Минимальная из временных меток равна 5 (метка вершины 5),
.

Заполняем 7 строку таблицы. Становиться постоянной метка вершины 8 (она равна 5),
.

Вершина 11 упорядочивается.

    Из вершины 11 выходят дуги в неупорядоченные вершины 7, 10. Пересчитываем временные метки этих вершин

Вершина 4 получает постоянную метку.

    Из вершины 4 выходят дуги в неупорядоченные вершины 3, 7. Пересчитываем временные метки

Упорядочиваем вершину 3.


Заполняем 12 строку таблицы. На этом шаге упорядочиваем последнюю неупорядоченную вершину 10.

Построение дерева кратчайших путей.

Дерево кратчайших путей – это ориентированное дерево с корнем в вершине S . Все пути в этом дереве – кратчайшие для данного графа.

Дерево кратчайших путей строится по таблице, в него включаются вершина за вершиной в том порядке, в котором они получали постоянные метки. Первым в дерево включается корень – вершина S .

Построим дерево кратчайших путей для нашего примера.

Сначала включаем в дерево корень – вершину 1. Затем в дерево включается дуга (1,6). Следующей была упорядочена вершина 9, длина кратчайшего пути до которой равна 3. Первый раз число 3 появилось в третьей строке, которая заполнялась при
. Следовательно, вершина 6 – предпоследняя вершина кратчайшего пути до вершины 9. Включаем в дерево дугу (6,9) длины 1.

Затем была упорядочена вершина 2 с длиной кратчайшего пути, равной 4. Это число первый раз появилось в третьей строке, которая заполнялась при
. Следовательно, кратчайший путь во вторую вершину проходит по дуге (6,2). Включаем в дерево дугу (6,2) длины 2.

Далее была упорядочена вершина 12,
. Первый раз число 4 появляется в четвертой строке, которая заполнялась при
. В дерево включается дуга (9,12) длины 1. Полное дерево кратчайших путей показано на рис. 5.

Алгоритм Дейкстры может ошибаться, если в графе есть дуги отрицательной длины. Так, отыскивая кратчайшие пути от вершины s =1 для графа на рис. 6, алгоритм сначала упорядочит вершину 3, затем вершину 2 и закончит работу. При этом этот кратчайший путь до вершины 3, с точки зрения алгоритма Дейкстры,  это дуга (1,3) длины 3.

На самом деле, кратчайший путь до вершины 3 состоит из дуг (1,2) и (2,3), длина этого пути равна 5+(-3)=2.

Из-за наличия дуги (2,3) отрицательной длины –3 оказались нарушенными следующие базовые принципы:

    ближайшая к s вершина лежит от нее на расстоянии двух дуг, а не одной;

    промежуточная вершина кратчайшего пути 1-2-3 (вершина 2) лежит дальше от вершины 1 (на расстоянии 5), чем конечная вершина пути 3.

Следовательно, присутствие дуг отрицательной длины усложняет решение задачи о кратчайшем пути и требует использования более сложных алгоритмов, нежели алгоритм Дейкстры.

Дан ориентированный или неориентированный взвешенный граф с вершинами и рёбрами. Веса всех рёбер неотрицательны. Указана некоторая стартовая вершина . Требуется найти длины кратчайших путей из вершины во все остальные вершины, а также предоставить способ вывода самих кратчайших путей.

Эта задача называется "задачей о кратчайших путях с единственным источником" (single-source shortest paths problem).

Алгоритм

Здесь описывается алгоритм, который предложил голландский исследователь Дейкстра (Dijkstra) в 1959 г.

Заведём массив , в котором для каждой вершины будем хранить текущую длину кратчайшего пути из в . Изначально , а для всех остальных вершин эта длина равна бесконечности (при реализации на компьютере обычно в качестве бесконечности выбирают просто достаточно большое число, заведомо большее возможной длины пути):

Кроме того, для каждой вершины будем хранить, помечена она ещё или нет, т.е. заведём булевский массив . Изначально все вершины не помечены, т.е.

Сам алгоритм Дейкстры состоит из итераций . На очередной итерации выбирается вершина с наименьшей величиной среди ещё не помеченных, т.е.:

(Понятно, что на первой итерации выбрана будет стартовая вершина .)

Выбранная таким образом вершина отмечается помеченной. Далее, на текущей итерации, из вершины производятся релаксации : просматриваются все рёбра , исходящие из вершины , и для каждой такой вершины алгоритм пытается улучшить значение . Пусть длина текущего ребра равна , тогда в виде кода релаксация выглядит как:

На этом текущая итерация заканчивается, алгоритм переходит к следующей итерации (снова выбирается вершина с наименьшей величиной , из неё производятся релаксации, и т.д.). При этом в конце концов, после итераций, все вершины графа станут помеченными, и алгоритм свою работу завершает. Утверждается, что найденные значения и есть искомые длины кратчайших путей из в .

