Применение выпрямителей. Как сделать выпрямитель и простейший блок питания

Очень много вопросов задают по статье как получить из переменного напряжения постоянное . Напомню, что мы получали постоянное напряжение с помощью типичной схемы, которая используется во всей электронике:

Да, та статья получилась чуток сыровата, но суть преобразования переменного тока в постоянный мы постарались объяснить на пальцах. Но читатели все равно «не вкурили» ту статью, поэтому было решено написать еще одну статейку, но на этот раз разжевать все досконально.

Снова да ладом…

Придется возвращаться к истокам. Вместо трансформатора я возьму ЛАТР , который будет выдавать переменный ток:


Выставляем на ЛАТРе с помощью напряжение амплитудой в 10 Вольт:


Как мы можем увидеть в нижнем левом углу, частота нашего сигнала 50 Герц. Это и есть частота сети. Длина одного кубика по вертикали равна 2 Вольтам.


И спаиваем из них вот по такой схеме:


Подаем напряжение с ЛАТРа на диодный мост, а с других концов цепляем щуп осциллографа


Тыкаем щупом осциллографа в эти красные кружочки на схеме. Землю на один кружочек, а сигнальный на другой.


Смотрим, что получилось на дисплее осциллографа



Дело в том, что сопротивление щупа осциллографа обладает очень высоким , или иначе простыми словами: мы подцепили очень-очень высокоомный резистор к выходу диодного моста. Поэтому диодный мост в холостом режиме, то есть в режиме без нагрузки, не функционирует.

Для того, чтобы проверить диодный мост на работоспособность, нам надо его нагрузить . Это может быть резистор в несколько десятков или сотен Ом, лампочка, либо какая-нибудь электронная безделушка. В моем случае я взял лампочку накаливания на 12 Вольт от поворотника мотоцикла:


Цепляем ее к диодному мосту


Тыкаем щуп осциллографа в эти точки и смотрим осциллограмму



Как мы видим, напряжение с ЛАТРа чуть просело. Все зависит, конечно, от подключаемой нагрузки и мощности самого ЛАТРа. Про это я писал еще в статье

Теперь тыкаем щупом в эти точки



Классика жанра! Превращаем отрицательную полуволну в положительную и получаем «горки» с частотой в 100 Герц;-). Но ваш внимательный глаз ничего не заметил? Если даже мы и выпрямили напряжение с помощью диодного моста, то почему амплитуда каждой полуволны стала еще чуть меньше?

Дело все в том, что на диода в прямом смещении падает напряжение в 0,6-0,7 Вольт. Именно поэтому оно и вычитается с амплитуды напряжения, которое надо выпрямить.

Давайте теперь к диодному мосту запаяем конденсатор емкостью в 5000 мкФ и не будем цеплять никакую нагрузку


Тыкаем щупом сюда



Получили вот такую осциллограмму постоянного тока. Она в 1,41 раз больше, чем действующее (среднеквадратичное) значение сигнала с ЛАТРа (о действующем напряжении чуть ниже)

А теперь цепляем лампочку


Осциллограмма кардинально изменилась.


Как мы видим, напряжение просело и у нас получилась осциллограмма постоянного напряжения с небольшими пульсациями. Вот эти маленькие «холмики» и есть пульсации, в отличите от «гор» сразу после диодного моста с лампочкой-нагрузкой. Физический смысл здесь такой: конденсатор не успевает разряжаться на нагрузке, как снова приходит новая «горка» и снова заряжает конденсатор.

Правило диодного выпрямителя с конденсатором очень простое: чем больше емкость конденсатора и чем больше сопротивление нагрузки, тем меньше по амплитуде будут пульсации, и наоборот.

Но почему у нас просело напряжение? Ведь было уже 10 Вольт постоянного напряжения на конденсаторе без нагрузки?

А как цепанули лампочку стало намного меньше…

В чем же проблема? А проблема именно в законе сохранения энергии…

Среднеквадратичное значения напряжения

Итак, давайте еще раз вспомним: что такое ?

