Как формируется цвет в цветовой модели. Зрительный аппарат человека

Мир, окружающий человека, - это вселенная цвета. Цвет имеет не только информационную, но и эмоциональную составляющую. Человеческий глаз - очень тонкий инструмент, способный различать даже едва заметные опенки цвета. Однако очень трудно пересказать другому человеку свое ощущение цвета, даже если это какой-нибудь известный или привычный цвет, скажем, цвет неба или цвет листвы.
Для многих отраслей производства, в том числе для компьютерных технологий и полиграфии, необходимы численные способы описания цвета. Эта необходимость реализуются в цветовых моделях (color models), в которых цвет представляет собой набор числовых значений для определенных координатных осей.
Все предметы, которые нас окружают, с точки зрения цвета делятся на 3 большие группы:
— Предметы излучающие свет (солнце, лампочка, монитор …)
— Предметы поглощающие и отражающие свет (Прежде всего бумага, а также все не светящиесяпредметы)
— предметы пропускаюшие свет (стекла, пленки и и тд)
Для технических нужд чаще всего используются первая и вторая группы. В силу физической специфики этих предметов для их описания используются разные цветовые модели.

Цветовая модель RGB
Многие цвета видны оттого, что в органы зрения человека попадают излучаемые тем или иным источником световые потоки (цвета на экране телевизора, монитора, кино, слайд-проектора и т. д.). У таких устройств базовым цветом, который он способен показывать даже будучи не подключенным к розетке, является черный цвет. А все остальные цвета в нем синтезируются смешением всего 3 основных цветов разной интенсивности — красного, зеленого и синего. При смешении двух основных цветов результат осветляется. При смешении красного и зеленого получается желтый, при смешении зеленого и синего получается голубой, синий и красный дают пурпурный. Если смешиваются все три цвета, в результате образуется белый. Такие цвета называются аддитивными.

Модель, в основе которой лежат указанные три цвета, носит название RGB по первым буквам английских слов Red (красный), Green (зеленый), Blue (синий). В компьютерной реализации модели RGB значение каждой составляющей принадлежит диапазону от 0 до 255

— Нулевые значения всех составляющих (0, 0, 0) соответствуют черному цвету.
— Максимальные значения всех составляющих (255, 255, 255) соответствуют белому цвету.
— При нулевом значении одной составляющей и двух максимальных обеспечиваются вторичные основные цвета - голубой, пурпурный и желтый.
— Все оттенки серого получаются тогда, когда интенсивность каждого из основных цветов одинакова. Например, 50% серый получается при установке значений red=128 green=128 blue=128
Эта модель, конечно, совсем не очевидна для фотографа, художника или дизайнера, но ее необходимо принять и разобраться в ней, потому что она является теоретической основой процессов фотографирования, сканирования и визуализации изображений на экране монитора.

Цветовая модель CMYK

В модели CMYK к отражаемым относятся цвета, которые остаются после вычитания из белого падающего светового потока на какую-либо поверхность. Такие цвета называются субтрактивными («вычитательными»), поскольку это результат вычитания основных аддитивных (например, полиграфическая краска голубого цвета поглощает красный и отражает синий и зеленый цвета).
К основным субтрактивным цветам относятся: голубой (cyan), пурпурный (magenta), желтый (yellow). Они входят в так называемую полиграфическую триаду (process colors), которая может быть представлена в виде трехмерной модели:

Диапазон каждой составляющей простирается от 0 до 100% (рис. 2.2).
При смешении двух субтрактивных составляющих результирующий цвет затемняется, а при смешении всех трех должен получиться черный цвет. При полном отсутствии краски остается белый цвет (белая бумага).

Данная модель описывает реальные полиграфические краски, которые далеко не столь совершенны, как луч света. Они не могут полностью
перекрыть весь цветовой диапазон, а это приводит, в частности, к тому, что смешение трех основных красок, которое должно давать (согласно теоретической модели) черный цвет, на самом деле дает темный цвет не очень определенного цвета (бурый).
Для исключения этого недостатка в число основных полиграфических красок была внесена черная краска, позволяющая получить глубокий черный цвет. Именно она добавила последнюю букву в название модели CMYK, хотя и не совсем обычно. С - это Cyan (голубой), М - Magenta (пурпурный), Y - Yellow (желтый), а К - это сокращение от Key color - «контурный цвет», т. е. черный цвет.

Цветовая модель HSB

Если основные цвета двух вышеописанных моделей разместить в виде единой последовательности, то получится усеченный вариант цветового круга, в котором цвета располагаются в известном порядке: красный (R), желтый (Y), зеленый (G), голубой (С), синий (В) и пурпурный (М). В цветовой модели HSB этот круг взят за основу.


— По краю этого цветового крута располагаются так называемые спектральные цвета или цветовые тоны (Hue), которые определяются длиной световой волны, отраженной от непрозрачного объекта или прошедшей через прозрачный объект. Цветовой тон характеризуется положением на цветовом круге и определяется величиной угла в диапазоне от 0 до 360 градусов. Эти цвета обладают максимальной насыщенностью.
— Насыщенность (Saturation) - это параметр цвета, определяющий его чистоту. Уменьшение насыщенности цвета означает его разбеливание. С уменьшением насыщенности цвет становится пастельным, блеклым, размытым. На модели все одинаково насыщенные цвета располагаются на концентрических окружностях, т. е. можно говорить об одинаковой насыщенности, например, зеленого и пурпурного цветов, и чем ближе центр круга, тем все более разбеленные цвета получаются. В самом центре любой цвет максимально разбеливается, проще говоря, становится белым цветом. Ось насыщенности - это радиус окружности. Диапазон значений - от 0 до 100%.
— Яркость (Brightness) - это параметр цвета, определяющий затемненность цвета. Уменьшение яркости цвета означает его зачернение. Работу с яркостью можно охарактеризовать как добавление в спектральный цвет определенного процента черной краски. Чем больше в цвете содержание черного, тем ниже яркость цвета, и тем более темным он становится. Ось яркости - это вертикаль, опущенная из центра окружности. Диапазон значений - от 0 до 100%.

В общем случае модель можно представить в форме конуса, любой цвет в модели HSB получается из спектрального цвета добавлением определенного процента белой и черной красок, т. е. фактически серой краски.

Примечание
Название модели HSB - аббревиатура от Hue, Saturation и Brightness
Важной особенностью модели HSB является наличие треугольника (на рис. выше он выделен серым цветом), в пределах которого располагаются все оттенки одного цветового тона, что соответствует привычной логике выбора цвета.

Цветовая модель Lab

Цветовая модель Lab была создана Международной комиссией по освещению (Commission Internationale de I’EcIairage - CIE) с целью преодоления существенных недостатков перечисленных моделей, в частности, она призвана стать аппаратно-независимой моделью и определять цвета без учета особенностей устройства (сканера, монитора, принтера, печатного станка и т. д.).

Что касается цветовых параметров, то в этой модели любой цвет определяется светлотой (Lightness) и двумя хроматическими компонентами: параметром «a», который изменяется в диапазоне от красного до зеленого, и параметром «b», изменяющимся в диапазоне от желтого до синего.

В данной модели так же трудно ориентироваться, как в моделях RGB и CMYK, но нужно иметь представление о ней, поскольку программа Adobe Photoshop использует ее в качестве модели-посредника при конвертировании из одной цветовой модели в другую.
Кроме того, эта модель является центральной в системе управления цветом и имеет максимально широкий цветовой охват (см ниже).
Цветовое пространство модели Lab можно условно представить в виде графика цветности ху. Все цвета, расположенные внутри и на границе «подковы», являются физически реализуемыми.

Цветовой охват

Мы видим естественный цвет в природных условиях - и представленный на экране монитора или на бумаге. Возможный диапазон видимых цветов, или цветовой охват (gamut), при этом отличается.
Самый широкий он, естественно, в природе и ограничивается, естественно, возможностями нормального человеческого зрения.

Часть из того, что существует в природе, может передать монитор (на экране нельзя точно передать, например, чистые голубой и желтый цвета).
Часть из того, что передает монитор, можно напечатать (например, при полиграфическом исполнении совсем не передаются цвета, составляющие которых имеют очень низкую плотность).
Представить цветовой охват можно на графике цветности ху (площадь «подковы» совпадает с цветовым охватом модели Lab).

Цветовая модель

Цветовая модель - термин, обозначающий абстрактную модель описания представления цветов в виде кортежей чисел, обычно из трёх или четырёх значений, называемых цветовыми компонентами или цветовыми координатами . Вместе с методом интерпретации этих данных (например, определение условий воспроизведения и/или просмотра - то есть задание способа реализации), множество цветов цветовой модели определяет цветовое пространство .

Трёхкомпонентное цветовое пространство стимулов

Человек является трихроматом - сетчатка глаза имеет 3 вида рецепторов света, ответственных за цветное зрение (см.: колбочки). Каждый вид колбочек реагирует на определённый диапазон видимого спектра . Отклик, вызываемый в колбочках светом определённого спектра, называется цветовым стимулом , при этом свет с разными спектрами может иметь один и тот же цветовой стимул и, таким образом, восприниматься человеком одинаково. Это явление называется метамерией - два излучения с разными спектрами, но одинаковыми цветовыми стимулами, будут неразличимы для человека.

Трёхмерное представление цветового пространства человека

Можно определить цветовое пространство стимулов как линейное пространство , если задать координаты x, y, z в качестве значений стимулов, соответствующих отклику колбочек длинноволнового (L), средневолнового (M) и коротковолнового (S) диапазона оптического спектра. Начало координат (S, M, L) = (0, 0, 0) будет представлять чёрный цвет. Белый цвет не будет иметь чёткой позиции в данном определении диаграммы всевозможных цветов, а будет определяться, например, через цветовую температуру , определённый баланс белого или каким-либо иным способом. Полное цветовое пространство человека имеет вид конуса в форме подковы (см. рисунок справа). Принципиально данное представление позволяет моделировать цвета любой интенсивности - начиная с нуля (чёрного цвета) до бесконечности. Однако, на практике, человеческие рецепторы могут перенасытиться или даже быть повреждены излучением с экстремальной интенсивностью, поэтому данная модель не применима для описания цвета в условиях чрезвычайно высоких интенсивностей излучений и также не рассматривает описание цвета в условиях очень низких интенсивностей (поскольку у человека задействуется иной механизм восприятия через палочки).

Являясь линейным пространством, пространство цветовых стимулов имеет свойство аддитивного смешивания - сумма двух цветовых векторов будет соответствовать цвету, равному получаемому смешением этих двух цветов (см. также: Закон Грассмана). Таким образом, можно описывать любые цвета (вектора цветового пространства) через линейную комбинацию цветов, выбранных в качестве базиса . Такие цвета называют основными (англ. primary colors ). Чаще всего в качестве основных цветов выбирают красный, зелёный и синий (модель RGB), однако возможны другие варианты базиса основых цветов. Выбор красного, зелёного и синего оптимален по ряду причин, например потому что при этом минимизируется количество точек цветового пространства, для представления которых используются отрицательные координаты, что имеет практическое значения для цветовоспроизведения (нельзя воспроизводить цвет излучением с отрицательной интенсивностью). Этот факт следует из того что пики чувствительностей L,M и S колбочек приходятся на красный, зелёный и синий части видимого спектра.

Некоторые цветовые модели используются для цветовоспроизведения , например воспроизведения цвета на экранах телевизоров и компьютеров, или цветной печати на принтерах. Используя явление метамерии, устройства цветовоспроизведения не воспроизводят оригинальный спектр изображения, а лишь имитируют стимульную составляющую этого спектра, что в идеале позволяет получить картину неотличимую человеком от оригинальной сцены.

Цветовое пространство CIE XYZ

Цветовое пространство XYZ - это эталонная цветовая модель, заданная в строгом математическом смысле организацией CIE (International Commission on Illumination - Международная комиссия по освещению) в 1931 году. Модель XYZ является мастер-моделью практически всех остальных цветовых моделей, используемых в технических областях.

Функции цветового соответствия

Являясь трихроматом, человек имеет три типа светочувствительных детекторов или, другими словами, зрение человека трёхкомпонентно . Каждый тип детекторов (колбочек) имеет различающуюся чувствительность к разным длинам волн спектра, что описывается функцией спектральной чувствительности (которая напрямую определяется видом конкретных молекул фотопсинов , используемых данным типом колбочек). Можно сказать, что глаз, как детектор, выдает три вида сигнала (нервные импульсы). С математической точки зрения, из спектра (описываемого бесконечномерным вектором) путём умножения на функции спектральной чувствительности колбочек получается трёхкомпонентный вектор, описывающий детектируемый глазом цвет. В колориметрии данные функции принято называть функциями цветового соответствия (англ. color matching functions ).

Эксперименты, проведённые Дэвидом Райтом (англ. David Wright ) и Джоном Гилдом (англ. John Guild ) в конце 1920-х и начале 1930-х годов, послужили основой для определения функций цветового соответствия. Изначально функции цветового соответствия были определены для 2-градусного поля зрения (использовался соответствующий колориметр). В 1964 году комитет CIE опубликовал дополнительные данные для 10-градусного поля зрения.

При этом в определении кривых модели XYZ заложен фактор своевольности - форма каждой кривой может быть измерена с достаточной точностью, однако кривая суммарной интенсивности (или сумма всех трёх кривых) заключает в своём определении субъективный момент, при котором реципиента просят определить, имеют ли два источника света одинаковую яркость, даже если эти источники абсолютно разного цвета. Также, имеется произвольность относительной нормировки кривых X, Y и Z, поскольку можно предложить альтернативную работающую модель, в которой кривая чувствительности X имеет двукратно усиленную амплитуду. При этом цветовое пространство будет иметь иную форму. Кривые X, Y и Z в модели CIE XYZ 1931 и 1964 были выбраны таким образом, чтобы площади поверхности под каждой кривой были равны между собой.

Хроматические координаты Yxy

На рисунке справа представлена классическая хроматическая диаграмма модели XYZ с длинами волн цветов. Значения x и y в ней соответствуют X, Y и Z согласно следующим формулам:

x = X/ (X + Y + Z ), y = Y/ (X + Y + Z ).

В математическом смысле данную хроматическую диаграмму можно представить как подобласть действительной проективной плоскости , при этом x и y будут являться проективными координатами цветов. Данное представление позволяет задавать значение цвета через светлоту Y (англ. luminance ) и две координаты x , y . Однако светлота Y в модели XYZ и Yxy - это не то же самое, что яркость Y в модели YUV или YCbCr .

Обычно диаграмма Yxy используется для иллюстрации характеристик гамутов различных устройств воспроизведения цвета - дисплеев и принтеров. Конкретный гамут обычно имеет вид треугольника, углы которого образованы точками основных , или первичных , цветов. Внутренняя область гамута описывает все цвета, которые способно воспроизвести данное устройство.

Особенности цветного зрения

Значения X , Y и Z получаются путём умножения физического спектра излучения на функции цветового соответствия. Синяя и красная часть спектра оказывают меньшее влияние на воспринимаемую яркость, что может быть продемонстрировано на примере:

red
КРАСНЫЙ
green
ЗЕЛЁНЫЙ
blue
СИНИЙ
yellow
КРАСНЫЙ
+ЗЕЛЁНЫЙ
aqua/cyan
ЗЕЛЁНЫЙ
+СИНИЙ
fuchsia/magenta
КРАСНЫЙ
+СИНИЙ
black
ЧЁРНЫЙ
white
КРАСНЫЙ
+ЗЕЛЁНЫЙ
+СИНИЙ

Для среднестатистического человека, имеющего нормальное цветовое зрение, зелёный будет восприниматься ярче синего. В то же время, хотя чистый синий цвет воспринимается как очень неяркий (если рассматривать надпись синего цвета с большого расстояния, то её цвет будет трудно отличить от чёрного), в смеси с зелёным или красным воспринимаемая яркость значительно повышается.

При определённых формах дальтонизма зелёный цвет может восприниматься эквивалентно-ярким синему, а красный как очень тёмный, либо вообще как неразличимый. Люди с дихромией - нарушением восприятия красного, например, не способны видеть красный сигнал светофора при ярком солнечном дневном свете. При дейтеранопии - нарушении восприятия зелёного, в ночных условиях зелёный сигнал светофора становится неотличимым от света уличных фонарей.

Классификация

Цветовые модели можно классифицировать по их целевой направленности:

  1. XYZ - описание восприятия; L*a*b* - то же пространство в других координатах.
  2. Аддитивные модели - рецепты получения цвета на мониторе (например, RGB).
  3. Полиграфические модели - получение цвета при использовании разных систем красок и полиграфического оборудования (например, CMYK).
  4. Модели, не связанные с физикой оборудования, являющиеся стандартом передачи информации.
  5. Математические модели, полезные для каких-либо способов цветокоррекции, но не связанные с оборудованием, например HSV .

Распространённые цветовые модели

См. также

Примечания

Ссылки

  • Алексей Шадрин, Андрей Френкель. Color Management System (CMS) в логике цветовых координатных систем. Часть I , Часть 2 , Часть 3

Цвет и его модели

Софья Скрылина, преподаватель учебного центра «Арт», г.Санкт-Петербург

В КомпьюАрт № 7"2012 была представлена статья о гармоничных цветовых сочетаниях и закономерностях влияния цвета на восприятие человека, что, несомненно, учитывают в своих проектах современные дизайнеры. Но при работе за компьютером и смешивании цветов на экране монитора возникают специфические проблемы. Дизайнер должен получить на экране монитора или на твердой копии именно те цвет, тон, оттенок и светлоту, которые требуются. Цвета на мониторе не всегда совпадают с природными красками. Очень непросто получить один и тот же цвет на экране, на распечатке цветного принтера и на типографском оттиске. Дело в том, что цвета в природе, на мониторе и на печатном листе создаются абсолютно разными способами.
Для однозначного определения цветов в различных цветовых средах существуют цветовые модели, о которых мы и поговорим в настоящей статье.

Модель RGB

Цветовая модель RGB — самый популярный способ представления графики, который подходит для описания цветов, видимых на мониторе, телевизоре, видеопроекторе, а также создаваемых при сканировании изображений.

Модель RGB используется при описании цветов, получаемых смешиванием трех лучей: красного (Red), зеленого (Green) и синего (Blue). Из первых букв английских названий этих цветов составлено название модели. Остальные цвета получаются сочетанием базовых. Цвета такого типа называются аддитивными, поскольку при сложении (смешивании) двух лучей основных цветов результат становится светлее. На рис. 1 показано, какие цвета получаются при сложении основных.

В модели RGB каждый базовый цвет характеризуется яркостью, которая может принимать 256 значений — от 0 до 255. Поэтому можно смешивать цвета в различных пропорциях, изменяя яркость каждой составляющей. Таким образом, можно получить 256x256x256 = 16 777 216 цветов.

Каждому цвету можно сопоставить код, используя десятичное и шестнадцатеричное представление кода. Десятичное представление — это тройка десятичных чисел, разделенных запятыми. Первое число соответствует яркости красной составляющей, второе — зеленой, а третье — синей. Шестнадцатеричное представление — это три двузначных шестнадцатеричных числа, каждое из которых соответствует яркости базового цвета. Первое число (первая пара цифр) соответствует яркости красного цвета, второе число (вторая пара цифр) — зеленого, а третье (третья пара) — синего.

Для проверки данного факта откройте палитру цветов в CorelDRAW или Photoshop. В поле R введите максимальное значение яркости красного цвета 255, а в поля G и B — нулевое значение. В результате поле образца будет содержать красный цвет, шестнадцатеричный код будет таким: FF0000 (рис. 2).

Рис. 2. Представление красного цвета в модели RGB: слева — в окне палитры Photoshop, справа — CorelDRAW

Если к красному цвету добавить зеленый с максимальной яркостью, введя в поле G значение 255, получится желтый цвет, шестнадцатеричное представление которого — FFFF00.

Максимальная яркость всех трех базовых составляющих соответствует белому цвету, минимальная — черному. Поэтому белый цвет имеет в десятичном представлении код (255, 255, 255), а в шестнадцатеричном — FFFFFF16. Черный цвет кодируется соответственно (0, 0, 0) или 00000016.

Все оттенки серого цвета образуются смешиванием трех составляющих одинаковой яркости. Например, при значениях R = 200, G = 200, B = 200 или C8C8C816 получается светло-серый цвет, а при значениях R = 100, G = 100, B = 100 или 64646416 — темно-серый. Чем более темный оттенок серого цвета вы хотите получить, тем меньшее число нужно вводить в каждое текстовое поле.

Что же происходит при выводе изображения на печать, как передаются цвета? Ведь бумага не излучает, а поглощает или отражает цветовые волны! При переносе цветного изображения на бумагу используется совершенно другая цветовая модель.

Модель CMYK

При печати на бумагу наносится краска — материал, который поглощает и отражает цветовые волны различной длины. Таким образом, краска выступает в роли фильтра, пропускающего строго определенные лучи отраженного цвета, вычитая все остальные.

Цветовую модель CMYK используют для смешения красок печатающие устройства — принтеры и типографские станки. Цвета этой модели получаются в результате вычитания из белого базовых цветов модели RGB. Поэтому их называют субтрактивными.

Базовыми для CMYK являются следующие цвета:

  • голубой (Cyan) — белый минус красный (Red);
  • пурпурный (Magenta) — белый минус зеленый (Green);
  • желтый (Yellow) — белый минус синий (Blue).

Помимо этих, используется еще и черный цвет, который является ключевым (Key) в процессе цветной печати. Дело в том, что реальные краски имеют примеси, поэтому их цвет не соответствует в точности теоретически рассчитанным голубому, пурпурному и желтому. Смешение трех основных красок, которые должны давать черный цвет, дает вместо этого неопределенный грязно-коричневый. Поэтому в число основных полиграфических красок и внесена черная.

На рис. 3 представлена схема, из которой видно, какие цвета получаются при смешении базовых в CMYK.

Следует отметить, что краски модели CMYK не являются столь чистыми, как цвета модели RGB. Этим объясняется небольшое несоответствие базовых цветов. Согласно схеме, представленной на рис. 3, при максимальной яркости должны получаться следующие комбинации цветов:

  • смешение пурпурного (M) и желтого (Y) должно давать красный цвет (R) (255, 0, 0);
  • смешение желтого (Y) и голубого (C) должно давать зеленый цвет (G) (0, 255, 0);
  • смешение пурпурного (M) и голубого (C) должно давать синий цвет (B) (0, 0, 255).

На практике получается несколько иначе, что мы далее и проверим. Откройте диалоговое окно палитры цветов в программе Photoshop. В текстовые поля M и Y введите значение 100%. Вместо базового красного цвета (255, 0, 0) мы имеем красно-оранжевую смесь (рис. 4).

Теперь в текстовые поля Y и C введите значение 100%. Вместо базового зеленого цвета (0, 255, 0) получается зеленый цвет с небольшим оттенком синего. При задании яркости 100% в полях M и C вместо синего цвета (0, 0, 255) мы имеем синий цвет с фиолетовым оттенком. Более того, не все цвета модели RGB могут быть представлены в модели CMYK. Цветовой охват RGB шире, чем у CMYK.

Основные цвета моделей RGB и CMYK находятся в зависимости, представленной на схеме цветового круга (рис. 5). Эта схема применяется для цветовой коррекции изображений; примеры ее использования рассматривались в КомпьюАрт № 12"2011.

Модели RGB и CMYK являются аппаратно зависимыми. Для модели RGB значения базовых цветов определяются качеством люминофора у ЭЛТ или характеристиками ламп подсветки и цветовых фильтров панели у ЖК-мониторов. Если обратиться к модели CMYK, то значения базовых цветов определяются реальными типографскими красками, особенностями печатного процесса и носителя. Таким образом, одинаковое изображение может на различной аппаратуре выглядеть по-разному.

Как отмечалось ранее, RGB является наиболее популярной и часто применяемой моделью для представления цветных изображений. В большинстве случаев изображения подготавливаются для демонстрации через монитор или проектор и для печати на цветных настольных принтерах. Во всех этих случаях необходимо использовать модель RGB.

Замечание

Несмотря на то что в цветных принтерах используются чернила цветовой модели CMYK, чаще всего изображения, подготавливаемые для печати, необходимо преобразовать в модель RGB. Но распечатанное изображение будет выглядеть немного темнее, чем на мониторе, поэтому перед печатью его необходимо осветлить. Величина осветления для каждого принтера определяется опытным путем.

Модель CMYK необходимо применять в одном случае — если изображение готовится к печати на типографском станке. Более того, следует учесть, что модель CMYK не содержит столь же большого числа цветов, как модель RGB, поэтому в результате преобразования из RGB в CMYK изображение может утратить ряд оттенков, которые вряд ли получится восстановить обратным преобразованием. Поэтому старайтесь выполнять преобразование изображения в модель CMYK на конечном этапе работы с ним.

Модель HSB

Модель HSB упрощает работу с цветами, так как в ее основе лежит принцип восприятия цвета человеческим глазом. Любой цвет определяется своим цветовым тоном (Hue) — собственно цветом, насыщенностью (Saturation) — процентом добавления к цвету белой краски и яркостью (Brightness) — процентом добавления черной краски. На рис. 6 показано графическое представление модели HSB.

Спектральные цвета, или цветовые тона, располагаются по краю цветового круга и характеризуются положением на нем, которое определяется величиной угла в диапазоне от 0 до 360°. Эти цвета обладают максимальной (100%) насыщенностью (S) и яркостью (B). Насыщенность изменяется по радиусу круга от 0 (в центре) до 100% (на краях). При значении насыщенности 0% любой цвет становится белым.

Яркость — параметр, определяющий освещенность или затемненность. Все цвета цветового круга имеют максимальную яркость (100%) независимо от тона. Уменьшение яркости цвета означает его затемнение. Для отображения этого процесса на модели добавляется новая координата, направленная вниз, на которой откладываются значения яркости от 100 до 0%. В результате получается цилиндр, образованный из серии кругов с уменьшающейся яркостью, нижний слой — черный.

С целью проверки данного утверждения откройте диалоговое окно выбора цвета в программе Photoshop. В поля S и B введите максимальное значение 100%, а в поле H — минимальное значение 0°. В результате мы получим чистый красный цвет солнечного спектра. Этому же цвету соответствует красный цвет модели RGB, его код (255, 0, 0), что указывает на взаимосвязь этих моделей (рис. 7).

В поле H изменяйте значение угла с шагом 20°. Вы будете получать цвета в том порядке, в каком они расположены в спектре: красный сменится оранжевым, оранжевый желтым, желтый зеленым и т. д. Угол 60° дает желтый цвет (255, 255, 0), 120°— зеленый (0, 255, 0), 180°— голубой (255, 0, 255), 240° — синий (0, 0, 255) и т.д.

Чтобы получить розовый цвет, на языке модели HSB — блеклый красный, необходимо в поле H ввести значение 0°, а насыщенность (S) понизить, например, до 50%, задав максимальное значение яркости (B).

Серый цвет для модели HSB — это сведенные к нулю цветовой тон (H) и насыщенность (S) с яркостью (B) меньше 100%. Вот примеры светло-серого: H = 0, S = 0, B = 80% и темно-серого цветов: H = 0, S = 0, B = 40%.

Белый цвет задается так: H = 0, S = 0, B = 100%, а чтобы получить черный цвет, достаточно снизить до нуля значение яркости при любых значениях тона и насыщенности.

В модели HSB любой цвет получается из спектрального добавлением определенного процента белой и черной красок. Поэтому HSB — очень простая в понимании модель, которую используют маляры и профессиональные художники. У них обычно есть несколько основных красок, а все другие получаются добавлением к ним черной или белой. Однако при смешивании художниками красок, полученных на основе базовых, цвет выходит за рамки модели HSB.

Модель Lab

Модель Lab основана на следующих трех параметрах: L — яркость (Lightness) и два хроматических компонента — a и b . Параметр a изменяется от темно-зеленого через серый до пурпурного цвета. Параметр b содержит цвета от синего через серый до желтого (рис. 8). Оба компонента меняются от -128 до 127, а параметр L — от 0 до 100. Нулевое значение цветовых компонентов при яркости 50 соответствует серому цвету. При значении яркости 100 получается белый цвет, при 0 — черный.

Понятия яркости в моделях Lab и HSB нетождественны. Как и в RGB, смешение цветов из шкал a и b позволяет получить более яркие цвета. Уменьшить яркость результирующего цвета можно за счет параметра L .

Откройте окно выбора цвета в программе Photoshop, в поле яркости L введите значение 50, для параметра a введите наименьшее значение -128, а параметр b обнулите. В результате вы получите сине-зеленый цвет (рис. 9). Теперь попробуйте увеличить значение параметра a на единицу. Обратите внимание: ни в одной модели числовые значения не изменились. Попробуйте, увеличивая значение данного параметра, добиться изменения в других моделях. Скорее всего, у вас получится это сделать при значении 121 (зеленая составляющая RGB уменьшится на 1). Это обстоятельство подтверждает факт того, что модель Lab имеет бо льший цветовой охват по сравнению с моделями RGB, HSB и CMYK.

В модели Lab яркость полностью отделена от изображения, поэтому в некоторых случаях эту модель удобно использовать для перекраски фрагментов и повышения насыщенности изображения, влияя только на цветовые составляющие a и b . Также возможна регулировка контраста, резкости и других тоновых характеристик изображения за счет изменения параметра яркости L . Примеры коррекции изображения в модели Lab приводились в КомпьюАрт № 3"2012.

Цветовой охват модели Lab шире, чем у RGB, поэтому каждое повторное преобразование из одной модели в другую практически безопасно. Более того, можно перевести изображение в режим Lab, выполнить коррекцию в нем, а затем безболезненно перевести результат обратно в модель RGB.

Модель Lab аппаратно независима, служит ядром системы управления цвета в графическом редакторе Photoshop и применяется в скрытом виде при каждом преобразовании цветовых моделей как промежуточная. Ее цветовой диапазон покрывает диапазоны RGB и CMYK.

Индексированные цвета

Для публикации изображения в Интернете используется не вся цветовая палитра, состоящая из 16 млн цветов, как в режиме RGB, а только 256 цветов. Этот режим называется «Индексированные цвета» (Indexed Color). На работу с такими изображениями налагается ряд ограничений. К ним не могут быть применены фильтры, некоторые команды тоновой и цветовой коррекции, недоступны все операции со слоями.

С изображением, скачанным из Интернета (как правило в формате GIF) очень часто возникает следующая ситуация. Нарисовать в нем что-либо получится только цветом, отличным от выбранного. Это объясняется тем, что выбранный цвет выходит за рамки цветовой палитры индексированного изображения, то есть этого цвета нет в файле. В результате происходит замена выбранного в палитре цвета на ближайший похожий цвет из цветовой таблицы. Поэтому перед редактированием такого изображения необходимо перевести его в модель RGB. 

Статья подготовлена по материалам книги Софьи Скрылиной «Photoshop CS6. Самое необходимое»: http://www.bhv.ru/books/book.php?id=190413.

Цветовые модели. Закон Грассмана. Модели RGB, CMYK, Lab, HSB. Глубина цвета. Черно-белый и полутоновой режим. Плашечные цвета. Кодирование цвета, палитры. Проблема цветового охвата. Цветовые профили. Управление цветами. Цветоделение.

Цветовые модели и их виды

Наука о цвете – это довольно сложная и широкомасштабная наука, поэтому в ней время от времени создаются различные цветовые модели, применяемые в той либо иной области. Одной из таких моделей и является цветовой круг .

Cуществует 3 первичные цвета, которые невозможно получить и которые образуют все остальные. Основные цвета – это желтый, красный и синий. При смешивании желтого с красным получается оранжевый, синего с желтым – зеленый, а красного с синим – фиолетовый. Таким образом, можно составить круг, который будет содержать все цвета. Он представлен на рис. и называется большим кругом Освальда .

Наряду с кругом Освальда есть еще и круг Гете , в котором основные цвета расположены в углах равностороннего треугольника, а дополнительные – в углах перевернутого треугольника.

Друг напротив друга расположены контрастные цвета.

Для описания излучаемого и отраженного цвета используются разные математические модели – цветовые модели (цветовое пространство) – это способ описания цвета с помощью количественных характеристик. Цветовые модели могут быть аппаратно–зависимыми (их пока большинство, RGB и CMYK в их числе) и аппаратно–независимыми (модель Lab). В большинстве «современных» визуализационных пакетов (например, в Photoshop) можно преобразовывать изображение из одной цветовой модели в другую.

В цветовой модели (пространстве) каждому цвету можно поставить в соответствие строго определенную точку. В этом случае цветовая модель – это просто упрощенное геометрическое представление, основанное на системе координатных осей и принятого масштаба.

Основные цветовые модели:

    CMY (Cyan Magenta Yellow);

    CMYK (Cyan Magenta Yellow Key, причем Key означает черный цвет);

    HSV (Hue, Saturation, Value);

    HLS (Hue, Lightness, Saturation);

    и другие.

В цифровых технологиях используются, как минимум, четыре основных модели: RGB, CMYK, HSB в различных вариантах и Lab. В полиграфии используются также многочисленные библиотеки плашечных цветов.

Цвета одной модели являются дополнительными к цветам другой модели. Дополнительный цвет – цвет, дополняющий данный до белого. Дополнительный для красного – голубой (зеленый+синий), дополнительный для зеленого – пурпурный (красный+синий), дополнительный для синего – желтый (красный+зеленый) и т.д.

По принципу действия перечисленные цветовые модели можно условно разбить на три класса:

    аддитивные (RGB), основанные на сложении цветов;

    субтрактивные (CMY, CMYK), основу которых составляет операция вычитания цветов (субтрактивный синтез);

    перцепционные (HSB, HLS, LAB, YCC), базирующиеся на восприятии.

Аддитивный цвет получается на основе законов Грассмана путем соединения лучей света разных цветов. В основе этого явления лежит тот факт, что большинство цветов видимого спектра могут быть получены путем смешивания в различных пропорциях трех основных цветовых компонент. Этими компонентами, которые в теории цвета иногда называются первичными цветами, являются красный (R ed), зеленый (G reen) и синий (В lue) цвета. При попарном смешивании первичных цветов образуются вторичные цвета: голубой (С yan), пурпурный (M agenta) и желтый (Y ellow). Следует отметить, что первичные и вторичные цвета относятся к базовым цветам.

Базовыми цветами называют цвета, с помощью которых можно получить практически весь спектр видимых цветов.

Для получения новых цветов с помощью аддитивного синтеза можно использовать и различные комбинации из двух основных цветов, варьирование состава которых приводит к изменению результирующего цвета.

Таким образом, цветовые модели (цветовое пространство) представляют средства для концептуального и количественного описания цвета. Цветовой режим – это способ реализации определенной цветовой модели в рамках конкретной графической программы.

Доброго вам дня, дорогие читатели моего блога. Очень рад вас видеть на страницах моего блога. Сегодня я хотел бы пройтись немного по теории, а именно рассказать про цветовые модели в компьютерной графике. Не бойтесь, ничего страшного здесь нет, но знать это нужно, так как в скором времени нам это пригодится. Я не буду вам рассказывать научное определение цветовой модели, так как это слишком заумно.

Выбор цветовой модели зависит в основном от того для чего нам нужно то или иное изображение, для каких целей. Ладно, не буду вас мучать. Давайте рассмотрим несколько цветовых моделей, которые встретятся вам в различных графических редакторах.

В этом режиме нам доступно всего 2 цвета, а именно черный и белый. Ну и что мы здесь забыли? Правильно! Ничего. Поэтому сразу говорю — этим режимом мы пользоваться не будем.

Градации серого (Grayscale)

Как видно из названия, в этом режимы используются лишь оттенки серого. Всего таких оттенков серого 256. Т.е. идет постоянное увеличение яркости, начиная с черного цвета, и пока он не станет полностью белым. Конечно, если вы хотите работать с черно-белым изображением, то пожалуйста, ведь и занимать места это изображение будет гораздо меньше. Но, скажу вам по секрету, этот режим тоже мы использовать не будем. Вы рады?

RGB (Красный Зеленый Синий)

Ну вот мы и перешли к основной цветовой модели. Именно ей мы и будем в основном пользоваться в фотошопе. Эта модель используется для отображения цветов именно на экране. Все цвета и оттенки получаются при смешивании трех основных цветов, т.е. красного (R ed), зеленого (G reen) и синего (B lue). Вы спросите: «А где же желтый цвет? Ведь его невозможно получить, смешивая эти цвета». Как раз таки получается, но не на бумаге, а на экране монитора. Желтый цвет мы можем получить смешивая красный и зеленый цвета. Вот такая вот хитрость.

Цветов в этой модели целая уйма! В 8-битном представлении их аж 16 миллионов! Вы представьте сколько их будет в 16 и 32-х битах? Поэтому сразу заклинаю вас — выбирайте только 8-битное представление RGB, так как в остальных смысла нет, по крайней мере в обычной жизни. Будем считать, что договорились.

CMYK (Cyan Magenta Yellow Black)

Данная цветовая модель произошла от букв четырех цветов C yan M agenta Y ellow K ey color — Голубой, Пурпурный, Желтый, Ключевой-черный. Хотя в некоторых источниках я читал, что буква K образована не от Key color, а от черного цвета black, только ей решили не присваивать букву B , так как она уже использовалась в цветовой модели RGB как синий, поэтому и дали ей последнюю букву от слова blacK . Но сути это не меняет.

Эта модель используется как правило в полиграфии и подготовке к печати, то есть для отображения на бумаге. Опять же сразу скажу, что в наших уроках мы ей практически пользоваться не будем. Но мы ее рассмотрим. Просто хочу рассказать, почему в этой модели используется 4 цвета вместе с черным? Потому что если в модели RGB смешать все цвета, то получится черный цвет, а если все цвета смешать в модели CMY, то черного цвета не получится, максимум темнокоричневый. Кроме того, полное смешивание всех цветов может привести к деформации бумаги. Поэтому и добавили ключевой черный цвет K.

LAB

Ну и раз уж мы говорим о цветовых моделях, то я не могу не рассказать о такой мvдели как LAB. Состоит эта модель из трех параметров:

  1. L uminance — освещенность. Градация идет от светлого к тёмному.
  2. Цвет A - гамма цветов от зеленого до пурпурного
  3. Цвет B — гамма цветов от голубого к желтому.

Как видите первые буквы параметров и составляют данную аббревиатуру. То есть данная модель предполагает смешивание двух цветов с определенной степенью освещенности. Чем примечательна эта модель, что она содержит в себе как цвета RGB, так и CMYK, да еще и градации серого, о которых мы говорили выше.

И если модель RGB отображает цвета так, как мы видим его на экране, а CMYK как на бумаге, то модель LAB соответствует человеческому зрению, т.е. как это видит обычный человек.

HSB или HSV

И напоследок зацепим еще одну модель, которая может вам повстречаться. Данная модель состоит из трёх параметров: Hue (Цветовой тон), Saturation (Насыщенность) и Brightness (Яркость)/Value (значение) цвета. В основе данной модели лежит ранее рассмотрнная RGB, но в отличие от RGB (16 млн цветов), HSB может содержать всего лишь порядка 2,5 миллионов цветов.

Часто такая модель изображается в виде цветового круга и дополнительного вертикального столбика яркости. Может вы где-то встречали? Но кроме этого в разных программах может встречаться разное представление.

В общем на этом свой обзорчик цветовых моделей я завершаю. Сразу вам скажу, что когда мы будем проходить фотошоп, то пользоваться в основном будем моделью RGB. И кстати я вам не зря дал эту информацию, так как скоро мы действительно перейдем к изучению графического редактора Adobe Photoshop. Так что не расслабляйтесь.

А на этом наше теоретическое занятие закончено. Надеюсь, что вам всё более менее было понятно. В случае чего, вы всегда можете задать вопрос в комментариях или в форме обратной связи. И не забудьте подписаться на обновления статей моего блога и тогда вы всегда будете в курсе всего интересного самые первые! Удачи вам, готовьтесь новым урокам. Пока-пока!