Стоит заметить, что, если не все вершины графа достижимы из вершины , то значения для них так и останутся бесконечными. Понятно, что несколько последних итераций алгоритма будут как раз выбирать эти вершины, но никакой полезной работы производить эти итерации не будут (поскольку бесконечное расстояние не сможет прорелаксировать другие, даже тоже бесконечные расстояния). Поэтому алгоритм можно сразу останавливать, как только в качестве выбранной вершины берётся вершина с бесконечным расстоянием.

Восстановление путей . Разумеется, обычно нужно знать не только длины кратчайших путей, но и получить сами пути. Покажем, как сохранить информацию, достаточную для последующего восстановления кратчайшего пути из до любой вершины. Для этого достаточно так называемого массива предков : массива , в котором для каждой вершины хранится номер вершины , являющейся предпоследней в кратчайшем пути до вершины . Здесь используется тот факт, что если мы возьмём кратчайший путь до какой-то вершины , а затем удалим из этого пути последнюю вершину, то получится путь, оканчивающийся некоторой вершиной , и этот путь будет кратчайшим для вершины . Итак, если мы будем обладать этим массивом предков, то кратчайший путь можно будет восстановить по нему, просто каждый раз беря предка от текущей вершины, пока мы не придём в стартовую вершину — так мы получим искомый кратчайший путь, но записанный в обратном порядке. Итак, кратчайший путь до вершины равен:

Осталось понять, как строить этот массив предков. Однако это делается очень просто: при каждой успешной релаксации, т.е. когда из выбранной вершины происходит улучшение расстояния до некоторой вершины , мы записываем, что предком вершины является вершина :

Доказательство

Основное утверждение , на котором основана корректность алгоритма Дейкстры, следующее. Утверждается, что после того как какая-либо вершина становится помеченной, текущее расстояние до неё уже является кратчайшим, и, соответственно, больше меняться не будет.

Доказательство будем производить по индукции. Для первой итерации справедливость его очевидна — для вершины имеем , что и является длиной кратчайшего пути до неё. Пусть теперь это утверждение выполнено для всех предыдущих итераций, т.е. всех уже помеченных вершин; докажем, что оно не нарушается после выполнения текущей итерации. Пусть — вершина, выбранная на текущей итерации, т.е. вершина, которую алгоритм собирается пометить. Докажем, что действительно равно длине кратчайшего пути до неё (обозначим эту длину через ).

Рассмотрим кратчайший путь до вершины . Понятно, этот путь можно разбить на два пути: , состоящий только из помеченных вершин (как минимум стартовая вершина будет в этом пути), и остальная часть пути (она тоже может включать помеченные вершины, но начинается обязательно с непомеченной). Обозначим через первую вершину пути , а через — последнюю вершины пути .

Докажем сначала наше утверждение для вершины , т.е. докажем равенство . Однако это практически очевидно: ведь на одной из предыдущих итераций мы выбирали вершину и выполняли релаксацию из неё. Поскольку (в силу самого выбора вершины ) кратчайший путь до равен кратчайшему пути до плюс ребро , то при выполнении релаксации из величина действительно установится в требуемое значение.

Вследствие неотрицательности стоимостей рёбер длина кратчайшего пути (а она по только что доказанному равна ) не превосходит длины кратчайшего пути до вершины . Учитывая, что (ведь алгоритм Дейкстры не мог найти более короткого пути, чем это вообще возможно), в итоге получаем соотношения:

С другой стороны, поскольку и , и — вершины непомеченные, то так как на текущей итерации была выбрана именно вершина , а не вершина , то получаем другое неравенство:

Из этих двух неравенств заключаем равенство , а тогда из найденных до этого соотношений получаем и:

что и требовалось доказать.

Реализация

Итак, алгоритм Дейкстры представляет собой итераций, на каждой из которых выбирается непомеченная вершина с наименьшей величиной , эта вершина помечается, и затем просматриваются все рёбра, исходящие из данной вершины, и вдоль каждого ребра делается попытка улучшить значение на другом конце ребра.