Допустим, у нас есть лампочка накаливания. Я ее подцепил к источнику постоянного тока и она у меня загорелась с какой-то яркостью. Потом я цепляю эту лампу к источнику переменного тока и добиваюсь такого же свечения лампы. Форма сигнала постоянного и переменного напряжения разные, а мощность, выдаваемая в нагрузку, в данном случае лампочку, одинаковая. Можно сказать, что среднеквадратичное значение переменного тока равняется значению постоянного тока.

То есть если у нас лампочка на 12 Вольт, я могу подать на нее 12 Вольт с блока питания или 12 Вольт с ЛАТРа. Лампочка будет светить с такой же яркостью. Мультиметр в режиме измерения переменного тока показывает именно среднеквадратичное значение напряжения .

Итак, чему же равняется среднеквадратичное значение вот этого сигнала?

А давайте замеряем. Для этого я беру мой любимый прибор токоизмерительные клещи , в который встроен целый мультиметр с True RMS и начинаю замерять среднеквадратичное значение


Мультиметр показал 7,18 Вольт. Это и есть среднеквадратичное значение этого сигнала.

Для синусоидальных сигналов оно легко вычисляется по формуле:


где

U max — максимальная амплитуда, В

U Д — действующее (среднеквадратичное) значение напряжения, В

Как мы подцепили нагрузку, у нас сразу просела амплитуда напряжения с ЛАТРа, а следовательно, и среднеквадратичное значение напряжения



6, 68 Вольт. Хотя по формуле получается 9/1,41=6,38. Спишем на погрешности измерения.

Среднеквадратичное значение сложных сигналов

Но чему же равняется среднеквадратичное значение напряжения после диодного моста с включенной нагрузкой-лампочкой?

Для определения среднеквадратичного значения такого сигнала:

нам понадобится формула и табличка.

Вот формула:

где K a — это коэффициент амплитуды

U max — максимальная амплитуда сигнала

U — действующее (среднеквадратичное) значение сигнала

А вот и табличка:

Теперь ищем по табличке наш пульсирующий сигнал с выпрямителя. Как мы видим, его коэффициент амплитуды равен 1,41 или, если быть точнее, √2. То есть точно такой же, как и у синусоидального сигнала.

Вычисляем по формуле и получаем:


После того, как мы поставили конденсатор, у нас почти получилась осциллограмма постоянного тока с значением в примерно в 6 Вольт, если полностью усреднить нашу кривую, то есть пренебречь небольшими пульсациями. Можно даже сказать, что это значение постоянного тока будет равняться среднеквадратичному значению переменного тока номиналом в 6 Вольт. Не забываем, что 0,6-0,7 Вольт у нас падают на диодах.


Заключение

Итак, какие выводы делаем из всего вышесказанного и показанного? Среднеквадратичное значение напряжения на выходе диодного выпрямителя чуточку меньше, чем до диодного моста. По 0,6-0,7 Вольт падает на диодах. Если бы мы поставили диоды Шоттки, то выиграли бы 0,3-0,4 Вольта, так как падения на Шоттках 0,2-0,3 Вольта. Схема двухполупериодного выпрямителя, с энергетической точки зрения является очень неплохой и поэтому используется в большинстве радиоэлектронных устройств.

Как известно, электрическая энергия производится, распределяется и потребляется преимущественно в виде энергии переменного тока. Так удобнее. Однако потребители электрической энергии бывают разные. Для потребителей переменного тока (асинхронных и синхронных электрических двигателей, трансформаторов, люминесцентных ламп) важно, чтобы потребляемый ими ток был знакопеременным (лучше всего – синусоидальным). Частота изменения знака тока стандартизована (в Украине – 50 Гц). Другие потребители требуют, ток был одного знака. К таким относятся электрические двигатели переменного тока, аккумуляторные батареи во время их заряда, гальванические и электролизные ванны, сварочные установки, электронные микросхемы и т.п. Их называют потребителями постоянного тока.

Выпрямитель – полупроводниковый преобразователь энергии, предназначенный для преобразования электрической энергии переменного тока в энергию постоянного тока. Потребность в использовании выпрямителя возникает тогда, когда для питания потребителя постоянного тока необходимо использовать энергию из источника переменного тока (например, промышленной или бытовой сети переменного тока). В таком случае выпрямитель включают между источником переменного тока и потребителем постоянного тока.

Выпрямители широко используются в блоках питания компьютеров, агрегатах бесперебойного питания, зарядных устройствах для мобильных телефонов и ноутбуков, на преобразовательных подстанциях электрического транспорта, в электроприводах постоянного тока, разнообразных электронных схемах.

Какие бывают выпрямители

Если задачей выпрямителя есть лишь преобразование рода тока (выпрямление), их строят на основе неуправляемых вентилей (диодов). В случае, когда на выпрямитель возложено также регулирование уровня напряжения, подаваемого к потребителю, необходимо использование управляемых вентилей (тиристоров). Подобного регулирования требует, например, электрический двигатель постоянного тока для изменения скорости вращения.

В зависимости от количества фаз питающей сети различают однофазные выпрямители и трехфазные.

По уровню мощности выпрямители подразделяют на маломощные (выпрямители сигналов) и мощные или силовые.

Вентили

Современные вентили – обычно полупроводниковые (маломощные – на основе кристаллов германия, более мощные – кремниевые). Не вдаваясь в подробности их внутреннего строения и физических принципов функционирования, рассмотрим только потребительские свойства.

Простейший из вентилей (диод ) является неуправляемым. Он имеет два вывода (анод А и катод К, см. рис. 1) и может проводить ток только в одном направлении – от анода к катоду. Если к аноду приложен положительный потенциал, а к катоду – отрицательный (как на рис. 1а), диод будет открыт, и через него будет протекать ток. Если поменять направление включения диода (как на рис. 1б) или источника питания U , ддиод будет закрыт, а ток – отсутствовать. Будем считать диод идеальным вентилем (то есть, его внутреннее сопротивление в открытом состоянии равно нулю, а в закрытом – бесконечности). Графическое обозначение диода на электрических схемах похоже на стрелку, показывающую единственное возможное направление протекания тока. Чтобы отличить на схеме один диод от других, рядом с их графическим обозначением пишут VD и текущий номер диода (например VD1 ).


Рис. 1. Способы включения диода (а – прямой, б – обратный)

Тиристор является вентилем управляемым. Кроме анода и катода, он имеет третий вывод (управляющий электрод УЭ на рис. 2). Он также проводит ток только в одном направлении (от анода к катоду). Для его отрывания необходимо выполнить два условия:

  • подать на анод положительный потенциал относительно катода (как для диода);
  • обеспечить протекание в цепи между управляющим электродом и катодом тока управления i у , направленного как на рис 2а.

Рис. 2. Два состояния тиристора (а – открыт и б – закрыт)

Для обеспечения протекания тока управления используют дополнительный источник напряжения u у . ВВеличина тока управления намного меньше тока между анодом и катодом (то есть силового тока). Если цепь управляющего электрода разомкнуть (как на рис. 2б), ток управления будет отсутствовать, и тиристор не откроется. Графическое обозначение тиристора похоже на обозначение диода, однако имеет третий вывод УЭ. Нумерацию тиристоров на схемах производят с использованием букв VS. Благодаря наличию управляющего электрода тиристор становится управляемым вентилем. Он открывается только тогда, когда будет выполнено на только первое условие его открывания, но и второе. Потому ток управления могут подавать не сразу после выполнения первого условия, а несколько позднее. Этот ток подается от специальной системы управления. Долее мы не будем показывать цепь, по которой протекает ток управления.

Рис. 3. Диоды

Тиристор имеет одну особенность: он открывается при помощи управляющего электрода, но закрывается только тогда, когда ток между анодом и катодом исчезнет. Добиться этого с помощью управляющего электрода невозможно. Поэтому тиристор иногда вентилем. называют полууправляемым вентилем.

Конструкция диодов малой мощности показана на рис. 3. У верхнего диода (более мощного, чем нижние) катод расположен слева. Внизу изображен диодный мостик (о них ниже).

Более мощные диоды и тиристоры изображены на рис. 4. Катод обычно имеет резьбу, которой крепится на охладителе, анод – гибкий вывод. Охладители (рис. 5), отводя тепло от вентиля, предотвращают их перегрев. Наиболее мощные приборы имеют таблеточную конструкцию (см. нижнюю часть рис. 4), которая обеспечивает отвод тепла наружу от обоих торцов (справа на рис. 5).

Простейший выпрямитель

ВВыпрямитель (рис. 6а) питается от источника знакопеременного (обычно синусоидального) напряжения u . Он состоит только из одного диода. Будем считать, что нагрузка выпрямителя – потребитель с чисто активным внутренним сопротивлением (R ). Ток, протекающий через нагрузку, и приложенное к ней напряжение обозначены на рис. 6б индексами d (от англ. Direct – постоянный). Диод открыт только тогда, когда к аноду приложен положительный потенциал (напряжение источника положительное, первый полупериод на рис. 6б).



Рис. 4. Мощные диоды и тиристоры

Рис. 5. Тиристоры с охладителями

Рис. 6. Процессы в простейшем выпрямителе

К нагрузке через открытый диод подается напряжение от источника. Ток, протекающий по цепи «источник u – диод – нагрузка» при чисто активной нагрузке повторяет по форме напряжение: . Поэтому со снижением напряжения до нуля исчезает и ток, а диод закрывается. На следующем полупериоде, когда напряжение источника отрицательно, ток отсутствует, напряжение на нагрузке равняется нулю. После того, как напряжение источника снова станет положительным, открывается диод, и к нагрузке снова прикладывается напряжение. Таким образом, благодаря выпрямителю напряжение на нагрузке (выпрямленное напряжение u d ) содержит в себе только положительные полупериоды напряжения u , а выпрямленный ток повторяет по форме выпрямленное напряжение. В нижней части рис. 6б изображена диаграмма работы диода (черная линия показывает интервалы времени, когда диод открыт).

Только что рассмотренная схема используется только для питания потребителей малой мощности. Более распространена мостовая схема (рис. 7а).



Рис. 7. Мостовой выпрямитель

В ее состав входят четыре диода, работающие попарно-поочередно. На первом полупериоде питающего напряжения (правая клемма источника имеет положительный потенциал) открыты диоды VD1 и VD4 , образуется путь протекания тока, изображенный на рис. 7б. К нагрузке прикладывается положительное напряжение. На втором полупериоде открыты VD2 та VD3 , а ток протекает, как показано на рис. 7в (в нагрузке – в прежнем направлении). К нагрузке вновь приложено положительное напряжение. Выпрямленные напряжение и ток во времени изменяются согласно рис. 7г. Поскольку оба полупериода напряжения питания являются рабочими, среднее значение выпрямленного напряжения вдвое больше по сравнению со схемой рис. 6а. Мостовые выпрямители небольшой мощности выпускают в виде т.н. «диодных мостиков» (снизу на рис. 3).

Если необходимо не только формировать на нагрузке знакопостоянное напряжение, но и изменять при необходимости ее среднее значение (для регулирования сварочного тока, скорости электродвигателя), вместо диодов в выпрямителях используют тиристоры (рис. 8а). Если тиристоры получают в цепь управления управляющий сигнал сразу же после того, как напряжение их анодах становится положительным, тиристоры работают также, как и диоды, и процессы в схеме ничем не отличаются от рассмотренных ранее. Если же задержать подачу тока управления, открывание тиристоров происходит позднее (на рис. 8б – по окончании времени задержки t з ). Пока тиристоры закрыты, ток отсутствует, и напряжение к нагрузке не прикладывается. Из кривой выпрямленного напряжения «вырезается» определенный участок, и среднее значение напряжения уменьшается. Увеличение задержки t з приводит к дальнейшему уменьшению среднего выпрямленного напряжения.



Рис. 8. Тиристорный мостовой выпрямитель

Тиристорные выпрямители используются в электроприводах постоянного тока для питания обмоток якоря и возбуждения электродвигателей постоянного тока. На рис. 9 показан внешний вид подобного электропривода. Кроме собственно выпрямителя, в его состав входят микропроцессорные системы управления вентилями, скоростью и моментом электродвигателя, дисплей и пульт управления для диалога с пользователем, а также дополнительные элементы, обеспечивающие функционирование электропривода. Выпрямители большой мощности размещаются в электрических шкафах (рис. 10).



Рис. 9. Современный электропривод постоянного тока на базе тиристорного выпрямителя

Рис. 10. Мощный выпрямитель

Выпрямителем электрического тока называют особое устройство, которое предназначено для получения выходного постоянного электрического тока из входного переменного тока. В большинстве выпрямителей принимают фильтры, чтобы сгладить создаваемые ими однонаправленные пульсирующие напряжения и токи.

Зачем нужен выпрямитель

Основным недостатком гальванических элементов, питающих многие электроприборы, является малый срок их службы. Эти неудобства особенно ощутимы, если нагрузке требуются токи большой силы. Для питания электронных потребителей лучше всего подходит электрический ток промышленной электросети. Но подключать устройство, предусмотренное для питания батареей, непосредственно в сеть нельзя. Необходимо преобразовать переменное напряжение сети в постоянное. Поэтому очень полезно разобраться в том, как сделать выпрямитель. Для питания аппаратуры обычно используются напряжения меньше, чем напряжения сети. Это достигается благодаря применению силового трансформатора. Затем преобразуют переменное напряжение в постоянное. Постоянное получают в два этапа:

сначала переменное изображение преобразуют в пульсирующее, то есть, изменяющееся от нулевого значения только в одну сторону. После этого фильтр преобразовывает пульсирующее напряжение в постоянное.

Виды выпрямителей

  • Однополупериодный – выпрямитель, состоящий из конденсатора и одного полупроводникового диода. Его конструкция очень простая. Отличается малым коэффициентом полезного действия, поэтому используется только для питания маломощных потребителей.
  • Двухполупериодный – выпрямитель, состоит из обмоток трансформатора, конденсатора и четырех диодов. Обычно его выполняют по мостовой схеме. Применяется для питания радиоаппаратуры.

Диоды выбирают по таким параметрам: величине постоянного (выпрямленного) тока на выходе выпрямителя и величине обратного напряжения. Эти параметры берутся из справочников. Выпрямленный ток не может быть меньшим, чем ток, который потребляет нагрузка. Диоды не будут нагреваться, если выпрямленный ток будет большим в 2 раза, чем ток необходимый потребителю. Обратное напряжение состоит из напряжения вторичной обмотки и напряжению на конденсаторе.

Изготовление выпрямителя

  • Возьмем полулитровую стеклянную банку или стакан, пластины площадью 40х100 мм – алюминиевую и медную, резиновую трубу с диаметром 2 см. Отрежем 2 см от трубы и наденем на алюминиевую пластину. Это делается потому, что электролит во время работы сильно разъедает алюминий. Если на него надеть резину, то она защитит металл от коррозии, и выпрямитель прослужит гораздо дольше.
  • Как электролит будем использовать раствор питьевой соды. Ее понадобится 5-7 грамм на 100 мл воды. За положительный полюс примем алюминий, а за отрицательный - свинец. Ток пойдет, если подключить выпрямитель свинцовой пластиной в сеть. Но идти ток будет только в одном направлении. Алюминиевая пластина будет постоянным положительным полюсом напряжения.
  • Если в сеть включить алюминиевую пластину, то свинцовая пластина будет выступать отрицательным полюсом. Это будет однополупериодный выпрямитель, через который течет ток только одного полупериода. В этом случае будет течь ток положительного направления.
  • Двухполупериодные выпрямители применяют, чтобы полностью использовать напряжение. Количество элементов, из которых они состоят, зависит от необходимой величины выпрямленного тока. Подключают их в обе фазы электросети.
  • Используйте предохранители, когда включаете прибор в сеть. При помощи реостата можно регулировать напряжение.

Расчет выпрямителя

  • Определим переменное напряжение вторичной обмотки трансформатора:

    Uн - постоянное напряжение нагрузки, В;

    В - коэффициент, который зависит от тока нагрузки.

  • Определяем максимальный ток, протекающий через диоды:

    Iд = 0,5 С Iн,

    Iд – ток, идущий через диод,

    Iн - наибольшее значение тока,

    С - коэффициент, зависящий от нагрузки.

  • Определим обратное напряжение:

    Uобр = 1,5 Uн,

    Uобр - обратное напряжение,

    Uн - напряжение нагрузки.

  • Выберем диоды, у которых величина выпрямленного тока и обратного напряжения выше расчетных.
  • Найдем величину емкости конденсатора:

    Сф = 3200 Iн / Uн Kп,

    Сф - емкость конденсатора фильтра,

    Iн - максимальный ток нагрузки.;

    Uн - напряжение на нагрузке,

    Kп – коэффициент пульсации (10 -5 -10-2).

Сварочный выпрямитель

Сварочный выпрямитель ВД применяется в качестве источника питания при сварке любыми электродами. Его используют для исключения межтоковых перерывов при сварке, благодаря чему получается качественный сварочный шов.

  • Выпрямитель универсален, может использоваться в самых тяжелых условиях работы.
  • Нечувствителен к температурным колебаниям, изменению влажности, падению напряжения в сети, запыленности.
  • Надежен
  • Долговечен
  • Имеет небольшую стоимость и способен заменять дорогие установки.

Теперь вы знаете все о том, кто хочет знать, как сделать выпрямитель в домашних условиях. Это позволит вам решить проблемы по его отсутствию самостоятельно и с наименьшей затратой средств.

В маломощных источниках питания (до нескольких сотен ватт) обычно используют однофазные выпрямители. В мощных источниках целесообразно применять трехфазные выпрямители.

Выпрямители имеют следующие основные параметры: а) среднее значение выходного u вых

U ср = 1/T· T ∫ 0 u вых dt

в) среднее значение

I д.ср тока отдельного вентиля;

г) максимальное (амплитудное) значение

I д.макс тока отдельного вентиля.

Токи I д.ср и I д.макс принято выражать через I ср. Значение U обр.макс используется для выбора вентиля по напряжению. Значения

I д.ср и I д.макс используются для выбора вентиля по току. Здесь следует иметь в виду, что вследствие малой тепловой инерционности полупроводникового вентиля он может выйти из строя даже в том случае, когда его средний I д.срм мал, но велик максимальный I д.макс.


Однофазный однополупериодный выпрямитель

Он является простейшим и имеет схему, изображенную на рис. 2.73, а . В таком выпрямителе через нагрузку протекает лишь в течение полупериода сетевого (рис. 2.73, б ).



Исходя из приведенных выше определений, получим основные параметры:

U ср = √2 / π · U вх вх ≈ 2,22 · U ср

I ср = U ср R н ε= π/ 2 = 1,57

U обр. макс = √2 · U вх = π· U ср

I д.ср = I ср

I д. макс = √2 · U вх / R н = π · I ср

Такой выпрямитель находит ограниченное применение в маломощных устройствах. Кроме прочего, характерной отрицательной чертой однополупериодного выпрямителя является протекание постоянной составляющей тока во входной цепи. Если выпрямитель питается через трансформатор, как показано на рис. 2.73, в , то наличие указанной постоянной составляющей тока вызывает подмагничивание сердечника трансформатора, что приводит к необходимости увеличивать его габаритные размеры.

Двухполупериодный выпрямитель со средней точкой

Представляет собой параллельное соединение двух однополупериодных выпрямителей. Рассматриваемый выпрямитель может использоваться только с трансформатором, имеющим вывод от середины вторичной обмотки (рис. 2.74, а ).


Диоды схемы проводят поочередно, каждый в течение полупериода (рис. 2.74, б ).


Основные параметры такого выпрямителя получим аналогично тому, как это делалось ранее:

U ср = 2 · √2 · U 2 / π≈ 0,9 · U 2

U 2 ≈ 1,11 · U ср

I ср = U ср / R н

ε= 2/ 3≈ 0,67

U обр.макс = 2 · √2 · U 2 = π · U ср

I д.ср = ½ · I ср

I д.макс = √2 · U 2 / R н = π· I ср / 2

где U 2 — действующее значение каждой половины вторичной обмотки.

Рассматриваемый выпрямитель характеризуется довольно высокими технико-экономическими показателями и широко используется на практике. При его проектировании полезно помнить о сравнительно большом обратном напряжении на диодах.

Однофазный мостовой выпрямитель


Не известна другая однофазная схема без трансформатора, в которой бы так рационально использовались диоды. Диоды в рассматриваемой схеме включаются и выключаются парами. Одна пара — это диоды D 1 и D 2 , а другая — D 3 и D 4 . Таким образом, к примеру, диоды D 1 и D 2 или оба включены и проводят ток, или оба выключены (рис. 2.75, б ).

Если не забывать мысленно заменять каждый включенный диод закороткой, а каждый выключенный — разрывом цепи, то анализ работы этой схемы оказывается совсем нетрудным.

Основные параметры усилителя следующие:

U ср = 2 · √2 / π· U вх ≈ 0,9 · U вх

U вх ≈ 1,11 · U ср

I ср = U ср / R н

ε = 2 / 3 ≈ 0,67

U обр.макс = √2 · U вх = π/2 · U ср

I д.ср = ½ · I ср

I д.макс = √2 · U вх / R н = π/2 · I ср

Такой выпрямитель характеризуется высокими технико-экономическими показателями и широко используется на практике. Часто все четыре диода выпрямителя помещают в один корпус.

Схема трехфазного выпрямителя с нулевым выводом

Его временные диаграммы работы приведены на рис. 2.76.

Коэффициент пульсаций выпрямленного составляет 0,25, в то время как для двухполупериодного однофазного выпрямителя коэффициент пульсаций равен 0,67. пульсаций в трехфазном выпрямителе в три раза выше частоты питающей сети.

Схема трехфазного мостового выпрямителя (схема Ларионова)

приведена на рис. 2.77.



Используемые в данной схеме 6 диодов выпрямляют как положительные, так и отрицательные полуволны трехфазного напряжения. Этот выпрямитель является аналогом однофазного мостового выпрямителя.

Рассматриваемый выпрямитель характеризуется высокими технико-экономическими показателями и очень широко используется на практике. Коэффициент пульсаций схемы очень мал (ε = 0,057), а пульсаций в шесть раз выше частоты сети. Все это позволяет в некоторых случаях не использовать выходной фильтр. Анализ работы рассматриваемой схемы сложнее, чем анализ работы однофазного мостового выпрямителя, однако не сопряжен с какими-либо принципиальными затруднениями.

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель .

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети - 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 - 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше "провалов" напряжения - тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов - общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема . Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage drop - V F ). Для обычных выпрямительных диодов оно может быть 1 - 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x V F , т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения .

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор - смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U ). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение , как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора.