Информационные технологии на автомобильном транспорте лекции. Информационные технологии на транспорте

По сравнению с водным транспортом, насчитывающим тысячелетия, железнодорожный транспорт - относительно молодой. Первую железную дорогу Джордж Стефенсон создал в 1825-1830 годах.

Движение на железных дорогах в первое время после постройки происходило с незначительной скоростью. При начале движения паровоз не подавал сигнала. Однако уже на открытии линии Ливерпуль-Манчестер произошел несчастный случай. Один из членов парламента, сторонник сооружения железной дороги, подошел к поезду и решил обменяться рукопожатием с герцогом Веллингтоном, уже сидевшим в вагоне. Но поезд тронулся, и человек попал под колесо. Этот случай заставил Джорджа Стефенсона задуматься над необходимостью применения каких-либо сигналов для обеспечения безопасности железнодорожного движения. По указанию Стефенсона были введены сигналы, которые подавали сторожа: днем - флажками, ночью - ручными фонарями. Машинистам выдали рожки, которые в 1835 г. были заменены паровым свистком. С 1834 г. на линии Ливерпуль-Манчестер были введена сигнализация с помощью поворачивающихся деревянных столбов. В 1841 году англичанин Грегори изобрел семафор - мачту с подвижным крылом. Сигналом в нем служит положение крыла относительно ма чты. Использование семафора позволило перейти от движения поездов с разграничением по времени к разграничению в пространстве. Средствами связи при движении поездов служили телеграф, а позднее телефон.

Затем для обеспечения безопасности движения поездов была введена блокировка , с помощью которой путевые семафоры запирались на время, пока на соответствующем участке пути находился поезд. Первой практически удовлетворительной системой блокировки была система Тейера, появившаяся в 1852 году в Англии и примененная в 1868 году в России.

Дистанционное управление стрелками (т. е. централизация стрелок) появилось впервые в Англии и затем в Германии (1860-1867 гг.). Введение на русских железных дорогах систем централизации стрелок и сигналов относится к 1900-1905 гг. Сначала появилась гидравлическая система, а в 1909 г. была построена первая в России электрическая централизация системы Всеобщей компании электричества.

Первая попытка устройства автоматической блокировки была произведена во Франции в 1859 г. на железной дороге Париж-Сен-Жермен.

Затем появился более совершенный и в то же время более простой метод связи поезда с путем - рельсовая цепь. В 1867 г. Вильям Робинзон предложил использовать ходовые рельсы в качестве проводников электрического тока и создал специальную конструкцию путевого приемника. В 1869 г. он разработал модель первой автоблокировки, которая демонстрировалась на выставке в Нью-Йорке. При наезде поезда рельсовая цепь замыкается его скатами. Такая рельсовая цепь, получившая название нормально разомкнутой, имела ряд недостатков, основным из которых было отсутствие контроля целостности и исправности цепи. После дополнительной проработки Робинзон в 1872 г. предложил более совершенную нормально замкнутую рельсовую цепь. Она сразу получила признание, так как недостатки предшествующей цепи в ней были устранены.

Одним из самых опасных элементов, входивших в общую систему железнодорожной сигнализации, являлся человек, обслуживающий сигнализацию или пользующийся ею, со свойственными его природе недостатками.

Это обстоятельство привело к необходимости в 80-х годах прошлого столетия введения в эксплуатацию автостопов - приборов, останавливающих поезд при проходе его мимо или при приближении к закрытому семафору. Для этой цели от воздухопровода пневматического тормоза делался отвод на крышу паровоза.

На конце отвода имелась стеклянная запаянная трубка или поворотный кран. С семафорным крылом или приводом был соединен рычаг, который при открытом семафоре располагался вдоль мачты, при закрытом - становился на пути трубки, которая разбивалась и соединяла воздухопровод с атмосферой. Происходило торможение.

При больших скоростях движения поездов такое примитивное решение оказалось непрактичным, ибо резкая остановка пассажирского поезда могла вызвать беспокойство среди пассажиров, а у грузового состава - повлечь за собой сход с рельсов. Были созданы авторегулировочные системы, при которых скорость поезда автоматически понижалась в определенных местах. Поезд останавливался, как правило, лишь после предварительного снижения скорости.

Современный железнодорожный транспорт представляет собой сложную динамическую систему, в которую входят пути, станции, парк грузовых, пассажирских вагонов, локомотивов и обслуживающий персонал.

Для обеспечения надежной и безаварийной работы всего этого большого хозяйства используются системы сигнализации, связи и управления.

С развитием сети железных дорог и увеличением скорости движения поездов потребовались более совершенные средства связи и управления, такие как автоматическая блокировка и автоматическая локомотивная сигнализация. Затем стала применяться радиотелефонная связь , а в конце XX и начале XXI века в управлении ж.-д. транспортом широкое применение нашли телевидение, компьютер и Оптоволоконные линии связи.

Основной причиной большинства аварий и катастроф на транспорте является человеческий фактор : прежде всего, ошибки водителей и диспетчеров. Но совершить ошибку на разных видах транспорта человек может по -разному. Например, на железнодорожном рельсовом транспорте отсутствует такое средство управления, как руль, следовательно, машинист физически не может ошибиться, вращая его, а такая ошибка очень часто допускается водителями автомобилей.

Наибольшие возможности в автоматизации процесса принятия решений предоставляют, естественно, различные виды рельсового транспорта.

В СССР первая автономная система автоведения поезда (так называемый "автомашинист") была создана еще в 1957 году. Но полная автоматизация управления поездом впервые была внедрена на рубеже 1980-х и 1990-х годов во Франции, в метрополитене города Лилль. Ведь поезд метро полностью изолирован от влияния погоды, от возможного желания водителя изменить направление движения, от риска столкновения со встречным или желающим совершить обгон транспортным средством и т.д. Система автоведения поездов лилльского метро управляет всем процессом движения - от пуска до полной остановки.

Различают автономные и централизованные системы автоведения поездов, причем первые управляют только одним поездом, а вторые - всеми поездами на линии метрополитена или железнодорожном направлении. Централизованные системы автоведения поездов используются в первую очередь на пригородных и городских железных дорогах. Примером может служить система "ВАРТ", применяемая в США.

Метрополитен в Пекине стал первой китайской подземкой, где машиниста в поездах заменяет "автопилот". Впервые такая система будет внедрена на линии метро, которая свяжет пекинский аэропорт с районами на востоке китайской столицы. Общая протяженность ветки с четырьмя станциями составит больше 27 километров. Поездка по ней займет всего 16 минут. Она принята в эксплуатацию накануне пекинской Олимпиады-2008. Применение новейших технологий позволит экспрессам на этой линии стать малошумными и при этом развивать скорость до 110 километров в час, что на 30 км/ч больше, чем у обычных метропоездов. Пекинский метрополитен перевозит ежедневно более 5 миллионов пассажиров.

Автомобильный транспорт

Первый автомобиль с двигателем внутреннего сгорания создали Г. Даймлер и К. Бенц в 1885-1886 гг. Он представлял собой открытую коляску с ручкой управления и тормозом. Ездил он с очень малой скоростью - не более 10-12 км/ч. Никаких приборов не имел. Первую модель своего автомобиля ("модель III") К. Бенц выпустил для продажи в 1886 году. Всего с 1886 по 1894 гг. было продано 25 экземпляров. Интересовали они в основном спортсменов-любителей. На движение по дорогам в первые годы автомобиль не влиял. Развитие автомобильной промышленности началось лишь в XX веке. Возросла мощность двигателей - от 2-3 кВт в начале века она увеличилась в конце века до 200 кВт. Значительно повысилась скорость - она быстро достигла 100 и более км/ч. Такая скорость потребовала создания более удобных и комфортабельных машин с закрытым кузовом, оснащенных целым рядом приборов - измерителей скорости, количества бензина, масла и т.д. Их расположили на приборной доске перед водителем. Автомобили оснастили осветительными фарами, габаритными, поворотными и тормозными сигналами, зеркалами заднего вида.

Сильнейший толчок развитию автомобильной промышленности дал метод поточной (конвейерной) технологии сборки автомобилей, впервые в мире примененный в 1913 году Генри Фордом на своем заводе. Это позволило всего за один год поднять производительность труда на 40-60% и достигнуть при этом стандартизации и взаимозаменяемости деталей.

С 1910 по 2000 гг. в мире было выпущено 1,3 миллиарда автомобилей. За это время автомобиль стал главным индивидуальным транспортным средством. Еще 1,3 миллиарда машин произведено в 2010 году.

Появление автомобильного транспорта потребовало строительства дорог с твердым покрытием. В Европе и Америке начали строить широкие асфальтированные дороги. С увеличением интенсивности движения жизнь потребовала строительства скоростных автомагистралей.

В настоящее время в мире насчитывается 15 млн. км благоустроенных дорог, в том числе в Российской Федерации - до 1 млн. км. В результате появления автомобилей территория промышленно развитых стран покрылась густой сетью автомобильных дорог - главных транспортных артерий XX и начала XXI веков.

Все нарастающая интенсивность и скорость движения заставила выработать необходимое информационное обеспечение автомобильного транспорта. Дорога, транспорт, человек, - это три основных составляющих дорожного движения. Были выработаны правила дорожного движения (ПДД) и сигнализация, необходимые для обеспечения безопасности водителей, пассажиров и пешеходов.

Эти правила регламентируют обязанности водителей транспортных средств и пешеходов, а также технические требования, предъявляемые к транспортным средствам для обеспечения безопасности дорожного движения.

В первое время ПДД в разных странах отличались друг от друга.

В 1909 году в Париже на международной конференции были приняты единые правила, общие для всех стран Европы. В 1940 году в СССР были утверждены первые типовые правила движения, на базе которых стали создаваться единообразные правила на местах. Правила дорожного движения Российской Федерации были приняты в 1993 году.

Первый трехцветный (красный, желтый, зеленый) автоматический светофор был установлен в Нью-Йорке в 1918 году, а в Москве и Ленинграде такие светофоры появились в 1930 году.

С увеличением скорости движения автомобилей возникла необходимость информировать водителя о состоянии дороги впереди, о том, насколько она безопасна для движения. Так появились требования располагать дорожные знаки на определенном расстоянии от препятствия. Существуют знаки для указания направления движения, запретительные знаки (например, знаки железнодорожного переезда), знаки подачи звукового сигнала, знаки для пешеходов. В систему дорожных знаков входит и дорожная разметка - горизонтальная и вертикальная.

Горизонтальная разметка (линии, стрелы, надписи и другие обозначения на проезжей части) устанавливает определенные режимы и порядок движения. Вертикальная разметка в виде сочетания черных и белых полос на дорожных сооружениях и элементах оборудования дорог показывает их габариты и служит средством зрительного ориентирования.

Изобретение компьютера и развитие цифровых информационных технологий позволило коренным образом усовершенствовать информационное обеспечение автомобилей.

В современных автомобилях все системы и агрегаты - двигатель и трансмиссия, тормоза, система рулевого управления, подвески, система безопасности, система поддержания определенной температуры и влажности в салоне, - контролируются и управляются бортовыми компьютерами. Во многих современных автомобилях имеются проигрыватель компакт-дисков, автомат их смены, кассетная стереодека, один или несколько встроенных сотовых телефонов и навигационный компьютер , содержащий приемник спутниковой системы навигации ( GPS ). В нем применяются электронные карты местности для определения точного местоположения автомобиля на местности и прокладывания маршрута следования. Такой радионавигатор снижает утомляемость за рулем и позволяет экономить время и деньги на объездах и поисках.

Изменился вид приборной доски. Вместо набора стрелочных приборов используется единый жидкокристаллический монитор , на котором информация о скорости, расходе топлива и пробеге либо дается водителю в цифровой форме, либо имитируется в виде стрелочных приборов. Применяются сенсорные дисплеи, чувствительные к прикосновению, и электронное табло спидометра с проектором скорости на лобовое стекло.

Для автомобилей разработаны видео/аудиоцентры и системы навигации. В него входит 5-дюймовый монитор на жидких кристаллах, радио (ЧМ и СВ), проигрыватель CD- и DVD-дисков, видео, телевизионный тюнер, система навигации и акустическая система.

В Москве уже работает опытное цифровое телерадиовещание. Прием мобильного пакета будет вестись на мобильные телевизионные приемники, оборудованные жидкокристаллическим дисплеем.

Когда-то путешественники ориентировались по звездам. Сегодня навигация осуществляется по сигналам искусственных спутников. При подключении системы навигации трехмерные карты на мониторе и аудиогид помогают водителю благополучно доехать до пункта назначения. Как только водитель вводит в систему навигации пункт , до которого ему нужно добраться, система сразу же ищет наилучший маршрут (например, кратчайший путь ). По желанию можно задать до 4 пунктов, через которые вы хотите проехать до конечного пункта. Затем система указывает маршрут при помощи стрелки на карте и голоса. Трехмерная карта позволяет видеть объекты впереди и трехмерные увеличенные изображения перекрестков. Голосовой гид системы навигации предупреждает о приближении к перекрестку, например, так: "Через 600 метров сделайте левый поворот"

В салоне автомобиля можно легко разместить самые разные мобильные устройства - ноутбук или палмтоп, принтер, сканер , факс. Ведущие мировые производители (BMW, DaimlerCrysler, Ford, Fiat, General Motors, Honda, Renaut, Volkswagen) стремятся объединить все электронные приборы и устройства автомобиля в единую сеть - своеобразный передвижной офис .

К электронному оснащению современного автомобиля относятся и приспособления hands free ("свободные руки"). Особенно актуальным становится их использование после того, как в России с апреля 2001 года было введено правило, запрещающее водителям разговаривать во время езды

Однако после внедрения приспособлений "свободные руки" аварийность на дорогах не уменьшилась: водители, болтая по телефону во время движения, теряют контроль над автомобилем и поздно реагируют на внезапно возникающую опасность. Реакция водителя, разговаривающего по телефону, замедляется в два раза. Поэтому пользоваться приспособлениями "свободные руки" категорически не рекомендуется водителям во время движения автомобиля.

Технология Blue Eyes регистрирует движения глаза водителя и частоту моргания. Инфракрасная камера следит за положением глаз, и если система не находит глазного яблока, считается, что водитель во время движения автомобиля заснул. Тогда раздается сигнал тревоги, который разбудит водителя и тем самым предотвратит одну из самых опасных аварийных ситуаций.

радар . Принцип его действия основан на современной технологии измерения расстояния до препятствия с помощью ультразвукового сигнала. Датчики, установленные около заднего бампера, и система индикации расстояния до препятствия облегчат парковку и маневрирование в ограниченном пространстве, а также в темное время суток. Помимо датчиков, система комплектуется звуковым и/или световым индикатором расстояния. Они устанавливаются на приборной панели и дают водителю мгновенную информацию о расстоянии до приближающегося препятствия.

Когда автомобиль движется задним ходом, водитель видит не все. Паркуя автомобиль во дворе или окрестности детской площадки, можно не заметить рядом с задним бампером автомобиля ребенка 2-4 лет. Это особенно опасно.

Столбики, высокие бордюры, крупные предметы, лежащие на земле, - все это находится вне поля зрения водителя. Как результат - повреждения бампера, случайные царапины, вмятины и расходы на ремонт. Парковочный радар способен своевременно предупредить водителя о приближении не только к крупным препятствиям, но и к малогабаритным объектам и объектам небольшой высоты, что особенно полезно в темное время суток.

Адаптивный круиз- контроль (АСС) умеет не только поддерживать заданную скорость движения, но и может автоматически поддерживать заданное расстояние до впереди идущего автомобиля. Радар , установленный на решетке радиатора, способен распознавать движущиеся впереди (тем же курсом) автомобили. Если полоса свободна, система поддерживает заданную вами скорость. Если же радар распознает автомобиль, движущийся перед вами на более низкой скорости, система автоматически уменьшает подачу топлива в цилиндры двигателя, а при необходимости даже притормаживает машину, используя рабочую тормозную систему.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

система мониторинг транспортное средство

Информационные технологии и мониторинг на транспорте

Левяков Олег

Независимый консультант

Методологического Центра ЮНКТАД, к.э.н.

Не будет преувеличением сказать, что именно транспорт во многом сделал современный мир таким, каков он есть, начиная с эпохи великих географических открытий. Вывод из этого можно сделать один: в вопросах стратегического развития, как мировой, так и отечественной экономики «нетранспортных» тем не существует. Будущее России, учитывая её уникальные географические особенности, во многом зависит от разумности сегодняшней транспортной политики.

Вместе с тем, на отечественном транспорте сохраняется ряд проблем, которые в условиях роста экономики России и её реструктуризации могут замедлить осуществление социально-экономической политики государства. Среди них следует отметить то, что основные фонды транспорта в течение долгого времени обновляются недостаточными темпами, а посему сохраняется тенденция нарастания уровня их физического и морального износа. К сожалению, стратегическое планирование транспорта как единого комплекса не получило достаточного развития в общем контексте развития производительных сил. И, наконец, сохраняется существенное отставание в уровне применения современных логистических технологий и информатизации транспорта России.

В последнее время, между тем, усилилось международное соперничество за транзитные грузопотоки, мировое сообщество еще более ужесточило стандарты по экологичности и безопасности транспорта, что создает реальную угрозу потери российскими перевозчиками своих позиций на рынке международных перевозок.

Системное решение всего комплекса вышеуказанных проблем является основным содержанием Федеральной целевой программы «Модернизация транспортной системы России (2002 - 2010 годы)».

Решению задач по внедрению информационных технологий на макроэкономическом уровне посвящена подпрограмма «Информатизация» указанной Федеральной целевой программы. Она предусматривает следующие мероприятия:

Создание Государственного информационного ресурса транспортного комплекса;

Создание системы мониторинга состояния и безопасного функционирования транспортного комплекса;

Создание системы сбора и обработки статистической информации по транспортному комплексу;

Создание единого информационного пространства взаимодействия органов управления транспортным комплексом, субъектов и пользователей рынка транспортных услуг;

Создание системы логистических центров и информационного сопровождения перевозок в международных транспортных коридорах;

Создание системы информационного и технологического взаимодействия отдельных видов транспорта в едином транспортном комплексе.

На сегодняшний день сделано уже достаточно много, особенно в рамках НИОКР, а именно разработаны:

Положение о Государственном информационном ресурсе,

Регламент информационного взаимодействия между органами управления транспортом, администрациями регионального и местного уровней, субъектами и пользователями рынка транспортных услуг,

Стандарты в сфере коммуникационных технологий,

Концепция информационной безопасности на транспортном комплексе,

Методологические основы мониторинга и ситуационного управления работой отдельных видов транспорта,

Технологии сбора и обработки данных статистического наблюдения за работой транспортного комплекса и формирование интегрированной системы электронного документооборота,

Нормативно-технические документы информационного взаимодействия органов управления комплексом и концепция создания интегрированных систем информационного обслуживания пользователей транспортных услуг и субъектов транспортного рынка.

Таким образом, мы можем отметить, что реализация Федеральных целевых программ «Модернизация транспортной системы России» и «Электронная Россия» продвигается, хотя и не такими темпами, которые могут удовлетворить участников транспортного рынка. Постепенно создаются условия для широкого распространения информационных и коммуникационных технологий, обеспечения прав на свободный поиск, получение, передачу, производство и распространение информации, расширение подготовки специалистов по информатике и квалифицированных пользователей, развивается телекоммуникационная инфраструктура, создаются пункты подключения к открытым информационным системам. Многими субъектами рынка перевозок предпринимаются шаги по более широкому распространению электронной торговли, электронному обмену документами, включая трансграничные, внедрению типовых договорных и товарно-транспортных документов.

Вместе с тем, до сих пор не принесли заметных результатов усилия по обеспечению прозрачности информационной среды для инвесторов и участников инновационного процесса на транспорте. Не завершено создание системы логистических центров и мер информационного сопровождения перевозок в международных транспортных коридорах на основе разработки пакета нормативных стандартов единой системы мониторинга таких перевозок. Затягивается разработка единых автоматизированных систем управления перевозками и создание общетранспортных логистических центров на территории страны.

Развитие ключевых информационных подходов в логистике - телематика, интеграция информационных потоков и коммуникационное обеспечение транспортировки, в России сопряжено с рядом проблем, обусловленных невысоким качеством техники, её некачественным обслуживанием, распространение контрафактных программных продуктов и недостаточной обученностью пользователей. Особенно остро стоит проблема некачественного программного обеспечения, связанная с исключительной сложностью и уникальностью логистических программ, проблемами с защитой интеллектуальной собственности программистов и высокой ценой лицензионных программ, делающей качественное ПО недоступным для большинства российских перевозчиков.

Предпринимаемые государственными органами и крупными игроками на рынке транспортных услуг усилия по развитию информационных технологий не исключают, а, наоборот, предполагают повышение активности отдельных хозяйствующих субъектов в области внедрения IT подходов к решению логистических проблем.

Плодотворная совместная работа участников цепей поставок невозможна без интенсивного оперативного обмена информацией, что делает необходимостью применение информационных систем и программных комплексов для анализа, планирования и поддержки принятия решений в логистических системах. Приоритетами в развитие глобальной логистике признаны мобильность, использование интернет-технологий и мультимодальность. Как проявление постепенного перехода от конкуренции между отдельными видами транспорта к их взаимодействию на основе мультимодальности формируется единая евроазиатская система международных транспортных (Критских) коридоров, а также единое информационное пространство на основе Интернета, внедряются единые стандарты в электронных системах поддержки бизнеса. В настоящее время обычными стали виртуальные сети транспортного экспедирования, постоянный мониторинг состояния транспортных средств и грузов, информационная поддержка операторов интермодальных перевозок.

Остается весьма актуальной информационная интеграция на основе телематики с целью обеспечения непрерывного глобального трансъевропейского мониторинга движения товаров. Широкое распространение получило развитие скоростных платных магистралей с дистанционными формами расчетов. С 2000 года в Австрии, а с 2002 года в ФРГ и Нидерландах организован спутниковый контроль движения транспорта по таким магистралям и дистанционная безостановочная форма расчетов за проезд с применение СВЧ и инфракрасной систем считывания информации. Предпринимаются попытки решения проблемы длительных простоев транспорта на границах Евросоюза путем внедрения технологии «Green Custom», основанной на электронном обмене документами (EDI). Повсеместное распространение среди перевозчиков получила глобальная мобильная связь «трубка-трубка», обеспечиваемая низкоорбитальными спутниковыми системами типа «Globalstar». Новые направления развития логистики связаны с методологиями распределения мобильного управления на основе WAP-технологий (m-logistics) и непрерывной информационной и ресурсной поддержкой жизненного цикла товаров и услуг на основе CALS-технологий.

Следует отметить, что ключевое направление развития информатики в современных условиях - телематика, т.е. интеграция информационных потоков и коммуникационное обеспечение транспортировки товаров - в России сталкивается с рядом проблем, таких как качество техники, интегрированность информационных процессов и уровень квалификации персонала. Особняком стоит проблема качественного ПО, состоящая из комплекса проблем. Это и невостребованность труда российских программистов, уникальность логистических программ, существующие проблемы с защитой интеллектуальной собственности программистов, оперативные проблемы унификации бухгалтерских и финансовых операций.

До сих пор весьма велики требуемые финансовые затраты на реализацию проектов комплексной автоматизации управления, что, в дополнение к все еще высокой стоимости компьютерного и периферийного оборудования и средств коммуникации, делает их малодоступными для большинства российских логистических компаний. Да и для крупных компаний проблема «цена-функциональность ПО» является трудноразрешимой.

Электронные информационные потоки применяются в мониторинговых системах для контроля за движением товаров, в т.ч. в открытых для клиентов технологиях слежения за движением грузов по номерам товаротранспортных документов через интернет. Данные технологии представляют собой документарные системы мониторинга, действующие не в режиме on-line, а через запрос грузополучателя / грузоотправителя /экспедитора диспетчеру перевозчика, который пересылает запрос водителю, либо терминалу при завозе и вывозе груза. Обмен данными происходит через коммерческие и некоммерческие телекоммуникационные сети Compuserve, America online, Relcom и системы операторов сотовой связи.

Следует отметить, что документарный мониторинг перевозок весьма трудоемок. Информационные потоки, сопровождающие отдельные функции в логистической системе, например, операционные производственные процедуры, таможенное оформление грузов и транспортировка, управление заказами и запасами, могут быть очень сложными в плане объема и схем документооборота, количества документов и реквизитов.

Документооборот в России, особенно во внешнеторговых перевозках, чрезвычайно усложнен. Так, при импортных перевозках при перегрузке в системе «порт- железнодорожная станция» необходимо наличие 10 документов (манифест, коносамент, каргоплан, люковая записка, страховой полис, сертификат соответствия, счет-фактура и др.), при экспортных - 13 (железнодорожная накладная, дорожная ведомость, вагонный лист, счет-фактура, ГТД и др.). Для вывода из системы 8 документов на импортные грузы необходимо оформить 204 оригинальных документа. При экспортных перевозках требуется 10 и 189 соответствующих документов.

При этом ни один из документов не передается в месте с грузом с одного вида транспорта на другой. Это происходит вследствие того, что на всех видах транспорта действуют различные системы кодирования грузовых мест, способов перевозки, самих грузов внутри тарифных групп. Применение единых международных документов при внешнеторговых перевозках в смешанном сообщении также невозможно, т.к. российская система кодирования данных отлична от международной. Различаются также системы кодирования, приведенные в отраслевых Прейскурантах и в Таможенном Кодексе. Помимо этого, российская система таможенного кодирования отличается от международной.

Указанные обстоятельства свидетельствуют о необходимости оптимизации бумажного документооборота, ввода электронной обработки данных, упрощения технологической схемы документооборота, а также внедрения в широком масштабе электронной передачи и обработки информационных потоков в логистических сетях на основе международнопризнанных стандартов.

Одной из распространенных систем мониторинга грузов и транспортных средств являются бездокументарные информационные системы слежения, связи и диспетчеризации транспорта на базе спутниковых систем навигации и связи. Некоторые из этих систем нашли применения и в нашей стране. Например, ГП «Морсвязьспутник», используя телекоммуникационную сеть BIMCOM, разработало систему управления и контроля местонахождения транспортных средств и состояния груза в автоматическом режиме на базе спутниковых систем GPS и Inmarsat-C.

При этом глобальная система спутниковой связи обеспечивает:

Прямую и скоростную связь с диспетчерским пунктом;

Хранение сообщений в БД;

Возможность получения информации о местоположении и состоянии транспортного средства и груза;

Групповой вызов абонентов;

Соединение с телексной связью и сетью передачи данных Х25.

Для обеспечения условий работы данной системы, на транспортном средстве устанавливается приемо-передающее устройство со встроенном индикатором местоположения размером 360х250х50 мм., входящая в комплект с малогабаритной всенаправленной антенной, печатающим устройством, малогабаритным процессором. Возможность контроля за состояние груза и техническим состоянием транспортного средства по выбранным параметрам обеспечивают сенсорные датчики, устанавливаемые на ТС.

Стоимость оборудования, устанавливаемого на ТС, в зависимости от комплектации и условий поставки составляет от 7 до 12 тыс. долларов США.

В настоящее время в мире эксплуатируется около 170 видов систем слежения и диспетчеризации автотранспорта, причем более половины для определения местоположения транспортных средств используют датчики спутниковой навигационной системы GPS NAVSTAR, которая обеспечивает высокоточное определения координат, курса и скорости объекта с указанием точного времени в практически любом месте земного шара круглосуточно. Возможности системы позволяют определить местоположение объекта с точностью более 100 м, а при относительных измерениях - до 2-5 м.

Принцип работы программных комплексов для управления парком транспортных средств (FMS - Fleet Management System) заключается в следующем. Для передачи радичастотного сигнала используются технические и информационные возможности Международной Спутниковой Системы Мобильной связи Inmarsat-C, либо Европейской Спутниковой Системы Мобильной связи Euteltracs, навигационной системы GPS/ Navstar, низкоорбитальной системы GLOBALSTAR, работающей по принципу «трубка-трубка», либо среднеорбитальной системы ICO Global. Приемник сигналов GPS, расположенный на подвижном объекте, позволяет определять его координаты и скорость. Информация передается на диспетчерский пункт. Навигационная информация дополняется данными с различных сенсорных датчиков в автомобиле, определяющих техническое состояние ТС, состояние груза, степень безопасности водителя и ТС. Высокоточная информация о скорости и местоположении транспортного средства накладывается на электронные дорожные карты на центральной рабочей станции, осуществляющей слежение и диспетчеризацию.

Таким образом, любое транспортное средство может быть точно и однозначно определено, независимо от того, где оно находится. Информация о местоположении, скорости и состоянии ТС сохраняется в БД и может быть использована в аналитических целях. Скорость поступления информации о каждом ТС такова, что диспетчер контролирует обстановку практически в реальном режиме времени. При этом диспетчер контролирует процессы приема/выдачи заказа, информацию о прибытии, загрузке, отправлении и разгрузке ТС, а также заправки топливом, ремонта, технического обслуживания.

Система спутниковой связи Inmarsat-C обеспечивает двустороннюю передачу данных фактически из любой точки Земли, т.е. ее четыре геостационарные сателлитные системы (4F2 + 4F3) обеспечивают охват всей планеты по долготе и до 75 градусов по широте. Связь осуществляется через Береговые наземные станции, которые позволяют направлять сообщения в различные сети передачи данных. - телефонные, телексные, подвижному абоненту, имеющему зарегистрированный терминал Inmarsat-С.

Специально для транспортных абонентов по более дешевому тарифу и за более короткое время система позволяет передавать SMS-сообщений о местоположении ТС и состоянии датчиков. Возможна организация группового вызова, т.е. передача сообщений группе автомобилей, целевой группе пользователей или группе, расположенной в указанном географическом регионе (например, сигнал опасности).

На сегодняшний день существует несколько альтернативных спутниковых систем связи и навигации. Первой такой системой, начало эксплуатации которой относится к 1982 году, является уже упоминавшийся «Инмарсат», осуществляющий глобальное покрытие земной поверхности с помощью 4 высотных (высота орбиты 35786 км) спутниковых систем. Скорость передачи голосовой информации составляет 4,8 Кбит/ сек, факсовой информации - до 14,4 Кбит/сек, данных в электронном виде - от 0,6 до 64 Кбит/сек. Размер мобильного терминала сравним с размером ноутбука весом 2,2 кг и стоимостью более 3500 долларов. Стоимость коммуникационного канала - от 1 до 7,5 долларов/минуту.

Низкоорбитальная спутниковая система «Иридиум», также обеспечивающая глобальное покрытие, начала эксплуатироваться в 1998 году на базе сети из 66 спутников с высотой орбиты 780 км. Скорость передачи данных несколько меньше, чем в системе «Инмарсат»(Голос - 4,8 Кбит/сек, факс - 2,4 Кбит/сек, электронные сообщения = 2,4 Кбит/сек.), однако стоимость коммуникационного комплекта размером с телефонную трубку и весом в 0,5 кг, составляет менее 1500 долларов. Стоимость использования коммуникационного канала - от 2,50 до 3,50 долларов в минуту.

В настоящее время развиваются также низкоорбитальная система, имеющая в своем составе 48 спутников с высотой орбиты 1414 км, «Глобалстар» и среднеорбитальная система «АйКО», базирующаяся на платформе 20 спутников с высотой орбиты 10000 км. Преимуществами этих систем является небольшой размер приемо-передающего терминала (вес не более 300 г) и относительная дешевизна (от 1000 до 1500 долларов за комплект) при достаточно высокой скорости прохождения информации (голос - 4,8 Кбит/сек, факс - 2,4 Кбит/сек, электронное сообщение - 9,6 Кбит/сек.

Наиболее распространенными в Европе системами мониторинга транспортных потоков являются следующие:

1. PC VTRAK предназначена для работы с растровыми (сканированными) картами и способна отображать в режиме реального времени до 35 единиц транспортных средств в виде условного значка на карте. С помощью этой системы осуществляется слежение за выбранным транспортным средством, вывод его географических координат, курса и скорости в текстовом виде. На карте может быть отображено направление движения (вектор) ТС, предусмотрена также возможность сигнализации системы при отклонении ТС от заданного маршрута. Получение координат с транспортного средства возможно в режиме разделения времени или по запросу диспетчера. На растровых картах возможно нанесение отдельных точечных объектов, линий, путевых точек. Преимуществом данной системы мониторинга является возможность её подключения практически к любой радиостанции диапазона от УКВ до СВ.

2. GPS/AVL SUBSYSTEM разработана для работы как с растровыми, так и с векторными картами и обладает возможностями отображения различных информационных слоев (дороги, кварталы, дома и т.д.). При использовании данной системы диспетчер имеет возможность определения положения точки на карте по почтовому адресу, а также, при наличии в БД карты соответствующей информации, отображения адреса заданной точки. В режиме реального времени отображается группа ТС в виде условных значков в одном или нескольких картографических окнах на экране компьютера, что позволяет осуществлять слежение за выбранной группой ТС. Программой предусмотрено отображение географических координат, курса, скорости и почтового адреса местоположения объекта (ТС), а также отображение в текстовом виде состояния датчиков, установленных на ТС. С помощью данной системы осуществляется двусторонний обмен текстовыми сообщениями между диспетчером и водителем. Данная информационная система позволяет подключать прикладные программы, созданные пользователем. Предусмотрен режим автоматического выключения радиостанции после выключения зажигания, а также сигнализация о прекращении передачи информации с ТС. Скорость обновления информации - до пяти объектов в секунду.

Существует целый ряд программ с возможностями не столь широкими, но позволяющими осуществлять мониторинг сравнительно небольшого количества транспортных средств. К ним относятся:

1. BLACK BOX, с помощью которой можно планировать маршрут, проводить учет показателей работы водителя, обмениваться электронными уведомлениями и предварительными документами с таможней, поддерживать связь с централизованной БД, распознавать местоположение ТС, осуществлять двустороннюю передачу данных. В т.ч. и через спутник.

2. СIT позволяет определять местоположение объекта с точностью до 10 м, осуществлять речевое оповещение об опасностях, ограничениях и пр.. поддерживать и пополнять БД по выбранному маршруту, осуществлять клавиатурный ввод маршрута в памятку для водителя.

3. LOGIQ DISPATCH поддерживает оперативную связь с ТС, контролирует его местоположение на электронной карте, контролирует состояние автомобиля и груза по данным с сенсорных датчиков, установленных на транспортном средстве.

4. EUTEL-TRACS обеспечивает регулярное автоматическое определение местоположение всех объектов мониторинга, автоматическое получение и хранение информации даже в отсутствие диспетчера, возможность радио и телефонной связи с ТС, возможность текстовой связи, дистанционный контроль параметров автомобиля и груза, подачу и прием сигнала тревоги в чрезвычайной ситуации.

Таким образом, потребитель имеет возможность выбрать между достаточно большим числом информационно-коммуникационных систем. Однако стоимость оборудования автотранспорта и диспетчерских пунктов системами коммуникации и компьютерным оборудованием со специализированным ПО весьма значительна. И остается вне финансовых возможностей подавляющего числа автовладельцев.

Для автотранспортной отрасли в России характерна весьма высокая дисперсность. Подавляющее число транспортных компаний владеет не более, чем 30-40 единицами автотранспорта. Это замечание относится в полной мере и к сфере международных автоперевозок. На сегодняшний день внешнеторговый оборот России обслуживает, по данным АСМАП, около 16000 автопоездов, а число автовладельцев - членов этой ассоциации достигает более, чем тысячи.

Стоимость мобильного спутникового оборудования для автопарка из 10 автомобилей, включающего в комплект станцию спутниковой связи с GPS, мобильный терминал LOGIQ MDA, кабель, инсталляционный и крепежные комплекты, составляет более 50 тысяч долларов.

Какими же штатными системами мониторинга оснащают свои коммерческие автомобили крупнейшие автопроизводители?

«DaimlerChrysler AG», чья продукция, производимая на предприятиях, расположенных в 37 странах мира, продается в более чем в 200 странах, а общее ежегодное количество выпускаемых коммерческих автомобилей составляет около 500 тысяч, оснащает свои автомашины системой «Fleetboard» на платформе ViaFone OneBridge, интегрированной с cервером TaminoXML. После слияния с корпорацией «Walter Chrysler» производители «Мерседесов» все более насыщают свою продукцию американскими компонентами. Вот и система мониторинга разработана по заказу компании «North American Logistics (nAL)», входящей в судоходную компанию «North American Van Lines, Inc.». Разработчиком и внедренцем данной системы выступила компания «Extended Systems», ранее выступавшая на рынке под брэндовым названием «ViaFone». Её информационный продукт, ViaFoneOnebridge, способен работать с использованием голосовых сообщений, EDI, WAP-технологий. В качестве приемо-передающего терминала может быть использован обычный мобильный телефон, PocketPC или компьтер класса Palm, а также пэйджер типа RIM Blackberry. Cистема мониторинга и диспетчеризации «Fleetboard» получила в 2002 году «E-Logistics Award», присуждаемый « Bundesvereinigung Logistik e.V. (Federal Logistics Association)”» ФРГ.

Стоимость комплекта для одной автомашины составляет около 4800 евро при заказе автомобиля официальным путем. К сожалению, использование этой системы на автомобилях российских владельцев официально невозможно, как и ввоз машин, оснащенных ею, т.к. она не имеет соответствующих разрешений компетентных органов (Радиочастотный комитет и ФАПСИ) на использование на территории Российской Федерации.

Крупные зарубежные компании сегодня ориентируются на сложные интегрированные информационные системы, в которых имеются соответствующие модули управления логистикой. Кроме систем мониторинга на рынке есть специализированные программные продукты для транспортно-логистических и экспедиторских компаний. Многие фирмы занимаются разработкой и продажей специальных программ маршрутизации и калькуляции себестоимости транспортных и других логистических операций, выбора и оптимальной загрузки транспортных средств. Важное место среди таких информационных продуктов имеют программные продукты для прокладки маршрутов и профессиональные электронные атласы.

Себестоимость перевозок, особенно международных, может быть существенно снижена при правильном выборе вида транспорта и маршрута, с учетом особенностей транзитных стран и регионов. На помощь логистическим менеджерам в решении этих задач пришли современные компьютерные технологии, воплощенные, например, в комплексе программных продуктов PC Miler/ Europe, созданном американской транспортной информационно-технологической фирмой «ALK Associates Inc. (Princeton,NJ)» и одобренном к использованию российскими международными перевозчиками АСМАП и Институтом проблем транспорта РАН.

Стоимость лицензированной копии профессионального электронного атласа Европы и западной части РФ (в последних версиях - до Новосибирска) составляет от 500 до 3000 евро и выше. Систем электронного планирования маршрутов перевозки стоит, в зависимости от комплектации, от 1000 до 3000 евро. Существуют и более простые системы такого рода для широкого круга потребителей, например электронные атласы.

MS AutoRoute (версии4, 5, 6, 2000, 2001) стоимостью до 100 евро. С их помощью можно планировать маршруты, оценивать время их прохождения с учетом остановок и ограничений, определять транспортные издержки.

Пакет MS AutoRoute представляет собой электронный атлас Европы с базой данных о населенных пунктах и дорогах, идентифицирующий пункты и объекты на территории России до Урала. Он предназначен для планирования автомобильных и железнодорожных маршрутов по европейской территории с визуальным представлением результатов в виде схемы маршрута и легенды его происхождения. Результаты планирования могут быть выведены на печать и записаны в файл для дальнейшего использования. В легенде и на карте маршрута записываются номера дорог по европейской классификации, места остановок для отдыха и заправки топливом, населенные пункты, пройденное расстояние и направление движения по трассе маршрута.

Система обладает развитым современным интерфейсом и имеет достаточно широкие возможности для настройки. Нежелательные направления движения или отдельные автодороги могут быть блокированы и исключены из рассмотрения при планировании маршрута. Средства поиска населенных пунктов, масштабирования и перемещения по карте удобны в использовании и имеют несколько разных способов доступа.

Упоминавшийся выше программный продукт PC Miler/ Europe предназначен.

Для прокладки маршрутов, определения расстояний и стоимости перевозок, выдачи инструкций водителю с распечаткой карты маршрута по 51 стране Европы и Азии.

Основную ценность программного продукта составляет богатейшая база данных, которая включает все доступные для грузовиков автодороги общей протяженностью до 2 млн км, которые разделены на 4 категории качества и пронумерованы, более 54000 городов и населенных пунктов, около 1500 погранпереходов и более 44000 пересечений дорог. При пользовании программой предусмотрены возможности прокладывать практические маршруты (по лучшим дорогам, что позволяет снизить затраты времени и средств на перевозку), кратчайшие маршруты (по минимуму расстояния, используя дороги всех категорий), а также экономичные маршруты, проходящие предпочтительно по бесплатным дорогам.

Практические маршруты устанавливаются путем выбора кратчайшего расстояния при максимальном использовании дорог высших категорий. При пракладке маршрута учитывается: расстояние между пунктами маршрута, качество дорог, особенности территорий, ограничения по весу, нагрузке на ось, высоте, разделение дорог на городские и сельские, дороги, закрытые на ремонт и для проезда грузовиков, регламентированные объезды и пр.

В процессе прокладки кратчайших маршрутов исключаются дороги, закрытые для сквозного движения, выбираются кольцевые окружные дороги вместо дорог через центры городов.

Установление пользователем опции отказа от использования платных дорог позволяет исключить выбор длинных участков таких дорог, но при этом не допускается чересчур дальний объезд платных тоннелей и мостов.

В маршрут может входить неограниченное число промежуточных остановок, которые программа может расставить в последовательности, минимизирующей суммарный пробег по маршруту. Программа позволяет прокладывать из одного заданного отправного пункта маршруты одной из трех указанных категорий до любого числа конечных пунктов, что чрезвычайно полезно для операторов консолидированных перевозок. Различные варианты маршрута между двумя пунктами отображаются на экране с указанием затрат времени и финансовых средств для анализа и выбора предпочтительного.

В программе предусмотрена возможность «закрывать» границы государств и участки дорог, по которым требуется исключить прохождение маршрута, указывать участки дорог, которые обязательно нужно включить в маршрут, задавать расчетные стоимости километра порожнего и груженого пробега, продолжительность и стоимость каждой остановки, продолжительность движения и остановки на отдых для водителя, средние скорости движения по дорогам разных категорий - и все это в пределах каждой страны с учетом её правил и особенностей.

Водитель перед рейсом или во время него, с учетом спутниковых телекоммуникационных возможностей, получает распечатку подобной «легенды» и инструкции по маршруту. Если пользователь программы задал определенный режим труда и отдыха водителя (например. часовая остановка после каждых 6 часов движения, или получасовая после прохождения каждых 200 км), то выделяются красным цветом напоминания о местах остановок.

Подпрограмма PC Miler/ Mapping может быть включена в программы слежения и диспетчеризации ТС с использованием метода спутниковой локации. Программа PC Miler сочетается с стандартными программными прoдуктами Microsoft Office (Excel, Access), может интегрироваться с пакетами табличной обработки PC Miler/Spreadsheets для расчета расстояний, времени и стоимости перевозок в Microsoft Excel и Lotus 1-2-3.

На базе PC Miler/ Europe отечественными разработчиками созданы программные комплексы «ТрансЛогистик» и «OmniCOMM»., позволяющие как анализировать информацию о рейсе и фрахте, так и претворять в жизнь менеджеристские решения. Кроме того, на базе этих комплексов может быть подготовлен пакет электронных документов, например для предварительного таможенного декларирования, что позволяет сэкономить время прохождения таможенной процедуры.

Отечественный разработчик - компания «OmniCOMM» на базе своего оригинального продукта - системы управления перевозками «Диспетчер» - предлагает на рынке комплексную программу построения системы управления перевозками автотранспортными предприятиями и транспортно-экспедиторскими компаниями.

С обрушением рынка международных перевозчиков в 2005 году возник дефицит машин, отвечающих нормам Евро3 и избыток машин с Евро 2 и ниже. Такой дефицит привел к повышению ставок на рейсы в Европе и относительное падение на рейсы в России. В связи с этим транспортникам, для максимализации прибыли, целесообразно работать с перецепом груза, т.е. при внедрении такой системы машины Евро 3 совершают поездки по территории Западной Европы до границ СНГ, а машины более низкого класса подхватывают груз от границ СНГ и доставляют его до грузополучателя. При такой схеме работы необходимо обосновать форпосты транспортной компании в местах перецепок.

Известны примеры, когда автотранспортные компании (например, Совтрансавто-Минводы), получив или приобретя парк машин Евро-3 (200 единиц) и разрешения ЕКМТ, не смогли реализовать эффективное использование автопарка. Пробелы, кроме технических, были связны с водителями, которые не могли находиться в командировках непрерывно по 5-6 месяцев и стали массово увольняться. Это привело к простою большого числа машин из-за отсутствия квалифицированных водителей. Таким образом, необходимость создания выносных контор связана и с необходимостью замены экипажей автомашин.

Стратегия в построении форпостов компании может строиться по следующим сценариям:

1. МИНИМАЛЬНЫЕ ВЛОЖЕНИЯ. Автотранспортное предприятие организует пункт обмена документов на месте перецепки груза (например, на стоянке грузовых автомобилей. Машина с Запада встречается с машиной с Востока и происходит обмен прицепами. При этом водитеи производят сдачу отчета и получение документов по новому рейсу. Поскольку водители тягачей Евро 3 находятся в долгосрочной командировке, то на этом пункте можно производить и смену экипажей машин. Достоинство такой стратегии - минимальные вложения в создание форпоста. Недостаток - сложность синхронизации поездок, зачастую водители машин должны ждать друг друга. В случае опоздания одной из машин происходит простой второй машины.

2. БОЛЬШИЕ ВЛОЖЕНИЯ. Приобретается некоторое избыточное количество полуприцепов. Арендуются площади на охраняемой площадке (СВХ). Машина, приезжающая с Запада оставляет свой прицеп, берет следующий для доставки на Запад, получает документы и уезжает. Машина с Востока поступает так же. Достоинства при таком подходе - максимальная оборачиваемость машин. Простой возникает у полуприцепа, а не у целой сцепки, что значительно выгодней. Недостаток - большие расходы на содержание стоянки и приобретение дополнительного количества полуприцепов.

Вопрос выбора сценария зависит от конкретных условий бизнеса. Но, в любом случае, возникает необходимость создания выносных контор головного офиса.

В части, касающейся управлением ресурсами, транспортная компания должна:

По подвижному составу:

Контролировать издержки по топливу, резине, ТО, ремонту и запасным частям.

Контролировать время работы и минимизировать простои на прохождение ТО и ремонтов.

По водителям:

Учитывать время работы водителей,

Рассчитывать командировочные расходы,

Учитывать время действия виз и своевременно оформлять новые,

Обеспечивать «вахтовость» работы,

Отправлять водителей на места смены вахт,

Принимать отчеты водителей по совершенным рейсам,

Выдавать денежные авансы по рейсам

Политика увеличения прибыльности автотранспортной компанией строится по двум направлениям: минимизация издержек на перевозку и максимизация прибыли по фрахту. Исходя из этих задач, информационная система строится как открытая для всех клиентов. Т.е. система предоставляет клиентам максимальный сервис в части предоставления информации о ходе рейса. Экспедиторам рассылается информация о времени и месте высвобождения машин. Расчетные службы транспортной компании оповещают экспедиторов и постоянных клиентов о текущем балансе по взаиморасчетам.

При этом представляется оптимальным, если структура компании будет содержать следующие основные подразделения:

1. Руководство

2. Коммерческий отдел для работы с клиентами компании. Коммерческий отдел ищет заявки на перевозки и принимает решение о целесообразности и стоимости перевозки.

3. Диспетчерская служба должна обеспечивать выполнение взятого фрахта.

4. Расчетный отдел и бухгалтерия. Расчетный отдел является контролирующим органом за прохождением заказа от получения до закрытия финансовых документов.

5. Отдел аналитики должен снабжать предприятие информацией для принятия управленческих решений и решений по фрахтам, а также следить за необходимостью прохождения ТО и смены водителей.

6. Вспомогательные службы, к которым относится и ИТ отдел, внешние конторы по обмену документами и т.д. осуществляют поддержку основного бизнеса компании.

Система управления перевозками «Диспетчер» состоит из двух основных частей:

Мобильного оборудования

Диспетчерского центра.

Мобильное оборудование способно:

Передавать координаты ТС с заданной частотой;

Передавать сигналы SOS при нажатии кнопки тревоги;

Передавать и принимать текстовые сообщения;

Мобильное оборудование расширяемо по функциональности. Например, могут быть инсталлированы датчики уровня топлива в баках или датчики температуры груза для слежения за этими показателями с диспетчерского пункта.

Диспетчерский пункт позволяет:

Просматривать местоположение машин на растровых картах. Карты могут быть любого масштаба. На сегодняшний день большинство регионов России и СНГ закрыты картами масштабом 2км в 1 см. Картография имеется от Великобритании до Новосибирска.

Передавать и принимать сообщения от водителей и других внешних абонентов. Все сообщения и время их отправки и доставки документируются. Система похожа на электронную почту.

Планировать маршруты движения машин. Система строит график перевозки с указанием контрольных точек остановок и графиком их прохождения.

Отслеживать выполнение графика. В случае опоздания значек машины на карте закрашивается красным, если опоздание возможно - желтым, если в графике - зеленым. Свободные машины и машины в ремонте также отмечаются своими цветами.

Оповещать внешних абонентов. Внешними абонентами могут быть партнеры, экспедиторы, клиенты. В соответствии с задачами и потребностями внешних абонентов им высылается информация., например: клиентам - местоположение груза, экспедиторам - список автомашин с их параметрами и датой и местом высвобождения, партнерам можно высылать всю информацию о загрузках машин, их перемещениях и переписку с водителями. Набор и доступность информации, рассылаемой внешним абонентам, определяется диспетчером.

Отвечать на запросы клиентов. Система позволяет клиентам запросить местоположение груза с помощью пароля в виде SMS сообщения, отправленного на диспетчерский центр. Ответ, содержащий информацию о местоположении ТС и ожидаемое время прибытия в указанный пункт, отправляется в виде SMS сообщения на авторизованный телефон.

Распределять права доступа к информации, как для сотрудников компании, так и для внешних абонентов. Это позволяет гибко распределять функции по управлению автопарком среди диспетчеров и управлять потоками информации к внешним абонентам. Решение о доступности данных конкретному абоненту принимает системный администратор на основании указаний руководства.

Система «Диспетчер» базируется на принципе прямой передачи информации от ТС в диспетчерский центр. Вся информация стекается в транспортное предприятие и именно там решается, какую часть её можно передать внешним потребителям, кому именно, когда, в каком объеме. Посредником в передаче информации является только сотовый оператор. Перехват информации в сети GSM весьма трудновыполним. Кроме того, информация с ТС передается в упакованном виде, параметры упаковки не разглашаются. Даже у разработчиков системы нет возможностей завладеть информацией о местоположении ТС. Это предусмотрено намеренно, дабы ни у кого не было возможности вынудить разработчиков показать информацию о перемещении ТС. Информационную безопасность достаточно легко проверить, просмотрев автоматически составляемый отчет о переданных с ТС сообщениях, где указано время соединения и номер принимающего телефона.

Таким образом, проблема защиты информации о перевозках переходит в разряд оргштатных мероприятий, определяющих информационную политику фирмы в отношении работы системы: какую информацию сохранять, где размещать архив, что удалять немедленно по прочтению и т.д.

Как упоминалось ранее, на рынке существует большое количество информационно-компьютерных систем поддержки сервиса по доставке груза заказчику. Одна из отечественных систем такого рода - ИРС (информационно-расчетная система) «Перевозки» разработанная компанией «БелФрост».

Одним из отличий данной системы является возможность интеграции с программными продуктами фирмы «1С», что, по сути, превращает комплекс «Перевозки» и «1С» в АСУ АТП.

Система использует СУБД Oracle8i, что обеспечивает многопользовательскую работу системы в реальном масштабе времени и, в совокупности с эффективным аппаратом администрирования БД, гарантирует целостность, сохранность и достоверность информации, эффективное разграничение прав пользователей с защитой от несанкционированного доступа.

Система позволяет решать следующие задачи:

1. учет заказов на выделение автотранспорта;

2. контроль выполнения рейсов;

3. формирование авансовых отчетов по рейсам;

4. учет работы подвижного состава, пробега и расхода топлива, контроль и планирование ТО, ремонтов, учет шин, АКБ и т.д.;

5. обработка ТТН, в т.ч. и CMR;

6. слежение за сроком действия различных документов, как подвижного состава, так и водителей;

7. формирование аналитических отчетов за любой период времени и в любой форме, в т.ч. с возможностью представления данных в Excel.

Система состоит из 5-ти основных разделов: справочная информация, документы, журналы, учет, отчеты.

В справочниках сосредоточена вся информация по сотрудникам, подвижному составу, юридическим лицам - клиентам, партнерам и т.д. В справочнике сотрудников имеется возможность вести кадровый учет. Справочник подвижного состава не только позволяет составлять спецификацию по любому ТС, но также вести учет ремонтов, ТО, расход шин и АКБ, но и отслеживать срок действия документов, причем при истечении срока действия какого-либо документа система автоматически об этом сигнализирует. Справочник маршрутов содержит более 1000 уже готовых маршрутов по странам Европы и СНГ.

В разделе документы сосредоточена информация по всем документам, требующимся для осуществления рейса: путевые листы, CMR-накладные, TIR-carnet, разрешения, приказы по предприятию, договоры, заказы на перевозки.

В разделе журналы полно отражается информация о рейсах. В журнале «Информация по транспорту» ежедневно регистрируется вся информация по состоянию подвижного состава, его местонахождению, учету загрузок, разгрузок, телефонных разговоров, возникающих проблем. Это - рабочее место диспетчера. «Журнал рейсов» содержит всю информацию по рейсам. Рейсы, в зависимости от их статуса (составляющийся, текущий, законченный, архивный), выделяются разными цветами. Другие журналы (маршрутов, расходов, обмена валюты, топлива, шин, документов на ТС, разрешений, курсов валют и т.д.) содержат развёрнутую информацию по соответствующим пунктам.

В разделе отчёты главной формой является «Авансовый отчёт». Для его формирования достаточно ввести отрезки маршрутов по странам с указанием даты и веса груза, расходы по квитанциям, авансы, справки об обмене валюты и система автоматически рассчитает:

Расходы топлива по норме;

Переведет все расходы в расчётную валюту с учетом обменов валют;

Средневзвешенную стоимость топлива по рейсу;

Сальдо по топливу;

Прибыль по рейсу;

Экономический эффект от заправок по странам с учетом установленных норм и стоимости топлива в различных странах.

Так же имеется возможность формирования большого количества различного вида таблиц и сводных таблиц.

ИРС «Перевозки» наиболее эффективно работает в связке с программой прокладки маршрутов PC/Miler/Mapping или Autoroute+.

Стоимость оснащения ТС складывается из стоимости оборудования и стоимости работ по оснащению. Работы по оснащению могут проводиться на сервисных центрах компании-разработчика в Москве, Санкт-Петербурге, Кирове, Калининграде, Ташкенте, Бресте, Минске, Киеве, Новосибирске, Ростове, Нижнем Новгороде, либо самостоятельно силами транспортного предприятия. Стоимость мобильного оборудования - около 500 $/ТС, стоимость оснащения машины на сервисе - 50 $, стоимость обучения - 90 $.

Стоимость оснащения диспетчерского центра складывается из стоимости компьютерного оборудования, прокладки кабелей, аренды каналов связи, договоров с интернет-провайдерами и стоимости software. Расходы на ПО для диспетчерского центра таковы:

ПО «Диспетчер» - 300 $

GSM-модемы 2 шт. - 600 $

Установка и обучение - 90$

ПО «Перевозки» - 400 $

ПО MS AUTOROUTE+ - от 40 до 400 $, это вопрос чистоты бизнеса.

При численности обслуживаемых ТС не более 100 ед. можно вместо GSM модемов применять сотовые телефоны.

Таким образом, все программы и модемы диспетчерского центра обойдутся в сумму от 1500 до 1800 долларов. Указанный набор нужен один, независимо от количества обслуживаемых ТС. При этом, не все оборудование необходимо закупать сразу, возможно пошаговое наращивание возможностей системы (например, сначала оснастить диспетчерский пункт системой «Диспетчер», а потом докупить ПО «Перевозки»). Кроме того, при режиме ежечасного определения координат и 2 сообщениях в день от водителя к диспетчеру совокупные расходы на поддержание системы и оплату трафика GSM-оператору составляют около 60 $ в месяц на ТС, причем эти расходы идут не доолнительно к существующим расходам на рейс, а вместо расходов на связь с водителем. При этом ИРС настроена на оптимизацию трафика. Режим передачи информации о местоположении при работающем двигателе позволяет в 3 раза уменьшить число сообщений, при простое машины или её ремонте Систему «Диспетчер» можно отключить и т.д.

Производители указанных систем работают под заказ, срок выполнения заказа - до 1,5 месяцев.

В настоящее время АСМАП принял решение о инсталляции собственной системы связи и навигации при планируемых централизованных поставках автотранспорта. Поэтому можно остановиться на отличиях ИРС «OmniCOMM» и АСМАП.

При построении ИРС «Диспетчер» разработчик исходит из того, что информация, циркулирующая внутри системы, имеет характер коммерческой тайны, а потому вся информация, исходящая с ТС, направляется напрямую в диспетчерский центр транспортной компании. Единственное место прохождения информации - SMS-центр оператора сотовой связи, самостоятельно выбираемого заказчиком системы. В ИРС нет промежуточных мест хранения информации, вся информация стекается к её владельцу, именно он решает вопрос её дальнейшего распределения. Т.о. несанкционированный доступ со стороны негосударственных структур к упакованной информации в каналах связи технически невозможен, а государственных - затруднен. Для получения информации государственные органы должны знать, через какого оператора связи ведется передача информации, представить ему ордер на прослушивание, узнать номера телефонов, которыми оснащены ТС, затем разгадать параметры упаковки. Это возможно только в случае обоснованного государственного интереса к перевозчику.

Система АСМАП построена на другом принципе. Вся информация приходит на сервер АСМАП и накапливается на нем. АСМАП является владельцем информации. Подключаемые клиенты получают информацию из сервера АСМАП с оговоренной частотой. Т.о. клиент, подключаясь к системе АСМАП, доверяет свою информацию персоналу этой организации. Каждый субъект права, предоставляющий информационные услуги, в соответствии с законодательством, обязан выдать всю информацию государственным органом при официальном запросе. А разработчик ИРС «Диспетчер» не является владельцем, хранителем или получателем информации, через него не проходят информационные потоки клиентов и ему нечего выдавать даже при принуждении властей.

ИРС «Диспетчер» имеет более широкую функциональность, чем система АСМАП. Т.к. она реализуется на принципе прямой передачи информации между абонентами, то время доставки сообщения до диспетчера измеряется секундами, и, благодаря такой оперативности, возможно создание системы контроля графика движения ТС, реагирующей на сбои перевозок.

Система АСМАП требует постоянного обращения к сайту этой организацией за получением очередной порции информации от ТС. Такой подход увеличивает время доставки сообщений и требует дополнительных расходов. Система АСМАП не ориентирована на рейсы и в ней невозможно создать контроль графика движения ТС, отсюда возникают проблемы невозможности увязать график движения, срок прибытия груза к клиенту и информацию о месте и времени высвобождения автотранспорта. Такой недостаток существенно сужает функциональную полезность системы АСМАП для решения задач крупной транспортной компании или ТЭК. Однако, учитывая полезность информационного сервиса АСМАП по инфраструктуре дорог, имеется договоренность между двумя разработчиками о стыковке ИРС «Диспетчер» с информационными ресурсами АСМАП.

ИРС «Диспетчер» функционирует на многих предприятиях, например TSW Holding (бывшее Совтрансавто-Брест), где работает корпоративная система со многими АРМ, 4-мя транспортными компаниями и несколькими экспедиторами. Система АСМАП функционирует пока в тестовых вариантах, многие вопросы еще технически не решены. При этом АСМАП планирует создание всероссийского диспетчерского центра, что на порядок усложняет систему.

Построение ИРС «Диспетчер» просто, она зависит только от работы оператора сотовой связи, работает только на отдельную компанию и нагрузка у нее минимальная. В Системе АСМАП необходимо, чтобы, кроме оератора сотовой связи, работал еще и сервер АСМАП и канал интернет-связи между клиентом и ервером. При этом сервер должен обслуживать одновременно десятки клиентов и тысячи ТС. При остановке сервера или обрыве канал связи клиенты лишаются возможности управлять транспортным парком. При очевидных приемуществах, ИРС «Диспетчер» имеет существенно меньшую стоимость как мобильного оборудования и диспетческого центра, так и абонентского обслуживания.

Размещено на Allbest.ru

Подобные документы

    Оптимизация грузопотоков для заданного полигона транспортной сети. Определение оптимального замкнутого маршрута. Расчет загрузки транспортных средств для доставки грузов, интенсивности поступления транспортных средств в транспортно-грузовую систему.

    курсовая работа , добавлен 25.08.2013

    Анализ технологий транспортных комплексов. Характеристика груза, заданных средств, склада. Методы построения схемы взаимодействия. Определение производительности и состава средств КМ и АПРР. Расчет потребной площади склада. Длина фронта подачи вагонов.

    курсовая работа , добавлен 07.05.2010

    Интеллектуальные системы для транспортной инфраструктуры и транспортных средств в России. "Авто-Интеллект" от компании ITV. Модули распознавания автомобильных номеров, контроля характеристик транспортных потоков. Расчет коэффициентов аварийности.

    курсовая работа , добавлен 18.01.2013

    Понятие, сущность аварий и катастроф, их критерии и отличия. Особенности транспортных аварий (катастроф). Аварии на автомобильном транспорте (ДТП), на железнодорожном, авиационном и на водном транспорте. Модернизация транспортной системы и ее этапы.

    курсовая работа , добавлен 17.02.2011

    Характеристика видов транспорта: сухопытный, водный, авиационный. Признаки классификации транспортных путешествий, рейтинг привлекательности транспортных средств. Анализ развития транспортной отрасли и и туристический потенциал Тверской области.

    курсовая работа , добавлен 29.06.2010

    Виды и классификация транспортных услуг по перевозке грузов. Структура, особенности рынка транспортных услуг. Конкурентоспособность транспортных услуг и пути её повышения. Системы оплаты труда на предприятии. Организация предпринимательской деятельности.

    дипломная работа , добавлен 19.07.2014

    Устройство и принципы работы тормозного механизма. Расчет производительности КамАЗа 55111. Расчет потребности транспортных средств в сельском хозяйстве. Перевозка грузов цистернами. Перечень средств механизации и транспортных работ в СХК "Атлашевский".

    контрольная работа , добавлен 12.02.2011

    Технико-эксплуатационные характеристики транспортных средств, портовых складов и перегрузочного оборудования. Расчёт загрузки железнодорожного подвижного состава. Комплектация грузов в грузовых помещениях. Распределение грузов между портовыми складами.

    курсовая работа , добавлен 13.02.2013

    Перевозка наливных грузов в автоцистерне. Выбор транспортных средств для перевозки грузов. Потери грузов при транспортировке. Расчет и выбор оптимальной транспортно-технологической системы доставки грузов. Капитальные вложения и эксплуатационные расходы.

    курсовая работа , добавлен 07.03.2015

    Описание района перевозок и формирование транспортной сети региона. Определение кратчайших путей следования, потребности в транспорте для работы на маршрутах. Расчет технико-эксплуатационных показателей использования автомобильных транспортных средств.

Введение

Карпьютер

Автопилот

Парковочный радар

Автосигнализация

Иммобилайзер

Заключение

Список использованной литературы

Введение

Информационные технологии (ИТ, от англ. information technology, IT) - широкий класс дисциплин и областей деятельности, относящихся к технологиям управления и обработки данных, а также создания данных, в том числе, с применением вычислительной техники.

В последнее время под информационными технологиями чаще всего понимают компьютерные технологии. В частности, ИТ имеют дело с использованием компьютеров и программного обеспечения для хранения, преобразования, защиты, обработки, передачи и получения информации. Специалистов по компьютерной технике и программированию часто называют ИТ-специалистами.

Согласно определению, принятому ЮНЕСКО, ИТ - это комплекс взаимосвязанных научных, технологических, инженерных дисциплин, изучающих методы эффективной организации труда людей, занятых обработкой и хранением информации; вычислительную технику и методы организации и взаимодействия с людьми и производственным оборудованием, их практические приложения, а также связанные со всем этим социальные, экономические и культурные проблемы. Сами ИТ требуют сложной подготовки, больших первоначальных затрат и наукоемкой техники. Их внедрение должно начинаться с создания математического обеспечения, формирования информационных потоков в системах подготовки специалистов.

В постановлении Совета Министров Республики Беларусь даются такие определения понятий: информационная технология - совокупность процессов, методов осуществления поиска, получения, передачи, сбора, обработки, накопления, хранения, распространения и (или) предоставления информации, а также пользования информацией и защиты информации. Информационно-коммуникационная инфраструктура (ИКИ) - совокупность технических и программных средств, коммуникаций, персонала, технологий, стандартов и протоколов, обеспечивающих создание, передачу, обработку, использование, хранение, защиту и уничтожение информации. Информационно-коммуникационные технологии (ИКТ) - информационные процессы и методы работы с информацией, осуществляемые с применением средств телекоммуникаций и вычислительной техники

Информационные технологии используются почти везде. Здесь я опишу его использование в транспорте.

1. Карпьютер

Карпьютер или Онбордер (англ. carputer, англ. onboarder) (другие названия - онборд, автомобильный компьютер, car PC, компьютер) - аналог домашнего персонального компьютера, установленный в автомобиле и специально предназначенный для работы в машине. Онбордеры используются для автонавигации, соединения с интернетом, развлечения. Возможности онбордера объединяют функциональность традиционных устройств узкого назначения (автомагнитол, навигаторов, DVD-плееров) с возможностями персонального компьютера.

Основные сведения

Основным преимуществом автомобильного компьютера является функциональность. С использованием автомобильного компьютера отпадает необходимость в отдельной установке навигатора, парктроника, телевизора, DVD. Каждое из этих полезных устройств требует отдельное место для установки и управляется отдельно…

В автомобильном компьютере чаще всего управление организовано через сенсорный жидкокристаллический монитор (размеры от 7" до 15" по диагонали). Мониторы могут быть моторизированные и ручные, встраиваемые в консоль, имеют монтажные размеры 1\2DIN,1DIN или 2DIN, встраиваемые в крышу, отдельно стоящие(съемные). Для разных марок автомашин есть мониторы, встраиваемые в торпеду и полости.

Кроме ставших уже стандартными автомобильных функций - (телевизор, GPS, DVD) - автомобильный компьютер позволяет использовать в дороге интернет и электронную почту, диагностирует электронику автомобиля, производит видеозапись дорожной ситуации, а также имеет множество других полезных функций. Автомобильный компьютер позволяет управлять режимами GPS - оперативно менять карты, использовать как векторные, так и растровые карты.

Использование интернета позволяет отслеживать пробки на дорогах, слушать интернет-радио, просматривать видеоконференции, искать необходимую информацию вдали от дома или офиса. Автомобильный компьютер выполняет функцию антирадара (или подключается к имеющемуся).

Громкая связь и дорожная рация, управление звуковыми сигналами и парктроник - все это в одном устройстве

Для любителей быстрой езды на автомагистралях и частых поездок по многокилометровым пробкам автомобильный компьютер может иметь функцию управления инжектором. Можно в режиме реального времени делать мощнее или, наоборот, уменьшать мощность автомобиля для понижения расхода топлива и реализации более плавного начала движения (для пробок) у мощных двигателей. Для этого понадобится кабель (OBD-II, VAG-com и другие) для подключения процессора инжектора к автомобильному компьютеру и соответствующий софт.

История

История автомобильных компьютеров началась в 1981 году, когда компания IBM разработала первый бортовой компьютер для автомобилей BMW. Через 16 лет появился Apollo - прототип первого автомобильного компьютера, созданный корпорацией Microsoft, который так и остался прототипом. В 2000 году американская компания Tracer создала и протестировала первый штатный онбордер, и наладила серийное производство.

Помимо онбордеров Tracer, большой попул

1. Автопилот - устройство или программно-аппаратный комплекс, ведущий транспортное средство по определённой траектории. Наиболее часто автопилоты применяются для управления летательными аппаратами, в связи с тем, что полёт происходит обычно в пространстве, не содержащем большого количества препятствий, а также для управления транспортными средствами, движущимися по рельсовым путям. Современный автопилот позволяет автоматизировать все этапы полёта или движения другого транспортного средства.

2. GPS- обеспечивающие измерение времени и расстояния навигационные спутники; глобальная система позиционирования - спутниковая система навигации. Позволяет в любом месте Земли (не включая приполярные области), почти при любой погоде, а также в космическом пространстве вблизи планеты определить местоположение и скорость объектов.

Основной принцип использования системы - определение местоположения путём измерения расстояний до объекта от точек с известными координатами - спутников.

3. Карпьютер или Онбордер (англ. carputer, англ. onboarder) (другие названия -- онборд, автомобильный компьютер, car PC, компьютер) -- аналог домашнего персонального компьютера, установленный в автомобиле и специально предназначенный для работы в машине. Онбордеры используются для автонавигации, соединения с интернетом, развлечения. Возможности онбордера объединяют функциональность традиционных устройств узкого назначения (автомагнитол, навигаторов, DVD-плееров) с возможностями персонального компьютера.

4. Парковочный радар

5. Автосигнализация - электронное устройство, установленное в автомобиль, предназначенное для его защиты от угона, кражи компонентов данного транспортного средства или других вещей, находящихся в автомобиле.

32 Понятие об интеллектуальных трансп системах

Интеллектуальная транспортная система – это комплексная система оптимизации управления транспортными сетями (ТС) и средствами в масштабе реального времени, обладающая свойствами адаптивности, ситуационного анализа и планирования (предсказания).

Назначение и основные функции

Повышение пропускной способности транспортных сетей

Обеспечение комплексной безопасности:

Социально-экономической

Снижение смертности и аварийности

Криминогенности

Экологической

Техногенные катастрофы

Загрязнение окружающей среды

Оптимизация затрат на модернизацию и развитие дорожной сети

33 Основные методы оптимизации транспортных процессов.

О дним из методов решения эксперементальных задач, в том числе и эксперементальных, свзянных с оптимизацией управления перевозочными процессами, является динамическое программирование или использование динамических моделей. Характерные особенности в задачах:

    Неоднозначность результата (многовариантность решения).

    Возможность деления вычислительного процесса на этапе. (этапность решения).

    Общий критерий, который представляет собой сумму частных критериев на этапах (адетивность критерия).

С помощью динамического программирования решаются задачи, связанные с процессами, которые можно разделить на некоторое число этапов или шагов. Оптимизация управления на каждом этапе в отдельности не обеспечивает оптимизацию в процессе в целом, если число этапов и возможность решения на каждом этапе ограничена, то оптимальное решение в целом можно найти путём перебора всех возможных вариантов. Принцип оптимальности впервые был доказан Бэллманом. Оптимальная стратегия начиная с любого этапа не зависит от предыдущей стратегии, а лишь от состояния системы на данном этапе, т.е. от решений на последующих этапах.

Существуют ещё методы математического анализа в оптимизации перевозочного процесса, методы математического моделирования, теории графов, математического программирования, теории вероятностей, линейного и динамического программирования и теории потоков в сетях.

Существуют ещё методы математического анализа в оптимизации перевозочного процесса, методы математического моделирования, теории графов, математического программирования, теории вероятностей, линейного и динамического программирования и теории потоков в сетях

Помимо того, оптимизационные методы делятся на следующие группы:

    аналитические методы (например, метод множителей Лагранжа и условия Каруша-Куна-Таккера);

    численные методы;

    графические методы.

В зависимости от природы множества X задачи математического программирования классифицируются как:

    задачи дискретного программирования (или комбинаторной оптимизации) -если X конечно или счётно;

    задачи целочисленного программирования - если X является подмножеством множества целых чисел;

    задачей нелинейного программирования, если ограничения или целевая функция содержат нелинейные функции и X является подмножеством конечномерного векторного пространства.

    Если же все ограничения и целевая функция содержат лишь линейные функции, то это - задача линейного программирования.

Гершвальд А.С.

Специальность

РОАТ МИИТ

ТЕОРИЯ


1.1. Общие вопросы

Понятие управления

Всякая информационная технология представляет собой упорядоченную последовательность операций из следующего набора: сбор, передача, обработка и представление некоторой информации. Главными в этом наборе являются операции обработки, т.к. именно они способны придать информации новые по­лезные качества. Обработка всегда ведётся с какой-то целью. Любое коммерческое предприятие преследует экономическую цель, которая выражается в стремлении достигнуть более высоких показателей работы компании. Чтобы её достигнуть в качестве метода обработки информации используется управление.

Для достижения более высоких показателей управление должно быть оптимальным или стабилизирующим. Что это такое?

Ключевым словом в определении понятия оптимального управления является ВЫБОР. А дальше следуют вопросы: выбор чего? Варианта. Откуда они берутся? Из результатов обработки текущей и нормативно-справочной информации. Как выби­рать? По критерию. Что должны мы иметь в результате выбора? Выходную информацию в виде оптимального плана ведения какого-либо процесса. В таком формате должна формулироваться научная постановка любой задачи оптимального управле­ния.

Примеры критериев оптимальности

В общем виде коммерческое предприятие стремится минимизировать затраты и максимизировать доходы. Для выбора оптимального варианта плана совсем не обязательно оценивать текущие варианты в денежном выражении. Достаточно сравнивать их натуральные показатели, по которым известны расходные ставки и удельный доход.

Оценка по минимуму затрат выполняется в локомотиво-часах, вагонно-часах, поездо-часах; вагонно-километрах, локомотиво-километрах, Оценка по минимуму отклонений выполняется относительно технической нормы, относительно задания, поступившего с вышестоящего уровня, относительно планового графика движения поездов.

Оценку по максимуму дохода можно рассчитывать также с использованием натуральных показателей, например таких, как число удовлетворённых заявок на погрузку; удельная нагрузка на вагон, вместимость сортировочного пути, число совмещённых операций расформирования-формирования поездов, пропускная способность участка.

Информационное обеспечение

Математическое обеспечение

Программное обеспечение

Программное обеспечение любой АСУ подразделяется на пять типов:

- общесистемное (для обеспечения функционирования ЭВМ, её составных частей и межсетевого взаимодействия, поддержания условий безопасности информации; используется всегда с каким то другим типом программного обеспечения);

- прикладное (для решения функциональных задач, обеспечивающих экономический эффект);

Системы разработки (для разработки прикладных программ по задаваемым алгоритмам и структурам баз данных);

Системы управления базами данных (для создания, наполнения, обновления и удаления электронных хранилищ информации;

- экспертные системы.

Прикладное программное обеспечение делится на две группы: общего назначения и специализированное. К программам общего назначения относится пакет Microsoft Office. Он включает в свой состав Outlook, Word, Exel, Power Point, Access, Front Page, Publishtr, Project. К специализированному программному обеспечению относится система MATLAB, включающая в свой состав 50 пакетов, написанных на разных языках высокого уровня, а также 250 приложений, разработанных более чем 170 партнёрами фирмы Math Works Partner Products.

К специализированным прикладным программам относятся также программы, реализующие функции информатизации эксплуатационного персонала железнодорожного транспорта.

Техническое обеспечение

Техническое обеспечение – это прежде всего комплекс технических средств, применяемых для функционирования под управлением программ в части сбора, передачи, регистрации, подготовки, обработки, защиты данных и отображения информации. Структура комплекса технических средств отображает соединение всех аппаратных средств между собой каналами связи. К техническим средствам относятся также различные сооружения, оборудование вычислительных центров, первичные системы электроснабжения, вентиляции, канализации и т.п.

Вычислительная сеть – это совокупность ПЭВМ, соединённая определённым образом и работающая под управлением сетевого программного обеспечения. Причины создания и развития вычислительных сетей подразделяются на функциональные и экономические. Функциональные причины – это стремление соединить АРМы единиц персонала, связанных между собой в процессе функционирования. Экономические причины – стремление к экономии памяти и технических средств

В АСУЖТ используется исторически сложившаяся сеть железнодорожной связи. Для организации передачи данных применяются так называемые модемы (модуляторы-демодуляторы), которые выполняют три функции:

Согласование ЭВМ с каналом связи;

Защиту передаваемой информации от ошибок;

Передачу битов информации.

К системам передачи данных предъявляются требования по своевременности, достоверности и пропускной способности. Каналы связи классифицируются по следующим признакам:

Вид сигнала (аналоговые и цифровые);

Использование среды переноса сигнала (радиоканал или проводной);

Скорость передачи данных (низко- , средне- и высокоскоростные);

Способ коммутации (коммутируемые и выделенные).

При централизованном управлении выделяется одна или несколько ПЭВМ, управляющих обменом данных. Их называют файл-серверами или серверами баз данных. Обращение с одного АРМа (рабочей станции) к другому возможно только через сервер. При децентрализованном управлении такое обращение возможно. Смешанное управление достигается в архитектуре «Клиент-сервер».

Интернет это всемирная компьютерная сеть , так называемая паутина. Она состоит из множества других сетей, обслуживающих университеты, организации, предприятия и даже школы. Интернет выполняет три основные функции:

Предоставление запрашиваемой информации:

Передачу почты между корреспондентами;

Речевую и видеосвязь абонентов в масштабе реального времени;

Услуги Интернета представляют провайдеры – операторы сетей связи, которые подключают абонентов к своему серверу . Для получения статуса абонента необходимо создать хотя бы один виртуальный почтовый ящик с уникальным электронным адресом и оплатить услуги провайдера на какой-то период времени.

Электронный адрес состоит из четырёх частей:

Имя пользователя (фамилия, псевдоним, кличка или просто какое-то вымышленное слово);

Разделительный знак, именуемый собакой;

Имя сервера провайдера (yandex, rtambler, mail и т.д.);

Имя России – или домен, обозначаемый, как «ru».

Для открытия сеанса работы в Интернете необходимо запустить программу просмотра, именуемую браузером. В настоящее время используется браузер под именем «Explorer». Для входа в почтовую программу имеется несколько способов. Один из них – это запуск программы-оболочки, именуемый «Outlook» . С помощью этой программы можно готовить и отправлять письма в различные адреса, а также получать почту с других адресов.

Существуют также корпоративные сети, в частности сеть ОАО «РЖД», именуемая «Интранет» . Она организована аналогично сети Интернета, но никак с ним не связана.

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

2.1. Общие вопросы

Нормирование

Моделирование

Планирование в рыночных условиях

Планирование организации и продвижения поездопотоков

(слайды 2.17, 2.18)

Необходимо выбратьпоследовательности ниток графика движения для поездопотоков за период планирования по наиболее выгодным вариантам путей следования.

Каждый поездопоток может быть представлен последовательностью ниток графика движения для соответствующего поездопотока. Поэтому задача может быть поставлена в двух вариантах – как оперативное составление графика или как «наполнение» нормативного графика планируемыми вагонопотоками. Рассматриваемый нами второй вариант соответствует принципу применения «жёсткого» графика движения. Чтобы напол­нить график одним поездопотоком необходимо определить перечень графиковых участков маршрута следования и для каждого из них подобрать из графика допустимую нитку.

Перечень участков определяется именами станции отправления и назначения данного маршрута и ограничением плана формирования по единственному варианту пути следования через определённые станции. Практика последних десятилетий показы­вает, что указанное ограничение выполняется не всегда ввиду нарушений или по телеграммам о временном изменении плана формирования. Причиной являются «пробки» на магистралях, возникающие из-за внеграфиковых ограничений скоростей движения, проведения «окон» в графике и непредвиденных обстоятельств. Назрела необходимость автоматизации принятия решений о порядке пропуска поездопотоков в таких ситуациях.

Наиболее очевидным управляющим воздействием является пропуск поездопотока по одному из вариантов пути следования, не предусмотренных планом формирования, т.е. через «оптимальные» в данном периоде станции. Но сами станции (их имена, коды) оптимальны только по­тому, что обозначают выбираемый вариант. Истинная же оптимальность кроется в затратах времени продвижения вагонопотока «от двери до двери с учётом энергозатрат. Это время опре­деляется последовательностью ниток графиков движения по участкам пути следования, которые можно выразить, как последовательность номеров поездов. Энергозатраты определя­ются профилем пути, радиусом кривых весами поездов и скоростями их движения. При этом начальная нитка будет определять момент начала продвижения, а конечная – количество участков в маршруте – момент его окончания. Затраты вре­мени в этом случае можно определить, через даты и моменты отправления и прибытия вагонов.

При необходимости выпустить за один цикл планирования на одну и ту же магистраль несколько поездопотоков для каждого из них могут быть выбраны разные варианты пути сле­дования. Для каждого обслуживаемого поездопотока необходимо выбрать свою последова­тельность ниток c учётом ограничений по уже выбранным ниткам. А это ограничение будет влиять на время продвижения «от двери до двери» в зависимости от того, в какую очередь поставлен этот поездопоток.

Из сказанного следует, что для получения оптимального плана пропуска гружёных и порожних поездопотоков необходимо рассматривать различные варианты очерёдности их про­пуска по различным вариантам пути следования.

Задача выбирает такой вариант организации поездов, который по­зволяет отказаться от фиксированной нормы отправляемого состава. При такой организации количество вагонов в поездах будет различно. Следовательно, эффективность продвижения вагонопотока будет определяться не временем, а затратами вагоно-часов. Кроме того, сле­дует учесть затраты киловатт-часов при электрической тяге и объёма топлива при тепловозной тяге.

Поскольку от времени продвижения вагонопотока зависит и время занятости локомо­тива, то эффективность выбираемого варианта будет определяться также и затратами локомо­тиво-часов.

Выходная информация:

План отправления и продвижения поездопотоков.

Критерий оптимальности: минимум совокупной стоимости затрат вагоно-часов, локомотиво-часов и энергозатрат;

- Ограничения:

Приоритеты заявок;

Занятость ниток графика;

Максимальная длина поезда на лимитирующем участке;

Максимальная масса поездов на лимитирующем участке

Регулируемые параметры :

Варианты очерёдности обслуживания поездопотоков;

Варианты маршрута следования поездопотока

Работой станции

Планирование работы станции ведется с дискретностью в одни сутки, в одну смену, в три часа и в 30 минут. С дискретностью в сутки работает станционный диспетчер, с дискретностью в одну смену – станционный и маневровый диспетчеры, с дискретностью в 3 часа – станционный и маневровый диспетчеры и дежурные постов централизации, с дискретностью в 30 минут - дежурные постов централизации.

Каждые сутки к 7-00 станционный диспетчер формирует проект суточного плана, который вводится в память и рассматривается на совещании у начальника станции. После принятия проекта плана этот проект рассматривается в 8-00 на селекторном совещании начальника районаа и может быть скорректирован. В период с 9-00 до 10-00 может прийти информация о корректировке проекта плана по результатам селекторного совещания у начальника ДЦУП. До 11-00 может прийти информация об утверждении проекта с возможной корректировкой и получении проектом статуса плана.

Маневровые диспетчеры получают в свой АРМ утверждённый суточный план до 11-00 и готовят предложения по сменному заданию на первую смену, т.е. на период с 18-00 до 06-00. Предложения вводятся в память в виде проекта сменного задания и передаются в АРМ станционного диспетчера. Он принимает решение, в результате которого проект задания утверждается с корректировкой или без неё и получает статус задания, которое доводится до сведения маневровых диспетчеров.

Перед началом каждой смены станционный диспетчер получает от старшего диспетчера района информацию о выделенных более дальних назначениях , на которые следует формировать поезда. От поездного диспетчера получает информацию об ограничении на использование тех или других перегонов.

Каждые 3 часа в АРМ станционного диспетчера из ДЦУПа поступает оперативное задание в виде плана отправления и продвижения поездопотоков по участку и плана распределения порожних вагонов. Станционный диспетчер создаёт копию плана, с которой и начинает работать.

Прежде всего он решает задачу формирования заданных планов прибытия и отправления поездов по своей станции, задания по порожним вагонам и плана поступления требуемых вагонов. Затем включает в план прибытия номера поездов местного формирования. Запрашивает входную текущую информацию.

В результате этих действий станционный диспетчер создает актуальную информационную базу для решения задач планирования. Он может просмотреть полученную информацию или же сразу переходить к планированию.

Первой задачей планирования является расчёт заявки на поездные локомотивы. Если в межсеансовом периоде ожидается накопление требуемых вагонов, имеются не занятые нитки, но не хватает поездных локомотивов, то в заявке указывается на какие нитки необходимо выделить локомотивы. Заявка отправляется в АРМ старшего диспетчера района управления для согласования. Если заявка принимается, то она передаётся в АРМ дежурного по локомотивному депо. Дежурный принимает меры и вводит свой макет с информацией об обеспеченности ниток графика локомотивами. Макет поступает в АРМ станционного диспетчера, где преобразуется в другой макет, отображающий потребность и обеспеченность локомотивами. Далее станционный диспетчер принимает решение о том какую информацию принять для планирования. После утверждения полученного макета информационную технологию можно продолжать.

Станционный диспетчер включает задачи планирования и получает на экран предложение ввести данные о начале периода планирования. После указания временной точки оси времени на экран выдается меню уровней контроля. Диспетчер должен выбрать тот уровень, на котором именно сейчас следует проверить актуальность входной текущей информации для того, чтобы не допустить не санкционированного решения на устаревших данных. Если подготовленная для решения информация оказывается не актуальной, на экран выдаются имена макетов с устаревшей информацией. Необходимо её обновить либо изменить указание об уровне контроля.

При положительном результате контроля актуальности информации решается задача выбора режима наилучшего благоприятствования выполнению станцией сменного задания. Результат решения выдается на экран в виде рекомендаций по режиму работы станции. Диспетчер должен рассмотреть рекомендацию и утвердить с корректировкой или без неё.

После утверждения решаются задачи планирования маршрутов транзитным поездам и вагонам углового потока, распределения составов по сортировочным системам, половинам горки и приоритетным группам. По окончании решения на экран выдаётся сообщение об этом с рекомендацией просмотреть сформированные планы.

Диспетчер может просмотреть рекомендуемые планы в режиме диалога или продолжить информационную технологию без просмотра.. В любом случае включается задача планирования формирования поездов повышенной транзитности. Результат решения выдаётся на экран в виде рекомендации, которую также следует рассмотреть и утвердить либо отменить.или скорректировать.

При продолжении информационной технологии решается задача формирования заданий исполнителям. По окончанию решения на экран выдаётся информация об этом с рекомендацией утверждения. После утверждения заданий эти задания выдаются в АРМы маневровых диспетчеров и дежурных по постам централизации.

Выдав задания, станционный диспетчер ведёт спорадический контроль за ходом их исполнения..

Каждые три часа в АРМ маневрового диспетчера поступает задание станционного диспетчера, о чём выдаётся сообщение на экран. Маневровый диспетчер создаёт копию задания для дальнейшей работы с ней. Перед началом работы он запрашивает у дежурного по горке информацию о предстоящей работе горочных локомотивов.

Горочные локомотивы могут сразу приступить к надвигу, а могут перед этим выполнить операции осаживания вагонов на сортировочных путях. В зависимости от состояния сортировочных путей дежурный принимает то или иное решение и вводит код технологии предстоящей работы локомотивов. Получив запрошенную информацию, маневровый диспетчер включает задачи планирования.

На экран выдаётся просьба указать начало периода планирования. Диспетчер указывает значение часов и минут и получает на экран меню уровней контроля.. Ему необходимо выбрать такой уровень , в соответствии с которым будет контролироваться актуальность входной текущей информации.

В случае положительного результата контроля на экран выводится запрос ограничения по времени реакции задач в виде меню. Диспетчер выбирает ограничение , после чего ведётся решение задач планирования. По окончанию решения на экран выдаётся сообщение об этом.

Диспетчер может запросить сформированные планы средствами диалога, а после просмотра – утвердить с корректировкой или без неё. Далее диспетчеру предлагается выдать задание исполнителям. Диспетчер даёт согласие и задания передаются в АРМы дежурных постов централизации.

После выдачи заданий маневровый диспетчер ведёт спорадический контроль за ходом их исполнения.

Каждые 3 часа в АРМ дежурного поста централизации поступает два задания: от станционного и от маневрового диспетчера. Дежурный копирует каждое задание для дальнейшей работы с ним. Перед началом планирования дежурный выполняет операцию сбора информации о состоянии путей парка и просматривает полученные задания. Если требуется прицепка, отцепка или перестановка групп вагонов, то он вводит информацию в виде плана предстоящей работы. После этого он включает задачи планирования.

На экран выдаётся запрос времени начала периода планирования. После ввода информации об этом на экран выдается запрос указания уровня контроля. Если контроль показывает, что входная информация актуальна, то управление автоматически передаётся задачам планирования. По окончанию решения на экран выдаётся сообщение об этом. Дежурный запрашивает поочередно макеты сформированной информации. Он имеет возможность откорректировать эту информацию, а затем утвердить . На экран выдаётся предложение выдать задание исполнителям. После выдачи задания дежурный приступает к спорадическому контролю.

Операции поездной и маневровой работы в парке выполняются за достаточно короткие сроки. Вследствие этого точность формируемых планов остаётся удовлетворительной лишь в течение 30 минут. Далее процессы начинают существенно отклоняться от планов. Поэтому через 30 минут после выдачи задания необходимо начать новый сеанс планирования с тем, чтобы заново собрать текущую информацию и на ней решить задачи по тем операциям, которые остались не выполненными.

Гершвальд А.С.

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ НА ТРАНСПОРТЕ

Конспект лекций для студентов 4-го курса

Специальность

«Организация перевозок и управление на транспорте»

РОАТ МИИТ

1.Теория……………………………………………………………………………
1.1. Общие вопросы…………………………………………………………..
1.1.1. Понятие информатизации………...
1.1.2. Термины и определения дисциплины «Информационные технологии»……………………………………………………………………….
1.1.3. Атрибуты постановки компьютерной задачи………………….
1.1.4. Понятие управления……………………………………………..
1.1.5. Понятие критерия………………………………………………..
1.1.6. Примеры критериев оптимальности……………………………
1.1.7. Традиционное и современное понятие опера­тивного управления……………………………………………………………………………….
1.1.8. Информационные системы и технологии……………………..
1.1.9. Понятие функции автоматизированной системы……………
1.1.10. Параметризация объектов управления……………………….
1.1.11. Понятия об алгоритмизации задач для программирования..
1.1.12. Структуры информационной системы………………………..
1.1.13. Виды обеспечения……………………………………………...
1.1.14. Стадии создания информационных технологий……………..
1.1.15. Понятие рыночной экономики применительно к работе хозяйства перевозок…………………………………………………………………
1.2. Информационное обеспечение
1.2.1. Понятия информационного.обеспечения АСУ……………….
1.2.2. Виды информации и способы её организации………………...
1.3. Математическое обеспечение…………………………………………..
1.3.1. Состав математического обеспечения АСУ…………………...
1.3.2. Определение понятия алгоритма……………………………….
1.3.3. Теорема о замещении автоматов……………………………….
1.3.4. Понятие эвристического и точного метода решения…………
1.3.5. Методы математического программирования………………...
1.4. Программное обеспечение……………………………………………..
1.5. Техническое обеспечение……………………………………………...
2. Информационные технологии…………………………………………………
2.1. Общие вопросы…………………………………………………………
2.1.1. Особенности информационных систем и технологий, функционирующих в ОАО «РЖД»……………………………………………………
2.1.2. Технологический цикл автоматизированного управления перевозками………………………………………………………………………..
2.1.3. Центры управления перевозками……………………………..
2.2. Нормирование………………………………………………………….
2.2.1. Технологическое нормирование перевозочного процесса
2.2.2. Техническое нормирование перевозочного процесса……….
2.3. Регулирование…………………………………………………………
2.4. Традиционная система планирования……………………………….
2.4.1. Сменно-суточное планирование поездной и грузовой работы на дорожном уровне…………………………………………………….
2.4.2. Текущее планирование поездной и грузовой работы на дорожном уровне…………………………………………………………..………..
2.4.3. Управление местной работой………………………………....
2.5. Моделирование………………………………………………………..
2.5.1. Ведение поездной и вагонной моделей……………………...
2.5.2. Состав единой модели перевозочного процесса……………..
2.6. Планирование в рыночных условиях………………………………..
2.6.1. Новые принципы организации перевозок……………………
2.6.2. Системообразующие задачи оперативного управления…….
2.6.3. Распределение порожних вагонов между станциями погрузки………………………………………………………………………………
2.6.4. Планирование организации и продвижения поездопотоков
2.6.5. Управление работой станции в целом………………………
2.6.6. Управление сортировочной работой………………………..
2.6.7. Управление поездной и маневровой работой в парке……..
2.7. Информационные технологии в рыночных условиях……………..
2.7.1. Информационная технология внутрисуточного планирования на уровнях центов управления……………………………………………
2.7.2. Информационная технология внутрисуточного планирования работы станции…………………………………………………………….
3. Базовые информационные системы………………………………………….
3.1. Автоматизированная система оперативного управления перевозками (АСОУП)…………………………………………………………………..
3.2. Диалоговая информационная система контроля за дислокацией вагонного прака (ДИСПАРК)…………………………………………………..
3.3. Автоматизированная система управления контейнерными перевоз­ками (ДИСКОН)……………………………………………………………….
3.4. Сетевая интегрированная российская информационно-управля-ющая система (СИРИУС)………………………………………………………
3.5. Интегрированная система управления сортировочной станцией (КСАУСС)…………………………………………………………………………
3.6. Система автоматической идентификации (САИ «Пальма»)…….
3.7. Система диспетчерской централизации (ДЦ-МПК)……………...

ТЕОРИЯ

1.1. Общие вопросы