Время работы алгоритма складывается из:

При простейшей реализации этих операций на поиск вершины будет затрачиваться операций, а на одну релаксацию — операций, и итоговая асимптотика алгоритма составляет:

Реализация :

const int INF = 1000000000 ; int main() { int n; ... чтение n ... vector < vector < pair< int ,int > > > g (n) ; ... чтение графа... int s = ...; // стартовая вершина vector< int > d (n, INF) , p (n) ; d[ s] = 0 ; vector< char > u (n) ; for (int i= 0 ; i< n; ++ i) { int v = - 1 ; for (int j= 0 ; j< n; ++ j) if (! u[ j] && (v == - 1 || d[ j] < d[ v] ) ) v = j; if (d[ v] == INF) break ; u[ v] = true ; for (size_t j= 0 ; j< g[ v] .size () ; ++ j) { int to = g[ v] [ j] .first , len = g[ v] [ j] .second ; if (d[ v] + len < d[ to] ) { d[ to] = d[ v] + len; p[ to] = v; } } } }

Здесь граф хранится в виде списков смежности: для каждой вершины список содержит список рёбер, исходящих из этой вершины, т.е. список пар >, где первый элемент пары — вершина, в которую ведёт ребро, а второй элемент — вес ребра.

Алгоритм Дейкстры (англ. Dijkstra’s algorithm) - алгоритм на графах, изобретённый нидерландским учёным Эдсгером Дейкстрой в 1959 году. Находит кратчайшие пути от одной из вершин графа до всех остальных. Алгоритм работает только для графов без рёбер отрицательного веса.

Рассмотрим выполнение алгоритма на примере графа, показанного на рисунке.

Пусть требуется найти кратчайшие расстояния от 1-й вершины до всех остальных.

Кружками обозначены вершины, линиями - пути между ними (рёбра графа). В кружках обозначены номера вершин, над рёбрами обозначена их «цена» - длина пути. Рядом с каждой вершиной красным обозначена метка - длина кратчайшего пути в эту вершину из вершины 1.

Первый шаг . Рассмотрим шаг алгоритма Дейкстры для нашего примера. Минимальную метку имеет вершина 1. Её соседями являются вершины 2, 3 и 6.

Первый по очереди сосед вершины 1 - вершина 2, потому что длина пути до неё минимальна. Длина пути в неё через вершину 1 равна сумме значения метки вершины 1 и длины ребра, идущего из 1-й в 2-ю, то есть 0 + 7 = 7. Это меньше текущей метки вершины 2, бесконечности, поэтому новая метка 2-й вершины равна 7.

Аналогичную операцию проделываем с двумя другими соседями 1-й вершины - 3-й и 6-й.

Все соседи вершины 1 проверены. Текущее минимальное расстояние до вершины 1 считается окончательным и пересмотру не подлежит (то, что это действительно так, впервые доказал Э. Дейкстра). Вычеркнем её из графа, чтобы отметить, что эта вершина посещена.

Второй шаг . Шаг алгоритма повторяется. Снова находим «ближайшую» из непосещённых вершин. Это вершина 2 с меткой 7.

Снова пытаемся уменьшить метки соседей выбранной вершины, пытаясь пройти в них через 2-ю вершину. Соседями вершины 2 являются вершины 1, 3 и 4.

Первый (по порядку) сосед вершины 2 - вершина 1. Но она уже посещена, поэтому с 1-й вершиной ничего не делаем.

Следующий сосед вершины 2 - вершина 3, так как имеет минимальную метку из вершин, отмеченных как не посещённые. Если идти в неё через 2, то длина такого пути будет равна 17 (7 + 10 = 17). Но текущая метка третьей вершины равна 9, а это меньше 17, поэтому метка не меняется.

Ещё один сосед вершины 2 - вершина 4. Если идти в неё через 2-ю, то длина такого пути будет равна сумме кратчайшего расстояния до 2-й вершины и расстояния между вершинами 2 и 4, то есть 22 (7 + 15 = 22). Поскольку 22<, устанавливаем метку вершины 4 равной 22.

Все соседи вершины 2 просмотрены, замораживаем расстояние до неё и помечаем её как посещённую.

Третий шаг . Повторяем шаг алгоритма, выбрав вершину 3. После её «обработки» получим такие результаты:

Дальнейшие шаги . Повторяем шаг алгоритма для оставшихся вершин. Это будут вершины 6, 4 и 5, соответственно порядку.

Завершение выполнения алгоритма . Алгоритм заканчивает работу, когда нельзя больше обработать ни одной вершины. В данном примере все вершины зачёркнуты, однако ошибочно полагать, что так будет в любом примере - некоторые вершины могут остаться незачёркнутыми, если до них нельзя добраться, т. е. если граф несвязный. Результат работы алгоритма виден на последнем рисунке: кратчайший путь от вершины 1 до 2-й составляет 7, до 3-й - 9, до 4-й - 20, до 5-й - 20, до 6-й - 11.

Реализация алгоритма на различных языках программирования:

C++

#include "stdafx.h" #include using namespace std; const int V=6; //алгоритм Дейкстры void Dijkstra(int GR[V][V], int st) { int distance[V], count, index, i, u, m=st+1; bool visited[V]; for (i=0; i "< "<> "; cin>>start; Dijkstra(GR, start-1); system("pause>>void"); }

Pascal

program DijkstraAlgorithm; uses crt; const V=6; inf=100000; type vektor=array of integer; var start: integer; const GR: array of integer=((0, 1, 4, 0, 2, 0), (0, 0, 0, 9, 0, 0), (4, 0, 0, 7, 0, 0), (0, 9, 7, 0, 0, 2), (0, 0, 0, 0, 0, 8), (0, 0, 0, 0, 0, 0)); {алгоритм Дейкстры} procedure Dijkstra(GR: array of integer; st: integer); var count, index, i, u, m, min: integer; distance: vektor; visited: array of boolean; begin m:=st; for i:=1 to V do begin distance[i]:=inf; visited[i]:=false; end; distance:=0; for count:=1 to V-1 do begin min:=inf; for i:=1 to V do if (not visited[i]) and (distance[i]<=min) then begin min:=distance[i]; index:=i; end; u:=index; visited[u]:=true; for i:=1 to V do if (not visited[i]) and (GR<>0) and (distance[u]<>inf) and (distance[u]+GRinf then writeln(m," > ", i," = ", distance[i]) else writeln(m," > ", i," = ", "маршрут недоступен"); end; {основной блок программы} begin clrscr; write("Начальная вершина >> "); read(start); Dijkstra(GR, start); end.

Java

import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; public class Solution { private static int INF = Integer.MAX_VALUE / 2; private int n; //количество вершин в орграфе private int m; //количествое дуг в орграфе private ArrayList adj; //список смежности private ArrayList weight; //вес ребра в орграфе private boolean used; //массив для хранения информации о пройденных и не пройденных вершинах private int dist; //массив для хранения расстояния от стартовой вершины //массив предков, необходимых для восстановления кратчайшего пути из стартовой вершины private int pred; int start; //стартовая вершина, от которой ищется расстояние до всех других private BufferedReader cin; private PrintWriter cout; private StringTokenizer tokenizer; //процедура запуска алгоритма Дейкстры из стартовой вершины private void dejkstra(int s) { dist[s] = 0; //кратчайшее расстояние до стартовой вершины равно 0 for (int iter = 0; iter < n; ++iter) { int v = -1; int distV = INF; //выбираем вершину, кратчайшее расстояние до которого еще не найдено for (int i = 0; i < n; ++i) { if (used[i]) { continue; } if (distV < dist[i]) { continue; } v = i; distV = dist[i]; } //рассматриваем все дуги, исходящие из найденной вершины for (int i = 0; i < adj[v].size(); ++i) { int u = adj[v].get(i); int weightU = weight[v].get(i); //релаксация вершины if (dist[v] + weightU < dist[u]) { dist[u] = dist[v] + weightU; pred[u] = v; } } //помечаем вершину v просмотренной, до нее найдено кратчайшее расстояние used[v] = true; } } //процедура считывания входных данных с консоли private void readData() throws IOException { cin = new BufferedReader(new InputStreamReader(System.in)); cout = new PrintWriter(System.out); tokenizer = new StringTokenizer(cin.readLine()); n = Integer.parseInt(tokenizer.nextToken()); //считываем количество вершин графа m = Integer.parseInt(tokenizer.nextToken()); //считываем количество ребер графа start = Integer.parseInt(tokenizer.nextToken()) - 1; //инициализируем списка смежности графа размерности n adj = new ArrayList[n]; for (int i = 0; i < n; ++i) { adj[i] = new ArrayList(); } //инициализация списка, в котором хранятся веса ребер weight = new ArrayList[n]; for (int i = 0; i < n; ++i) { weight[i] = new ArrayList(); } //считываем граф, заданный списком ребер for (int i = 0; i < m; ++i) { tokenizer = new StringTokenizer(cin.readLine()); int u = Integer.parseInt(tokenizer.nextToken()); int v = Integer.parseInt(tokenizer.nextToken()); int w = Integer.parseInt(tokenizer.nextToken()); u--; v--; adj[u].add(v); weight[u].add(w); } used = new boolean[n]; Arrays.fill(used, false); pred = new int[n]; Arrays.fill(pred, -1); dist = new int[n]; Arrays.fill(dist, INF); } //процедура восстановления кратчайшего пути по массиву предком void printWay(int v) { if (v == -1) { return; } printWay(pred[v]); cout.print((v + 1) + " "); } //процедура вывода данных в консоль private void printData() throws IOException { for (int v = 0; v < n; ++v) { if (dist[v] != INF) { cout.print(dist[v] + " "); } else { cout.print("-1 "); } } cout.println(); for (int v = 0; v < n; ++v) { cout.print((v + 1) + ": "); if (dist[v] != INF) { printWay(v); } cout.println(); } cin.close(); cout.close(); } private void run() throws IOException { readData(); dejkstra(start); printData(); cin.close(); cout.close(); } public static void main(String args) throws IOException { Solution solution = new Solution(); solution.run(); } }

Ещё один вариант:

Import java.io.*; import java.util.*; public class Dijkstra { private static final Graph.Edge GRAPH = { new Graph.Edge("a", "b", 7), new Graph.Edge("a", "c", 9), new Graph.Edge("a", "f", 14), new Graph.Edge("b", "c", 10), new Graph.Edge("b", "d", 15), new Graph.Edge("c", "d", 11), new Graph.Edge("c", "f", 2), new Graph.Edge("d", "e", 6), new Graph.Edge("e", "f", 9), }; private static final String START = "a"; private static final String END = "e"; public static void main(String args) { Graph g = new Graph(GRAPH); g.dijkstra(START); g.printPath(END); //g.printAllPaths(); } } class Graph { private final Map graph; // mapping of vertex names to Vertex objects, built from a set of Edges /** One edge of the graph (only used by Graph constructor) */ public static class Edge { public final String v1, v2; public final int dist; public Edge(String v1, String v2, int dist) { this.v1 = v1; this.v2 = v2; this.dist = dist; } } /** One vertex of the graph, complete with mappings to neighbouring vertices */ public static class Vertex implements Comparable { public final String name; public int dist = Integer.MAX_VALUE; // MAX_VALUE assumed to be infinity public Vertex previous = null; public final Map neighbours = new HashMap<>(); public Vertex(String name) { this.name = name; } private void printPath() { if (this == this.previous) { System.out.printf("%s", this.name); } else if (this.previous == null) { System.out.printf("%s(unreached)", this.name); } else { this.previous.printPath(); System.out.printf(" -> %s(%d)", this.name, this.dist); } } public int compareTo(Vertex other) { return Integer.compare(dist, other.dist); } } /** Builds a graph from a set of edges */ public Graph(Edge edges) { graph = new HashMap<>(edges.length); //one pass to find all vertices for (Edge e: edges) { if (!graph.containsKey(e.v1)) graph.put(e.v1, new Vertex(e.v1)); if (!graph.containsKey(e.v2)) graph.put(e.v2, new Vertex(e.v2)); } //another pass to set neighbouring vertices for (Edge e: edges) { graph.get(e.v1).neighbours.put(graph.get(e.v2), e.dist); //graph.get(e.v2).neighbours.put(graph.get(e.v1), e.dist); // also do this for an undirected graph } } /** Runs dijkstra using a specified source vertex */ public void dijkstra(String startName) { if (!graph.containsKey(startName)) { System.err.printf("Graph doesn"t contain start vertex \"%s\"\n", startName); return; } final Vertex source = graph.get(startName); NavigableSet q = new TreeSet<>(); // set-up vertices for (Vertex v: graph.values()) { v.previous = v == source ? source: null; v.dist = v == source ? 0: Integer.MAX_VALUE; q.add(v); } dijkstra(q); } /** Implementation of dijkstra"s algorithm using a binary heap. */ private void dijkstra(final NavigableSet q) { Vertex u, v; while (!q.isEmpty()) { u = q.pollFirst(); // vertex with shortest distance (first iteration will return source) if (u.dist == Integer.MAX_VALUE) break; // we can ignore u (and any other remaining vertices) since they are unreachable //look at distances to each neighbour for (Map.Entry a: u.neighbours.entrySet()) { v = a.getKey(); //the neighbour in this iteration final int alternateDist = u.dist + a.getValue(); if (alternateDist < v.dist) { // shorter path to neighbour found q.remove(v); v.dist = alternateDist; v.previous = u; q.add(v); } } } } /** Prints a path from the source to the specified vertex */ public void printPath(String endName) { if (!graph.containsKey(endName)) { System.err.printf("Graph doesn"t contain end vertex \"%s\"\n", endName); return; } graph.get(endName).printPath(); System.out.println(); } /** Prints the path from the source to every vertex (output order is not guaranteed) */ public void printAllPaths() { for (Vertex v: graph.values()) { v.printPath(); System.out.println(); } } }

C

#include #include #include //#define BIG_EXAMPLE typedef struct node_t node_t, *heap_t; typedef struct edge_t edge_t; struct edge_t { node_t *nd; /* target of this edge */ edge_t *sibling;/* for singly linked list */ int len; /* edge cost */ }; struct node_t { edge_t *edge; /* singly linked list of edges */ node_t *via; /* where previous node is in shortest path */ double dist; /* distance from origining node */ char name; /* the, er, name */ int heap_idx; /* link to heap position for updating distance */ }; /* --- edge management --- */ #ifdef BIG_EXAMPLE # define BLOCK_SIZE (1024 * 32 - 1) #else # define BLOCK_SIZE 15 #endif edge_t *edge_root = 0, *e_next = 0; /* Don"t mind the memory management stuff, they are besides the point. Pretend e_next = malloc(sizeof(edge_t)) */ void add_edge(node_t *a, node_t *b, double d) { if (e_next == edge_root) { edge_root = malloc(sizeof(edge_t) * (BLOCK_SIZE + 1)); edge_root.sibling = e_next; e_next = edge_root + BLOCK_SIZE; } --e_next; e_next->nd = b; e_next->len = d; e_next->sibling = a->edge; a->edge = e_next; } void free_edges() { for (; edge_root; edge_root = e_next) { e_next = edge_root.sibling; free(edge_root); } } /* --- priority queue stuff --- */ heap_t *heap; int heap_len; void set_dist(node_t *nd, node_t *via, double d) { int i, j; /* already knew better path */ if (nd->via && d >= nd->dist) return; /* find existing heap entry, or create a new one */ nd->dist = d; nd->via = via; i = nd->heap_idx; if (!i) i = ++heap_len; /* upheap */ for (; i > 1 && nd->dist < heap->dist; i = j) (heap[i] = heap[j])->heap_idx = i; heap[i] = nd; nd->heap_idx = i; } node_t * pop_queue() { node_t *nd, *tmp; int i, j; if (!heap_len) return 0; /* remove leading element, pull tail element there and downheap */ nd = heap; tmp = heap; for (i = 1; i < heap_len && (j = i * 2) <= heap_len; i = j) { if (j < heap_len && heap[j]->dist > heap->dist) j++; if (heap[j]->dist >= tmp->dist) break; (heap[i] = heap[j])->heap_idx = i; } heap[i] = tmp; tmp->heap_idx = i; return nd; } /* --- Dijkstra stuff; unreachable nodes will never make into the queue --- */ void calc_all(node_t *start) { node_t *lead; edge_t *e; set_dist(start, start, 0); while ((lead = pop_queue())) for (e = lead->edge; e; e = e->sibling) set_dist(e->nd, lead, lead->dist + e->len); } void show_path(node_t *nd) { if (nd->via == nd) printf("%s", nd->name); else if (!nd->via) printf("%s(unreached)", nd->name); else { show_path(nd->via); printf("-> %s(%g) ", nd->name, nd->dist); } } int main(void) { #ifndef BIG_EXAMPLE int i; # define N_NODES ("f" - "a" + 1) node_t *nodes = calloc(sizeof(node_t), N_NODES); for (i = 0; i < N_NODES; i++) sprintf(nodes[i].name, "%c", "a" + i); # define E(a, b, c) add_edge(nodes + (a - "a"), nodes + (b - "a"), c) E("a", "b", 7); E("a", "c", 9); E("a", "f", 14); E("b", "c", 10);E("b", "d", 15);E("c", "d", 11); E("c", "f", 2); E("d", "e", 6); E("e", "f", 9); # undef E #else /* BIG_EXAMPLE */ int i, j, c; # define N_NODES 4000 node_t *nodes = calloc(sizeof(node_t), N_NODES); for (i = 0; i < N_NODES; i++) sprintf(nodes[i].name, "%d", i + 1); /* given any pair of nodes, there"s about 50% chance they are not connected; if connected, the cost is randomly chosen between 0 and 49 (inclusive! see output for consequences) */ for (i = 0; i < N_NODES; i++) { for (j = 0; j < N_NODES; j++) { /* majority of runtime is actually spent here */ if (i == j) continue; c = rand() % 100; if (c < 50) continue; add_edge(nodes + i, nodes + j, c - 50); } } #endif heap = calloc(sizeof(heap_t), N_NODES + 1); heap_len = 0; calc_all(nodes); for (i = 0; i < N_NODES; i++) { show_path(nodes + i); putchar("\n"); } #if 0 /* real programmers don"t free memories (they use Fortran) */ free_edges(); free(heap); free(nodes); #endif return 0; }

PHP

$edge, "cost" => $edge); $neighbours[$edge] = array("end" => $edge, "cost" => $edge); } $vertices = array_unique($vertices); foreach ($vertices as $vertex) { $dist[$vertex] = INF; $previous[$vertex] = NULL; } $dist[$source] = 0; $Q = $vertices; while (count($Q) > 0) { // TODO - Find faster way to get minimum $min = INF; foreach ($Q as $vertex){ if ($dist[$vertex] < $min) { $min = $dist[$vertex]; $u = $vertex; } } $Q = array_diff($Q, array($u)); if ($dist[$u] == INF or $u == $target) { break; } if (isset($neighbours[$u])) { foreach ($neighbours[$u] as $arr) { $alt = $dist[$u] + $arr["cost"]; if ($alt < $dist[$arr["end"]]) { $dist[$arr["end"]] = $alt; $previous[$arr["end"]] = $u; } } } } $path = array(); $u = $target; while (isset($previous[$u])) { array_unshift($path, $u); $u = $previous[$u]; } array_unshift($path, $u); return $path; } $graph_array = array(array("a", "b", 7), array("a", "c", 9), array("a", "f", 14), array("b", "c", 10), array("b", "d", 15), array("c", "d", 11), array("c", "f", 2), array("d", "e", 6), array("e", "f", 9)); $path = dijkstra($graph_array, "a", "e"); echo "path is: ".implode(", ", $path)."\n";


Python

from collections import namedtuple, queue from pprint import pprint as pp inf = float("inf") Edge = namedtuple("Edge", "start, end, cost") class Graph(): def __init__(self, edges): self.edges = edges2 = self.vertices = set(sum(( for e in edges2), )) def dijkstra(self, source, dest): assert source in self.vertices dist = {vertex: inf for vertex in self.vertices} previous = {vertex: None for vertex in self.vertices} dist = 0 q = self.vertices.copy() neighbours = {vertex: set() for vertex in self.vertices} for start, end, cost in self.edges: neighbours.add((end, cost)) #pp(neighbours) while q: u = min(q, key=lambda vertex: dist) q.remove(u) if dist[u] == inf or u == dest: break for v, cost in neighbours[u]: alt = dist[u] + cost if alt < dist[v]: # Relax (u,v,a) dist[v] = alt previous[v] = u #pp(previous) s, u = deque(), dest while previous[u]: s.pushleft(u) u = previous[u] s.pushleft(u) return s graph = Graph([("a", "b", 7), ("a", "c", 9), ("a", "f", 14), ("b", "c", 10), ("b", "d", 15), ("c", "d", 11), ("c", "f", 2), ("d", "e", 6), ("e", "f", 9)]) pp(graph.dijkstra("a", "e")) Output: ["a", "c", "d", "e"]

Рассмотрим пример нахождение кратчайшего пути. Дана сеть автомобильных дорог, соединяющих области города. Некоторые дороги односторонние. Найти кратчайшие пути от центра города до каждого города области.

Для решения указанной задачи можно использовать алгоритм Дейкстры — алгоритм на графах, изобретённый нидерландским ученым Э. Дейкстрой в 1959 году. Находит кратчайшее расстояние от одной из вершин графа до всех остальных. Работает только для графов без рёбер отрицательного веса.

Пусть требуется найти кратчайшие расстояния от 1-й вершины до всех остальных.

Кружками обозначены вершины, линиями – пути между ними (ребра графа). В кружках обозначены номера вершин, над ребрами обозначен их вес – длина пути. Рядом с каждой вершиной красным обозначена метка – длина кратчайшего пути в эту вершину из вершины 1.

Метка самой вершины 1 полагается равной 0, метки остальных вершин – недостижимо большое число (в идеале — бесконечность). Это отражает то, что расстояния от вершины 1 до других вершин пока неизвестны. Все вершины графа помечаются как непосещенные.

Первый шаг

Минимальную метку имеет вершина 1. Её соседями являются вершины 2, 3 и 6. Обходим соседей вершины по очереди.

Первый сосед вершины 1 – вершина 2, потому что длина пути до неё минимальна. Длина пути в неё через вершину 1 равна сумме кратчайшего расстояния до вершины 1, значению её метки, и длины ребра, идущего из 1-й в 2-ю, то есть 0 + 7 = 7. Это меньше текущей метки вершины 2 (10000), поэтому новая метка 2-й вершины равна 7.


Аналогично находим длины пути для всех других соседей (вершины 3 и 6).

Все соседи вершины 1 проверены. Текущее минимальное расстояние до вершины 1 считается окончательным и пересмотру не подлежит. Вершина 1 отмечается как посещенная.

Второй шаг

Шаг 1 алгоритма повторяется. Снова находим «ближайшую» из непосещенных вершин. Это вершина 2 с меткой 7.

Снова пытаемся уменьшить метки соседей выбранной вершины, пытаясь пройти в них через 2-ю вершину. Соседями вершины 2 являются вершины 1, 3 и 4.

Вершина 1 уже посещена. Следующий сосед вершины 2 - вершина 3, так как имеет минимальную метку из вершин, отмеченных как не посещённые. Если идти в неё через 2, то длина такого пути будет равна 17 (7 + 10 = 17). Но текущая метка третьей вершины равна 9, а 9 < 17, поэтому метка не меняется.


Ещё один сосед вершины 2 - вершина 4. Если идти в неё через 2-ю, то длина такого пути будет равна 22 (7 + 15 = 22). Поскольку 22<10000, устанавливаем метку вершины 4 равной 22.

Все соседи вершины 2 просмотрены, помечаем её как посещенную.

Третий шаг

Повторяем шаг алгоритма, выбрав вершину 3. После её «обработки» получим следующие результаты.

Четвертый шаг

Пятый шаг

Шестой шаг


Таким образом, кратчайшим путем из вершины 1 в вершину 5 будет путь через вершины 1 — 3 — 6 — 5 , поскольку таким путем мы набираем минимальный вес, равный 20.

Займемся выводом кратчайшего пути. Мы знаем длину пути для каждой вершины, и теперь будем рассматривать вершины с конца. Рассматриваем конечную вершину (в данном случае — вершина 5 ), и для всех вершин, с которой она связана, находим длину пути, вычитая вес соответствующего ребра из длины пути конечной вершины.
Так, вершина 5 имеет длину пути 20 . Она связана с вершинами 6 и 4 .
Для вершины 6 получим вес 20 — 9 = 11 (совпал) .
Для вершины 4 получим вес 20 — 6 = 14 (не совпал) .
Если в результате мы получим значение, которое совпадает с длиной пути рассматриваемой вершины (в данном случае — вершина 6 ), то именно из нее был осуществлен переход в конечную вершину. Отмечаем эту вершину на искомом пути.
Далее определяем ребро, через которое мы попали в вершину 6 . И так пока не дойдем до начала.
Если в результате такого обхода у нас на каком-то шаге совпадут значения для нескольких вершин, то можно взять любую из них — несколько путей будут иметь одинаковую длину.

Реализация алгоритма Дейкстры

Для хранения весов графа используется квадратная матрица. В заголовках строк и столбцов находятся вершины графа. А веса дуг графа размещаются во внутренних ячейках таблицы. Граф не содержит петель, поэтому на главной диагонали матрицы содержатся нулевые значения.

1 2 3 4 5 6
1 0 7 9 0 0 14
2 7 0 10 15 0 0
3 9 10 0 11 0 2
4 0 15 11 0 6 0
5 0 0 0 6 0 9
6 14 0 2 0 9 0

Реализация на C++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

#define _CRT_SECURE_NO_WARNINGS
#include
#include
#define SIZE 6
int main()
{
int a; // матрица связей
int d; // минимальное расстояние
int v; // посещенные вершины
int temp, minindex, min;
int begin_index = 0;
system("chcp 1251" );
system("cls" );
// Инициализация матрицы связей
for (int i = 0; i {
a[i][i] = 0;
for (int j = i + 1; j printf("Введите расстояние %d - %d: " , i + 1, j + 1);
scanf("%d" , &temp);
a[i][j] = temp;
a[j][i] = temp;
}
}
// Вывод матрицы связей
for (int i = 0; i {
for (int j = 0; j printf("%5d " , a[i][j]);
printf("\n" );
}
//Инициализация вершин и расстояний
for (int i = 0; i {
d[i] = 10000;
v[i] = 1;
}
d = 0;
// Шаг алгоритма
do {
minindex = 10000;
min = 10000;
for (int i = 0; i { // Если вершину ещё не обошли и вес меньше min
if ((v[i] == 1) && (d[i] { // Переприсваиваем значения
min = d[i];
minindex = i;
}
}
// Добавляем найденный минимальный вес
// к текущему весу вершины
// и сравниваем с текущим минимальным весом вершины
if (minindex != 10000)
{
for (int i = 0; i {
if (a[i] > 0)
{
temp = min + a[i];
if (temp < d[i])
{
d[i] = temp;
}
}
}
v = 0;
}
} while (minindex < 10000);
// Вывод кратчайших расстояний до вершин
printf("\nКратчайшие расстояния до вершин: \n" );
for (int i = 0; i printf("%5d " , d[i]);

// Восстановление пути
int ver; // массив посещенных вершин
int end = 4; // индекс конечной вершины = 5 - 1
ver = end + 1; // начальный элемент - конечная вершина
int k = 1; // индекс предыдущей вершины
int weight = d; // вес конечной вершины

while (end != begin_index) // пока не дошли до начальной вершины
{
for (int i = 0; i// просматриваем все вершины
if (a[i] != 0) // если связь есть
{
int temp = weight - a[i]; // определяем вес пути из предыдущей вершины
if (temp == d[i]) // если вес совпал с рассчитанным
{ // значит из этой вершины и был переход
weight = temp; // сохраняем новый вес
end = i; // сохраняем предыдущую вершину
ver[k] = i + 1; // и записываем ее в массив
k++;
}
}
}
// Вывод пути (начальная вершина оказалась в конце массива из k элементов)
printf("\nВывод кратчайшего пути\n" );
for (int i = k - 1; i >= 0; i--)
printf("%3d " , ver[i]);
getchar(); getchar();
return 0;
}


Результат выполнения


Назад: