Программирование микроконтроллеров stm32 самоучитель. Взаимодействие ядра с периферийным блоком

Я очередной выпускник некоего московского вуза (не буду уточнять какого, но средненького). Полгода назад нам сообщили, что пора писать диплом. На тот момент я только-только начал осваивать микроконтроллеры и давалось мне это не то, чтобы нелегко, но со скрипом, который производит холодильник, когда ты, в одиночку, пытаешься аккуратно сдвинуть его, не повредив драгоценный ламинат (в моем случае линолеум).

Мое обучение началось, когда я два года назад заинтересовался темой микроконтроллеров и инженер, у которого поинтересовался насчет них, выдал мне плату 300х200мм и сказал, что в ней стоит контроллер STM32F217ZGT6 и на этой плате есть все необходимое для обучения. «В общем, освоишь ее - все остальное покажется фигней» (он, правда, не сказал, что для моргания светодиодом надо настроить SPI, о котором на тот момент я даже не слышал). Спустя три не очень напряженных месяца бесплотных попыток, осознания слабости навыков программирования и огромного количества прочитанных статей пришлось все же раскошелится на STM32VLDISCOVERY и способом копирования программ и экспериментов с ними дело наконец-то пошло, но все равно медленно.

За полтора года успел поработать разработчиком, искал вакансии, где работают с STM32 (так как считаю, что сейчас это наиболее перспективные микроконтроллеры своего класса), нахватался опыта и когда дело дошло до диплома, вспомнил о своих наболевших мозолях. Идея с темой пришла мгновенно: «Отладочная плата на STM32 и (полноценный) обучающий курс (для самых маленьких) к ней».

Именно по этому захотел написать цельный и законченный курс, чтобы так сказать другие не мучились и самому разобраться. Так что придя в институт и понимая, что для быстрого освоения и понимания нужен стимул (а точнее - хороший такой пинчище), я стал бить себя пяткой в грудь (рыть себе могилу), что не только напишу обучающий курс (в нашем универе пришлось назвать его методическим пособием), но и макет работающий предоставлю. Тему приняли, задание написал (могилу вырыл, надгробие заказал), дело было за малым, все написать и разработать (лечь в могилу, закопаться и поставить надгробие).

Жизнь показала, что времени у меня было отнюдь не полгода, но все же все время, отведенное на диплом, почти закончилось, совсем скоро защита, но как не удивительно все не только готово, но и почти на 100% протестировано (на живых людях в том числе).

На выходе получилось следующее:

1. Сам курс (методическое пособие по-научному)

Вкратце о нем можно сказать, что на мой взгляд и по отзывам тестировщиков он полноценный, но немного суровый и не доработанный. Так как я решил, что не буду писать учебник по программированию на СИ, следовательно, и в курсе отсутствуют объяснения операторов, оттого и сказали, что местами курс суров. По поводу недоработанности честно скажу, я не все успел отладить к сдаче, чтобы об этом писать не только здесь, но и в методическом пособии к сдаче. Так же считаю, что можно лучше, но об этом чуть позже.

2. Отладочная плата на контроллере STM32F103RET6

Здесь все немного лучше, чем в первом пункте, плата разработана, заказана (из-за обстоятельств заказывать пришлось срочно) в Резоните, компоненты заказаны, спаяна ручками (честно скажу, никакое видео не передаст ощущения первой пайки LQFP64) и протестирована (большее ее часть заработала сразу же). Но это макет и, конечно, не обошлось без накладок: проводков, переходников и других различных «костылей», но заказать вторую ревизию я, к несчастью, не успею, да наверно и не стал бы, для защиты диплома, уверен и этого хватит. Так что ниже я расскажу более подробно об этой отладочной плате.

Придя на первую работу в качестве разработчика электроники, я столкнулся с одним интересным мнением и, как оказалось, оно весьма распространено. Это мнение звучало примерно так: «Вот я программист и программирую микроконтроллеры, схемотехнику не знаю и знать не хочу, паять, кстати, тоже не умею». Пообщавшись с группой программистов вне фирмы, понял, что человек с моей работы далеко не одинок в своем мнении и хоть я его и не поддерживаю, понять и уважать мнение окружающих стоит, тем более это отлично вписывалось в тогдашнюю концепцию отладочной платы «все на борту». В связи с этим плата получилось достаточно «жирненькая», получила название STM32SB (SB-StudyBoard) V1.0b. Ниже разберем, что в нее вошло.

1. Микроконтроллер
Исходя из того, что я работал с микроконтроллером STM32F103RET6, он и был выбран для проекта.

2. Схема питания и аппаратный USB контроллера
В этом микроконтроллере есть встроенный USB, который было решено вывести на отдельный разъем.

3. Спикер
Было решено ввести для освоения ШИМ модуляции и обучению написанию мелодий.

4. Цифровой индикатор и сдвиговый резистор
Для одновременного освоения динамической индикацией и сдвиговым регистром было решено их совместить.

5. Светодиоды
Светодиоды, что может быть лучше? Только трехцветные светодиоды, на которых можно освоить плавную смену цветов.

6. ЖК-дисплей
Стандартный ЖК-дисплей на 2 строки по 16 символов для освоения параллельного интерфейса.

7. Клавиатура
Матричная клавиатура, это нужно знать и уметь.

8. Расширитель портов ввода-вывода
Много портов ввода-вывода не бывает, а тут еще и I2C освоить можно.

9. Электронный термометр
Датчик температуры по 1-Wire, полезная вещь и ценный опыт работы с ним может пригодиться.

10. Электронный потенциометр
На этой вещице можно освоить полноценный SPI и попробовать сделать замеры изменения напряжения через АЦП.

11. Реле
Хоть это и на уровне поморгать светодиодом, но все же приятно услышать знакомый щелчок, правда?

12. Ключевые транзисторы
Так же на уровне моргания светодиодом, но вдруг кому принцип не понятен.

13. Дублирование свободных пинов на внешних выводах
Ну это естественная конструкция для любой отладочной платы, вдруг все, что в ней есть никому не пригодилось, а подключить, что то свое все же нужно.

14. Преобразователь WIFI-UART(esp8266)
В схеме преобразователь участвует как разъем, также он указан и здесь. Используется уже довольно нашумевший модуль esp8266.

15. Преобразователь USB-UART
USB это всегда круто, сдесь используется чип CP2102.

16. JTAG и SWD
Ну куда же без этих вещей.

Такой широкий набор внешних устройств даст возможность освоить большинство приемов и попробовать поработать с большинством интерфейсов, не заморачиваясь закупкой элементов и не отходя от стола, что согласуется с концепцией не только «все на борту», но и «для самых маленьких» (не умеющих паять).

Конечно, не обошлось без накладок, но, как говорит один знакомый инженер, «мастерство инженера измеряется в количестве перерезанных дорожек на первой итерации платы».

Вот список моих «косяков», того, чего я не заметил, забыл или даже не знал при разработке этой платы:

1. Понял, что пины SWD расположены с странном порядке и хоть работе платы это не мешает. Услышал, на мой взгляд, правильное мнение, что их стоит располагать так, как они расположены на STM32VLDISCOVERY, чтобы избежать недоразумений у нового пользователя.

2. Так подключать одноцветные светодиоды, как на данной плате, не стоит, по причине того, что для моргания ими необходимо отремапить JTAG, но получился неожиданный для меня эффект индикации процесса загрузки прошивки.

3. Я разработал свой логотип для этой платы, который хотел перевести в PCB и разместить на плате, но забыл.

4. Для экономии места во второй ревизии платы я бы разместил некоторые не используемые пользователем SMD компоненты на нижней стороне платы.

5. Понял, что для более удобной разводки цепей с кварцевыми резонаторами было бы удобно заменить их на SMD.

6. Забыл подписать, где JTAG и SWD, так же у них не показано, как их подключать и если для JTAG и его разъемом BH-20 все не так сложно, то с SWD ситуация несколько опасней.

7. При разработке футпринта ЖК-дисплея вышел казус и отверстия оказались слишком малы для болтов М3.

8. У преобразователя CP2102 перепутаны выводы RX и TX. Так как я привык, что в документации приводится пример подключения относительно микроконтроллера, а не внешнего устройства, пришлось перерезать таки 2 дорожки.

9. На данной плате расстояние между гребенками выводов не нормировано по дюймам, в связи с этим есть проблема для подключения к беспаечной макетной плате методом втыкания в нее.

10. Вышла накладка с резисторами ограничения тока в цепи индикации включения реле, номинал оказался слишком большой для того, чтобы реле могло коммутироваться.

11. Ну и, как водится, «хорошая мысля приходит опосля». Так, уже после получения платы я понял, что стоило сделать размер ее подходящий хоть под какой-нибудь корпус - видимо придется доработать во второй ревизии.

12. Изначально был заложен маленький цифровой индикатор, так как занимал не большую площадь и был доступен в магазинах, однако оказалось, что на самом деле он везде доступен при заказе от 520 штук, так что пришлось ваять переходник на стандартный цифровой индикатор.

Напоследок покажу вам 3D модель этой платы:

И для сравнения фотографии ее же, как она получилась «в живую», вид с верху:

И вид с боку, чтоб было видно побольше «костылей»:

Извините, но весь проект до сдачи диплома выкладывать мне бы не хотелось, но после этой работы у меня встал вопрос, а стоит ли данный проект развивать? Меня посетила идея написать цикл статей, посвященных обучению, где был бы представлен такой вот полноценный курс по этой отладочной плате, где все написано простыми словами и объяснено на пальцах. Хотелось бы услышать от вас в комментариях насколько это было бы полезно и необходимо на настоящее время.

Спасибо за внимание!

Опубліковано 09.08.2016

Микроконтроллеры STM32 приобретают все большую популярность благодаря своей мощности, достаточно разнородной периферии, и своей гибкости. Мы начнем изучать , используя бюджетную тестовую плату, стоимость которой не превышает 2 $ (у китайцев). Еще нам понадобится ST-Link программатор, стоимость которого около 2.5 $ (у китайцев). Такие суммы расходов доступны и студентам и школьникам, поэтому именно с такого бюджетного варианта я и предлагаю начать.


Этот микроконтроллер не является самым мощным среди STM32 , но и не самый слабый. Существуют различные платы с STM32 , в томе числе Discovery которые по цене стоят около 20 $. На таких платах почти все то же, что и на нашей плате, плюс программатор. В нашем случае мы будем использовать программатор отдельно.

Микроконтроллер STM32F103C8. Характеристики

  • Ядро ARM 32-bit Cortex-M3
  • Максимальная частота 72МГц
  • 64Кб Флеш память для программ
  • 20Кб SRAM памяти
  • Питание 2.0 … 3.3В
  • 2 x 12-біт АЦП (0 … 3.6В)
  • DMA контролер
  • 37 входов / выходов толерантных к 5В
  • 4 16-розрядних таймера
  • 2 watchdog таймера
  • I2C – 2 шины
  • USART – 3 шины
  • SPI – 2 шины
  • USB 2.0 full-speed interface
  • RTC – встроенные часы

На плате STM32F103C8 доступны

  • Выводи портов A0-A12 , B0-B1 , B3-B15 , C13-C15
  • Micro-USB через который можно питать плату. На плате присутствует стабилизатор напряжения на 3.3В. Питание 3.3В или 5В можно подавать на соответствующие выводы на плате.
  • Кнопка Reset
  • Две перемычки BOOT0 и BOOT1 . Будем использовать во время прошивки через UART .
  • Два кварца 8Мгц и 32768 Гц. У микроконтроллера есть множитель частоты, поэтому на кварце 8 МГц мы сможем достичь максимальной частоты контроллера 72Мгц.
  • Два светодиода. PWR – сигнализирует о подачи питания. PC13 – подключен к выходу C13 .
  • Коннектор для программатора ST-Link .

Итак, начнем с того, что попробуем прошить микроконтроллер. Это можно сделать с помощью через USART, или с помощью программатора ST-Link .

Скачать тестовый файл для прошивки можно . Программа мигает светодиодом на плате.

Прошивка STM32 с помощью USB-Uart переходника под Windows

В системной памяти STM32 есть Bootloader . Bootloader записан на этапе производстве и любой микроконтроллер STM32 можно запрограммировать через интерфейс USART с помощью USART-USB переходника. Такие переходники чаще всего изготавливают на базе популярной микросхем FT232RL . Прежде всего подключим переходник к компьютеру и установим драйвера (если требуется). Скачать драйвера можно с сайта производителя FT232RL – ftdichip.com . Надо качать драйвера VCP (virtual com port). После установки драйверов в компьютере должен появиться виртуальный последовательный порт.


Подключаем RX и TX выходы к соответствующим выводам USART1 микроконтроллера. RX переходника подключаем к TX микроконтроллера (A9). TX переходника подключаем к RX микроконтроллера (A10). Поскольку USART-USB имеет выходы питания 3.3В подадим питания на плату от него.

Чтобы перевести микроконтроллер в режим программирования, надо установить выводы BOOT0 и BOOT1 в нужное состояние и перезагрузить его кнопкой Reset или выключить и включить питание микроконтроллера. Для этого у нас есть перемычки. Различные комбинации загоняют микроконтроллер в различные режимы. Нас интересует только один режим. Для этого у микроконтроллера на выводе BOOT0 должно быть логическая единица, а на выводе BOOT1 – логический ноль. На плате это следующее положение перемычек:

После нажатия кнопки Reset или отключения и подключения питания, микроконтроллер должен перейти в режим программирования.

Программное обеспечение для прошивки

Если используем USB-UART переходник, имя порта буде примерно такое /dev/ttyUSB0

Получить информацию о чипе

Результат:

Читаем с чипа в файл dump.bin

sudo stm32flash -r dump.bin /dev/ttyUSB0

Пишем в чип

sudo stm32flash -w dump.bin -v -g 0x0 /dev/ttyUSB0

Результат:

Stm32flash 0.4 http://stm32flash.googlecode.com/ Using Parser: Raw BINARY Interface serial_posix: 57600 8E1 Version: 0x22 Option 1: 0x00 Option 2: 0x00 Device ID: 0x0410 (Medium-density) - RAM: 20KiB (512b reserved by bootloader) - Flash: 128KiB (sector size: 4x1024) - Option RAM: 16b - System RAM: 2KiB Write to memory Erasing memory Wrote and verified address 0x08012900 (100.00%) Done. Starting execution at address 0x08000000... done.

Прошивка STM32 с помощью ST-Link программатора под Windows

При использовании программатора ST-Link выводы BOOT0 и BOOT1 не используются и должны стоять в стандартном положении для нормальной работы контроллера.

(Книжка на русском языке)

Маркировка STM32

Device family Product type Device subfamily Pin count Flash memory size Package Temperature range
STM32 =
ARM-based 32-bit microcontroller
F = General-purpose
L = Ultra-low-power
TS = TouchScreen
W = wireless system-on-chip
60 = multitouch resistive
103 = performance line
F = 20 pins
G = 28 pins
K = 32 pins
T = 36 pins
H = 40 pins
C = 48/49 pins
R = 64 pins
O = 90 pins
V = 100 pins
Z = 144 pins
I = 176 pins
B = 208 pins
N = 216 pins
4 = 16 Kbytes of Flash memory
6 = 32 Kbytes of Flash memory
8 = 64 Kbytes of Flash memory
B = 128 Kbytes of Flash memory
Z = 192 Kbytes of Flash memory
C = 256 Kbytes of Flash memory
D = 384 Kbytes of Flash memory
E = 512 Kbytes of Flash memory
F = 768 Kbytes of Flash memory
G = 1024 Kbytes of Flash memory
I = 2048 Kbytes of Flash memory
H = UFBGA
N = TFBGA
P = TSSOP
T = LQFP
U = V/UFQFPN
Y = WLCSP
6 = Industrial temperature range, –40…+85 °C.
7 = Industrial temperature range, -40…+ 105 °C.
STM32 F 103 C 8 T 6

Как снять защиту от записи / чтения?

Если вы получили плату с STM32F103, а программатор ее не видит, это означает, что китайцы защитили Флеш память микроконтроллера. Вопрос “зачем?” оставим без внимания. Чтобы снять блокировку, подключим UART переходник, будем программировать через него. Выставляем перемычки для программирования и поехали:

Я это буду делать из под Ubuntu с помощью утилиты stm32flash.

1. Проверяем видно ли микроконтроллер:

Sudo stm32flash /dev/ttyUSB0

Должны получить что-то такое:

Stm32flash 0.4 http://stm32flash.googlecode.com/ Interface serial_posix: 57600 8E1 Version: 0x22 Option 1: 0x00 Option 2: 0x00 Device ID: 0x0410 (Medium-density) - RAM: 20KiB (512b reserved by bootloader) - Flash: 128KiB (sector size: 4x1024) - Option RAM: 16b - System RAM: 2KiB

2. Снимаем защиту от чтения а затем от записи:

Sudo stm32flash -k /dev/ttyUSB0 stm32flash 0.4 http://stm32flash.googlecode.com/ Interface serial_posix: 57600 8E1 Version: 0x22 Option 1: 0x00 Option 2: 0x00 Device ID: 0x0410 (Medium-density) - RAM: 20KiB (512b reserved by bootloader) - Flash: 128KiB (sector size: 4x1024) - Option RAM: 16b - System RAM: 2KiB Read-UnProtecting flash Done. sudo stm32flash -u /dev/ttyUSB0 stm32flash 0.4 http://stm32flash.googlecode.com/ Interface serial_posix: 57600 8E1 Version: 0x22 Option 1: 0x00 Option 2: 0x00 Device ID: 0x0410 (Medium-density) - RAM: 20KiB (512b reserved by bootloader) - Flash: 128KiB (sector size: 4x1024) - Option RAM: 16b - System RAM: 2KiB Write-unprotecting flash Done.

Теперь можно нормально работать с микроконтроллером.

Система тактирования STM32.

Сегодня речь пойдет о системе тактирования микроконтроллеров STM 32. Если вы ещё не знаете что такое такт, частота и вообще не затрагивали до этого системы тактирования, . Хоть по данной ссылке и рассматривается система тактирования микроконтроллера AVR , понятия определенные в уроке по ссылке, применимы и к системе тактирования микроконтроллеров STM 32.

Итак, приступим!

Рассматривать систему тактирования будем на примере микроконтроллера STM 32F 303VCT 6, который установлен в отладочной плате STM 32 F 3 DISCOVERY .

Взглянем на общую структуру системы тактирования:

Как мы видим, система тактирования STM 32, на порядок сложнее системы тактирования микроконтроллеров AVR, не смотря на то, что на рисунке отражена лишь основная её часть.

Давайте разбираться!

Рассматривать схему следует слева направо. Во-первых, мы должны выбрать основной источник тактирования контроллера. Выбирать будем между HSI и HSE.

HSE -Внешний высокочастотный генератор. Источником тактирования для него служит внешний тактовый сигнал (Input frequency ), который как мы видим по схеме, может быть от 4 до 32 МГц. Это может быть кварцевый резонатор, тактовый генератор и так далее.

HSI - Внутренний высокочастотный генератор. В микроконтроллерах STM 32 F 3 является RC цепочкой с частотой 8МГц. Точность значительно ниже внешнего генератора HSE.

Каждый из данных источников тактирования может быть соединен с PLL . Однако перед подачей на PLL сигнал с HSI будет уменьшен в 2 раза. Сигнал HSE в свою очередь, может подаваться на PLL без изменений, либо быть уменьшен в определенное количество раз, по желанию пользователя.

PLL Clock - Система Фазовой Автоподстройки Частоты (ФАПЧ). Позволяет умножить входной сигнал HSI или HSE в необходимое количество раз.

С PLL сигнал может быть подан на системную шину, максимальная частота которой 72МГц. Либо, на системную шину может быть подан сигнал HSE или HSI напрямую, то есть без преобразования PLL .

Системная тактовая частота SYSCLK , тактирует все основные шины микроконтроллера, через соответствующие делители, как мы видим на схеме выше. Следует учитывать, что максимальная тактовая частота некоторых шин ниже SYSCLK . Поэтому, перед подачей тактового сигнала SYSCLK на шину, следует поделить его соответствующим делителем. Если этого не сделать, микроконтроллер зависнет.

Для настройки тактирования можно прибегнуть к ручной правке регистров, либо воспользоваться библиотечными функциями. Мы воспользуемся библиотекой.

Настроим нашу отладочную плату STM 32 F 3 DISCOVERY на работу с тактовой частотой 72 МГц.

Создадим и настроим проект в Keil uVision . .

Добавим следующий код:

#include "stm32f30x_gpio.h" #include "stm32f30x_rcc.h" void InitRCC() { RCC_HSEConfig(RCC_HSE_ON); //Enable HSE while(RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET) ; //Waiting for HSE //Set Flash latency FLASH->ACR |= FLASH_ACR_PRFTBE; FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY); FLASH->ACR |= (uint32_t)((uint8_t)0x02); RCC_PREDIV1Config(RCC_PREDIV1_Div1);//PREDIV 1 Divider = 1 RCC_PLLConfig(RCC_PLLSource_PREDIV1,RCC_PLLMul_9);//Set PREDIV1 as source for PLL,And set PLLMUL=9 RCC_PLLCmd(ENABLE);//Enable PLL while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) ;//Waiting for PLL RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//Set PLL as SYSCLK Soucre RCC_HSICmd(DISABLE);//Disable HSI } int main(void) { RCC_ClocksTypeDef RCC_Clocks; InitRCC(); RCC_GetClocksFreq (&RCC_Clocks); __NOP (); while (1) { } }

#include "stm32f30x_gpio.h"

#include "stm32f30x_rcc.h"

void InitRCC ()

RCC_HSEConfig (RCC_HSE_ON ) ; //Enable HSE

while (RCC_GetFlagStatus (RCC_FLAG_HSERDY ) == RESET ) ; //Waiting for HSE

//Set Flash latency

FLASH -> ACR |= FLASH_ACR_PRFTBE ;

FLASH -> ACR &= (uint32_t ) ((uint32_t ) ~ FLASH_ACR_LATENCY ) ;

FLASH -> ACR |= (uint32_t ) ((uint8_t ) 0x02 ) ;

RCC_PREDIV1Config (RCC_PREDIV1_Div1 ) ; //PREDIV 1 Divider = 1

RCC_PLLConfig (RCC_PLLSource_PREDIV1 , RCC_PLLMul_9 ) ; //Set PREDIV1 as source for PLL,And set PLLMUL=9

RCC_PLLCmd (ENABLE ) ; //Enable PLL

while (RCC_GetFlagStatus (RCC_FLAG_PLLRDY ) == RESET ) ; //Waiting for PLL

RCC_SYSCLKConfig (RCC_SYSCLKSource_PLLCLK ) ; //Set PLL as SYSCLK Soucre

RCC_HSICmd (DISABLE ) ; //Disable HSI

int main (void )

RCC_ClocksTypeDef RCC_Clocks ;

InitRCC () ;

RCC_GetClocksFreq (& RCC_Clocks ) ;

NOP () ;

while (1 )

В основной функции main , объявлена структура RCC _ ClocksTypeDef . Данная структура содержит в себе поля, отражающие текущую тактовую частоту определенных частей контроллера.

Затем в основной функции вызывается функция InitRCC ,которая настраивает тактирование контроллера. Рассмотрим её подробнее.

Командой RCC _ HSEConfig (RCC _ HSE _ ON ), мы включаем HSE .На его включение необходимо время, поэтому необходимо подождать пока не будет установлен флаг RCC _ FLAG _ HSERDY . Делаем мы это в цикле while (RCC _ GetFlagStatus (RCC _ FLAG _ HSERDY ) == RESET ) .

Затем мы производим настройку задержки флеш памяти. Это необходимо делать при работе системной шины на частотах свыше 36 МГц!

После настройки задержки выбираем предделитель PLL . Командой RCC _ PREDIV 1 Config (RCC _ PREDIV 1_ Div 1) мы устанавливаем предделитель на 1. Командой RCC _ PLLConfig (RCC _ PLLSource _ PREDIV 1, RCC _ PLLMul _9 ) выбирам HSE как источник частоты для PLL и выбираем умножение в 9 раз. Остается только влючить PLL командой RCC _ PLLCmd (ENABLE ), и ожидать установки флага RCC _ FLAG _ PLLRDY цикле while . Тем самым мы обеспечиваем необходимую временную задержку для включения PLL . После этого выбираем PLL как источник системной частоты SYSCLK командой RCC _ SYSCLKConfig (RCC _ SYSCLKSource _ PLLCLK ). Предделители шин трогать не будем, поэтому шины AHB ,APB 1,APB 2 будут работать на частотах 72,36 и 72 МГц соответственно.

Остается лишь выключить внутреннюю RC цепочку командой RCC _ HSICmd (DISABLE ).

После выполнения функции InitRCC , в основном цикле прошивки заполним структуру RCC _ ClocksTypeDef , что позволит нам узнать, правильно ли мы настроили систему тактирования. Делаем мы это командой RCC_GetClocksFreq (&RCC_Clocks).

Посмотреть значения тактовых частот контроллера можно в режиме отладки, установив точку останова на команде __ NOP () что означает, пустую команду. Данную команду часто добавляют для удобства отладки.

Подключаем отладочную плату STM32 F3 DISCOVERY , собираем прошивку, прошиваем плату и наконец, заходим в режим отладки, нажав кнопку Start /Stop debug session (Ctrl +F 5). Установив точку останова на функции __ NOP ,и добавив структуру RCC _Clocks в Watch ,запускаем исполнение прошивки, нажав F 5. В результате видим:

Частоты настроены правильно, и микроконтроллер теперь работает на частоте 72 Мгц.

Итак, как Вы поняли из сегодняшнего урока, система тактирования STM 32 достаточно мощна и гибка для удовлетворения потребностей Ваших проектов. Потратив время на её настройку - Вы достигнете прекрасных результатов!

Спасибо за внимание! Ваши вопросы как обычно в комментариях!

Любое копирование, воспроизведение, цитирование материала, или его частей разрешено только с письменного согласия администрации MKPROG .RU . Незаконное копирование, цитирование, воспроизведение преследуется по закону!

Данная статья является первой в планируемом цикле статей по изучению программирования микроконтроллеров. Изучая различные материалы я отметил, что практически все они начинаются с того, что новичку предлагается скачать (или использовать идущую со средой разработки) библиотеку для работы с периферийными устройствами и использовать ее для написания своей первой программы (обычно мигание светодиодом).

Меня это сильно удивило. Если верить данным статьям, для программирования не обязательно даже читать документацию к программируемому контроллеру. Меня же учили премудростям «железного программирования» совершенно иначе.

В этой статье, путь от фразы «Да, я хочу попробовать!» до радостного подмигивания светодиода, будет значительно длиннее чем у других авторов. Я постараюсь раскрыть аспекты программирования микроконтроллеров, которые прячутся за использованием библиотечных функций и готовых примеров.
Если вы намерены серьезно изучать программирование микроконтроллеров данная статья для вас. Возможно, она может заинтересовать и тех, кто вдоволь наигрался с Arduino и хочет получить в свои руки все аппаратные возможности железа.

Выбор микроконтроллера

Многие могут сказать, что начинать изучение микроконтроллеров лучше с AVR, PIC, 8051 или чего-то еще. Вопрос многогранный и спорный. Я знаю достаточно примеров, когда люди изучив Cortex-M, программировали AVR, ARM7 и т.д. Сам же я начинал с Cortex-M3. Если перед вами стоит определенная задача, в интернете достаточно много информации со сравнением различных типов микроконтроллеров и решаемых с их помощью задач. На хабре этот вопрос тоже поднимался, например .

Будем считать, что с типом микроконтроллера мы разобрались. Но на рынке представлен огромнейший спектр различных модификаций от разных производителей. Они отличаются по множеству параметров - от размера флеш памяти до количества аналоговых входов. Для каждой задачи выбор стоит производить индивидуально. Ни каких общих рекомендаций тут нет и быть не может. Отмечу лишь, что стоит начинать изучение с МК производителей имеющих как можно больший ассортимент. Тогда, при выборе МК для определенной задачи достаточно велик шанс, что из представленного ассортимента вам что-нибудь да подойдет.

Я остановил свой выбор на STM32 (хотя и считаю, что лучше начинать изучение с МК от TexasInstruments - очень грамотно составлена документация), потому что они широко распространены среди российских разработчиков электроники. При возникновении проблем и вопросов вы сможете без труда найти решения на форумах. Еще одним плюсом является богатый выбор демонстрационных плат как от производителя, так и от сторонних организаций.

Что необходимо для изучения?

К сожалению, для начала программирования МК не достаточно одного лишь ПК. Придется где-то раздобыть демонстрационную плату и программатор. Хотя это и уменьшает конкуренцию на рынке труда.

Сам я использую демонстрационную плату STM3220G-EVAL и программатор J-Link PRO . Но для начала, будет вполне достаточно STM32F4DISCOVERY , которую можно купить без особых проблем за небольшую сумму.

Все примеры будут именно для отладочной платы STM32F4DISCOVERY . На данном этапе нам будет совершенно не важно, что этой плате стоит МК на базе ядра Cortex-M4. В ближайшее время мы не будем использовать его особенности и преимущества над Cortex-M3. А как там будет дальше - посмотрим.

Если у вас есть в наличии любая другая плата на базе STM32F2xx/STM32F4xx, вы сможете работать с ней. В изложении материала я постараюсь максимально подробно описывать почему мы делаем именно так, а не иначе. Надеюсь ни у кого не возникнет проблем с переносом примеров на другое железо.

Среда разработки

Как уже неоднократно упоминалось, для ARM микроконтроллеров существует достаточное количество сред разработки, как платных так и не очень. И снова хочется опустить полемику по этому поводу. Я использую IAR Embedded Workbench for ARM 6.60 . Все примеры будут именно в этой среде. Если вам по душе (или в вашей организации используется) что-то другое (Keil, Eclipse, CCS, CooCoc и т.д.) то это вам тоже не очень помешает. На особенности, связанные именно со средой разработки, я буду обращать отдельное внимание.

Почему платная среда разработки?

Возможно, кто-то будет не совсем доволен тем, что я предлагаю использовать платную среду разработки, но в IAR есть возможность получить временную лицензию без ограничения функционала, либо безлимитную лицензию с ограничением по размеру кода (32КБ для МК это очень много).
Помимо этого, сразу замечу, что для некоторых МК не существует бесплатных сред разработки. И к сожалению эти МК в некоторых областях незаменимы.


Процесс установки я описывать не буду.

С чего начать?

Создание проекта
Для начала создадим пустой проект. IAR позволяет создать проекты на ASM, C и C++. Мы будем использовать C.

Перед нами появится пустой проект с main файлом.

Теперь необходимо настроить проект для начала работы с «нашим» МК и отладчиком. На плате STM32F4DISCOVERY установлен MK STM32F407VG . Его необходимо выбрать в свойствах проекта (General Options->Target->Device):

При выборе целевого программируемого процессора происходит загрузка его описания, что дает широкие возможности для отладки (об этом будет идти речь ниже). Кроме того, автоматически присоединяется конфигурационный файл с описанием доступного адресного пространства для линкера. Если будет необходимо, мы затронем тему конфигурационного файла линкера в следующих статьях.

После этого необходимо настроить отладчик. Отладка программы происходит непосредственно «в железе». Производится это с помощью JTAG отладчика. Более подробнее ознакомиться с тем, как это происходит можно на Википедии . На плату STM32F4DISCOVERY интегрирован отладчик ST-LINK/V2. Для работы с отладчиком необходимо выбрать его драйвер в меню Debugger->Setup->Driver . Так же необходимо указать, что отладка должна производиться непосредственно в железе. Для этого необходимо поставить флаг Debugger->Download->Use flash loader(s)


Для тех, кто увидел слово Simulator

Теоретически, IAR позволяет отлаживать программы с использованием симулятора. Но я ни разу на практике не встречал его использования.

Теперь проект готов для работы (программирования, заливки и отладки).

«ТЗ» для первого проекта
Подведем промежуточный итог: МК и отладочная плата выбраны, проект подготовлен. Пора определиться с задачей.

Не будем отходить от классики. Первым проектом будет мигающий светодиод. Благо на плате их предостаточно.Что же это означает с точки зрения программирования? Первым делом необходимо изучить принципиальную схему демонстрационной платы и понять как «заводится» светодиод.
доступен на сайте производителя. В данном описании даже есть отдельный раздел про светодиоды на плате -4.4 LEDs . Для примера, будем использовать User LD3 . Найдем его на схеме:

Простейший анализ схемы говорит о том, что для того, что бы «зажечь» светодиод необходимо на пин МК подать «1» (которая для данного МК соответствует 3.3В). Выключение производится подачей на этот пин «0». На схеме этот пин обозначается PD13 (это, наверное, самая важная информация из этого документа).

В итоге, мы можем написать «ТЗ» для нашей первой программы:
Программа для МК должна переводить состояние пина МК PD13 из состояния «0» в состояние «1» и обратно с некоторой периодичностью, различимой для человеческого глаза (важное замечание, если моргать светодиодом слишком часто глаз может этого не различить).

Прежде чем приступать к программированию, или немного теории
Прежде чем приступить к реализации нашего ТЗ, необходимо понять как производится управление МК.

Начнем с того, что любой МК включает ядро, память и периферийные блоки. Думаю, что с памятью пока все понятно. Упомяну лишь, в STM32 есть флеш память в которой хранится программа МК (в общем случае это не верное утверждение, программа может храниться во внешней энергонезависимой памяти, но пока это опустим) и другие данные, в том числе и пользовательские. Так же есть SRAM - оперативная память.

Ядро - часть микроконтроллера, осуществляющая выполнение одного потока команд. В нашем МК тип ядра - Cortex-M4. Ядро МК можно сравнить с процессором в ПК. Оно умеет только выполнять команды и передавать данные другим блокам (в этом сравнении не учитываются процессоры с интегрированными графическими ускорителями).
При этом производитель МК не разрабатывает ядро. Ядро покупается у компании ARM Limited . Главное отличие между различными МК - в периферии.

Периферийные блоки - блоки осуществляющие взаимодействие с «внешним миром» или выполняющие специфические функции, недоступные ядру МК. Современные МК (в том числе и STM32) содержат огромный спектр периферийных блоков. Периферийные блоки предназначены для решения различных задач, от считывания значения напряжения с аналогового входа МК до передачи данных внешним устройствам по шине SPI.
В отличии от ядра МК периферийные блоки не выполняют инструкции. Они лишь выполняют команды ядра. При этом участие ядра при выполнении команды не требуется.

Пример

В качестве примера можно привести блок UART, который предназначен для приема и передачи данных от МК внешним устройствам. От ядра необходимо лишь сконфигурировать блок и отдать ему данные для передачи. После этого ядро может дальше выполнять инструкции. На плечи же периферийного блока ложится управление соответствующим выводом МК для передачи данных в соответствии с протоколом. Периферийный блок сам переводит выход МК в необходимое состояние «0» или «1» в нужный момент времени, осуществляя передачу.

Взаимодействие ядра с периферийным блоком
Взаимодействие ядра МК с периферийным блоком осуществляется с помощью спецрегистров (есть еще взаимодействие через механизм прерываний и DMA, но об этом в следующих постах). С точки зрения ядра это просто участок памяти с определенным адресом, вот только на самом деле это не так . Запись данных в спецрегистр эквивалентна передаче команды или данных периферийному блоку. Считывание - получение данных от блока или считывание его состояния. Описание периферийных блоков и их спецрегистров занимает львиную долю описания МК.

ВАЖНО: После записи данных в спецрегистр и последующем чтении вы можете получить совершенно иные данные. Например, передача данных блоку UART для отправки, и считывание данных, полученных блоком от внешнего устройства, осуществляется с помощью одного и того же регистра.

Спецрегистры обычно разделены на битовые поля. Один (или несколько) бит управляют определенным параметром периферийного блока, обычно независимо. Например, разные биты одного регистра управляют состоянием разных выходов МК.

Вспоминаем С
Если вы гуру в языке C, то можете смело пропускать данный раздел. Он предназначен в первую очередь для тех, кого учили (или ктоучился сам) программировать для ПК. Опыт показывает, что люди часто не помнят важных команд. Здесь я вкратце напомню про побитовые операции и работу напрямую с памятью по ее адресу.

Запись данных по адресу в памяти

Предположим, что читая описание периферийного блока, мы поняли, что для его корректной работы необходимо записать в него число 0x3B. Адрес спецрегистра 0x60004012. Регистр 32-битный.
Если вы сразу не знаете как это сделать, попробую описать цепочку рассуждений для получения правильной команды.

Значение 0x60004012 есть не что иное, как значение указателя на ячейку памяти. Нужно именно это и указать в нашей программе, тоесть сделать преобразование типов согласно синтаксису языка C:

(unsigned long*)(0x60004012)

Таким образом, у нас есть указатель на элемент. Теперь нужно в этот элемент записать необходимое значение. Делается это разыменовыванием указателя. Таким образом получаем правильную команду:

*(unsigned long*)(0x60004012) = 0x3B;

Установка произвольных бит в 1

Предположим, что необходимо установить «1» в 7 и 1 биты по адресу 0x60004012, при этом не изменив значение всех остальных бит в регистре. Для этого необходимо использовать бинарную операцию |. Сразу приведу правильный ответ:

*(unsigned long*)(0x60004012) |= 0x82;

Обратите внимание на 2 факта. Биты считаются с нулевого, а не с первого. Данная операция на самом деле занимает неменее 3 тактов - считывание значения, модификация, запись. Иногда это не допустимо, поскольку между считыванием и записью значение одного из бит, которые нам запрещено изменять, могло быть изменено периферийным блоком. Незабывайте про эту особенность, иначе могут полезть баги, которые крайне сложно отловить.

Установка произвольных бит в 0

Предположим, что необходимо установить «0» в 7 и 1 биты по адресу 0x60004012, при этом не изменив значение всех остальных бит в регистре. Для этого необходимо использовать бинарную операцию &. Сразу приведу правильный ответ:

*(unsigned long*)(0x60004012) &= 0xFFFFFF7D;

Или его более простою запись (не переживайте за лишнюю операцию, компилятор все заранее посчитает даже при минимальной оптимизации):

*(unsigned long*)(0x60004012) &= (~0x82);

Некоторые особенности программ для МК
Здесь я постараюсь описать некоторые особенности программ для МК, которые важно помнить. Вещи достаточно очевидные, но все же.
У программы нет конца
В отличии от большинства программ для ПК, программа для МК не должна заканчиваться, НИКОГДА! А что собственно должен будет делать МК после завершения вашей программы? Вопрос, практически, риторический. Поэтому не забываем убедиться в том, что вы не забыли вечный цикл. При желании, можно перевести МК в режим сна.
Пользуйтесь целочисленными переменными
Не смотря на то, что мы используем МК с ядром Cortex-M4, который аппаратно выполняет операции над числами с плавающей точкой, советую вам отказаться от их использования. В МК без поддержки таких операций время вычислений будет просто огромным.
Откажитесь от динамического выделения памяти
Это только совет. Причина проста - памяти мало. Я не раз встречался с библиотеками, в которых были «медленные утечки» памяти. Было очень неприятно, когда после нескольких недель стабильной работы МК зависал с ошибкой. Лучше заранее продумать архитектуру своей программы так, чтобы не пришлось использовать динамическое выделение памяти.
Если же все-таки хочется использовать - внимательно изучите работу менеджера памяти или пишите свой.

Приступаем к работе!

Работа над программой для МК всегда начинается с чтения документации. Для нашего МК доступен на сайте производителя. Страниц много, но все читать пока не нужно. Как уже было сказано, большую часть документации составляет описание периферийных блоков и их регистров. Так же хочу обратить внимание на то, что этот Reference Manual написан не для одного МК, а для нескольких линеек. Это говорит о том, что код будет переносим при переходе на другие МК в этих линейках (если конечно не пытаться использовать периферийные блоки которых нет в используемом МК).

В первую очередь необходимо определиться с какими блоками предстоит работать. Для это достаточно изучит разделы Introduction и Main features .

Непосредственное управление состоянием пинов МК осуществляется с помощью блока GPIO. Как указано в документации в МК STM32 может быть до 11 независимых блоков GPIO. Различные периферийные блоки GPIO принято называть портами. Порты обозначаются буквам от A до K. Каждый порт может содержать до 16 пинов. Как мы отметили ранее, светодиод подключается к пину PD13. Это означает, что управление этим пином осуществляется периферийным блоком GPIO порт D. Номер пина 13.

Ни каких других периферийных блоков на это раз нам не понадобится.

Управление тактированием периферийных блоков
Для снижения электропотребления МК практически все периферийные блоки после включения МК отключены. Включение/выключение блока производится подачей/прекращением подачи тактового сигнала на его вход. Для корректной работы, необходимо сконфигурировать контроллер тактового сигнала МК, чтобы необходимому периферийному блоку поступал тактовый сигнал.
Важно: Периферийный блок не может начать работу сразу после включения тактового сигнала. Необходимо подождать несколько тактов пока он «запустится». Люди, использующие библиотеки для периферийных устройств, зачастую даже не знают об этой особенности.

За включение тактирования периферийных блоков отвечают регистры RCC XXX peripheral clock enable register .На месте XXX могут стоять шины AHB1, AHB2, AHB3, APB1 и APB2. После внимательного изучения описания соответствующих регистров, можно сделать вывод о том, тактирование периферийного блока GPIOD включается установкой «1» в третий бит регистра RCC AHB1 peripheral clock enable register (RCC_AHB1ENR) :

Теперь необходимо разобраться с тем, как узнать адрес самого регистра RCC_AHB1ENR .

Замечание: Описание системы тактирования МК STM32 достойно отдельной статьи. Если у читателей возникнет желание, я подробнее освещу этот раздел в одной из следующих статей.

Определение адресов спецрегистров
Определение адресов спецрегистров необходимо начинать с чтения раздела Memory map в Reference manual. Можно заметить, что каждому блоку выделен свой участок адресного пространства. Например, для блока RCC это участок 0x4002 3800 - 0x4002 3BFF:

Для получения адреса регистра, необходимо к начальному значению адресного пространства блока RCC прибавить Addr. offset нужного регистра. Addres offset указывается и в описании регистра (см. скриншот выше).

В итоге, мы определили адрес регистра RCC_AHB1ENR - 0x4002 3830.

Блок GPIO
Для общего ознакомления с блоком GPIO я настоятельно рекомендую полностью прочитать соответствующий раздел Reference Manual. Пока можно не особо обращать внимание на Alternate mode . Это оставим на потом.

Сейчас же наша задача научиться управлять состоянием пинов МК. Перейдем сразу к описанию регистров GPIO.

Режим работы
В первую очередь необходимо установить режим работы 13 пина порта D как General purpose output mode , что означает что блок GPIO будет управлять состоянием пина МК. Управление режимом работы пинов МК производитсяс помощью регистра GPIO port mode register (GPIOx_MODER) (x = A..I/J/K) :

Как видно из описания для совершения требуемой нам настройки необходимо записать значение 01b в 26-27 биты регистра GPIOx_MODER . Адрес регистра можно определить тем же методом, что описан выше.

Настройка параметров работы выходных пинов порта GPIO
Блок GPIO позволяет применить дополнительные настройки для выходных пинов порта. Данные настройки производятся в регистрах:
  • GPIO port output type register (GPIOx_OTYPER) - задается тип выхода push-pull или open-drain
  • GPIO port output speed register (GPIOx_OSPEEDR) - задается скорость работы выхода
Мы не будем менять данных параметров, поскольку нас вполне устраивают значения по умолчанию.
Установка значения на пине МК
Наконец-то мы подошли к моменту управления состоянием выхода МК. Для утановки выходного значения на определенном пине МК есть два метода.

Используем регистр GPIO port bit set/reset register (GPIOx_BSRR)

Запись «0» или «1» в биты 0-16 приводят к соответствующему изменению состояния пинов порта. Для того, чтобы установить определенное значение на выходе одного или нескольких пинов МК и не изменить состояния остальных, необходимо будет пользоваться операцией модификации отдельных бит. Такая операция выполняется не менее чем за 3 такта. Если же необходимо в часть битов записать 1, а в другие 0, то понадобится не менее 4 тактов. Данный метод предпочтительнее всего использовать для изменения состояния выхода на противоположное, если его изначальное состояние не известно.

GPIO port bit set/reset register (GPIOx_BSRR)

В отличии от предыдущего метода, запись 0 в любой из битов данного регистра не приведет ни к чему (да и вообще, все биты write-only!). Запись 1 в биты 0-15 приведет к установке «1» на соответствующем выходе МК. Запись 1 в биты 16-31 приведет к установке «0» на соответствующем выходе МК. Этот метод предпочтительнее предыдущего, если необходимо установить определенное значение на пине «МК», а не изменить его.

Зажигаем светодиод!
Найдя адреса всех необходимых регистров, можно написать программу, которая включает светодиод:
void main() { //Enable port D clocking *(unsigned long*)(0x40023830) |= 0x8; //little delay for GPIOD get ready volatile unsigned long i=0; i++; i++; i++; i=0; //Set PD13 as General purpose output *(unsigned long*)(0x40020C00) = (*(unsigned long*)(0x40020C00)& (~0x0C000000)) | (0x04000000); //Turn LED ON! *(unsigned long*)(0x40020C14) |= 0x2000; while(1); }
Можно компилировать (Project->Compile ) и заливать (Project->Download->Download active application ). Или запустить отладку (Project->Dpwnload and Debug ) и начать выполнение (F5).
Светодиод загорелся!
Мигаем светодиодом
Мигание светодиода есть ни что иное, как попеременное включение и выключение с задержкой между этими действиями. Самый простой способ - поместить включение и выключение в вечный цикл, а между ними вставить задержку.
void main() { //Enable port D clocking *(unsigned long*)(0x40023830) |= 0x8; //little delay for GPIOD get ready volatile unsigned long i=0; i++; i++; i++; i=0; //Set PD13 as General purpose output *(unsigned long*)(0x40020C00) = (*(unsigned long*)(0x40020C00)& (~0x0C000000)) | (0x04000000); while(1) { //Turn LED ON *(unsigned long*)(0x40020C14) |= 0x2000; //Delay for(i=0; i<1000000 ;++i); //Turn LED OFF *(unsigned long*)(0x40020C14) &= ~0x2000; //Delay for(i=0; i<1000000 ;++i); } }
Значение 1000000 в задержке подобрано экспериментально так, чтобы период мигания светодиода был различим глазом, но и не был слишком велик.
Оптимизируем алгоритм
Минусом выбранного подхода миганием светодиодом является то, что ядро МК большую часть времени проводит в пустых циклах, хотя мог бы заниматься чем-нибудь полезным (в нашем примере других задач нет, но в будущем они появятся).

Для того, чтобы этого избежать, обычно используется счетчик циклов, а переключение состояние пина МК происходит при прохождении программы определенного числа циклов.
void main() { //Enable port D clocking *(unsigned long*)(0x40023830) |= 0x8; //little delay for GPIOD get ready volatile unsigned long i=0; i++; i++; i++; i=0; //Set PD13 as General purpose output *(unsigned long*)(0x40020C00) = (*(unsigned long*)(0x40020C00)& (~0x0C000000)) | (0x04000000); while(1) { i++; if(!(i%2000000)) { //Turn LED ON *(unsigned long*)(0x40020С14) |= 0x2020; } else if(!(i%1000000)) { //Turn LED OFF *(unsigned long*)(0x40020С14) &= ~0x2000; } } }
Но и тут не обойдется без проблем, с изменением количества команд выполняемых внутри цикла, будет меняться период мигания светодиодом (или период выполнения других команд в цикле). Но на данном этапе мы не можем с этим бороться.

Немного об отладке
IAR позволяет осуществлять отладку приложения непосредственно в железе. Все выглядит практически так же, как и отладка приложения для ПК. Есть режим пошагового выполнения, входа в функцию, просмотр значения переменных (В режиме отладки View->Watch->Watch1/4 ).

Но помимо этого, присутствует возможность просмотра значений регистров ядра, спецрегистров периферийных блоков (View->Register) и т.п.
Я настоятельно рекомендую ознакомиться с возможностями дебаггера во время изучения программирования МК.

Несколько слов в заключение

Возможно, многие скажут, что ручное прописывание адресов в программе это не правильно, поскольку производитель предоставляет файлы с определениями регистров и битовых полей, библиотеки для работы с периферией и другие инструменты, облегчающие жизнь разработчику. Я с этим полностью согласен, но все равно считаю, что первые шаги в программировании МК необходимо делать перекапывая документацию к вручную, самостоятельно определяя необходимые регистры и битовые поля. В дальнейшем этим можно не пользоваться, но уметь нужно обязательно.
Приведу лишь несколько причин для этого утверждения:
  • В библиотеках от производителя иногда встречаются ошибки! Я один раз чуть не сорвал срок проекта из-за этого. Несколько раз перепаивал чип, думая, сто повредил кристалл при пайке (до этого такое случалось). А проблема заключалась в том, что в библиотеке был неверно прописан адрес спецрегистра. Обычно такое случается с МК или линейками МК только вышедшими на рынок.
  • Библиотеки для работы спериферией некоторых производителей не реализуют всех возможностей периферийных блоков. Особенно этим грешилb Luminary Micro , которых в последствии выкупили TI. Приходилось писать инициализацию периферии вручную.
  • Многие привыкают начинать программирование МК с изучения примеров. Я считаю, что сперва необходимо определиться с тем, что позволяет реализовать МК. Это можнопонять только прочитав документацию. Если чего-то нет в примерах, это не значит, что железоэто не поддерживает. Последний пример - аппаратная поддерка PTP STM32. В сети, конечно, можно кое-что найти, но это не входит в стандартный набор от производителя.
  • Драйверы периферийных блоков некоторых производителей настолько не оптимизированы, что на переключение состояния пина средствами библиотеки тратится до 20 тактов. Это непозволительная роскошь для некоторых задач.

Спасибо всем, кто прочитал мой пост, получилось значительно больше чем я ожидал в начале.
Жду ваших комментариев и аргументированной критики. Если у прочитавших возникнет желание - постараюсь продолжить цикл статей. Возможно у кого-то есть идеи по поводу тем, которые стоило бы осветить - я был бы рад их услышать.

Приветствую всех любителей программирования, микроконтроллеров, да и электроники в целом на нашем сайте! В этой статье немного расскажу о том, чем мы будем заниматься тут, а именно об учебном курсе по микроконтроллерам ARM.

Итак, для начала разберемся, что же нужно знать и уметь, чтобы начать изучать ARM’ы. А, в принципе, ничего супер сложного и фееричного 😉 Конечно, на контроллеры ARM люди обычно переходят, уже наигравшись с PIC’ами и AVR’ками, то есть в большинстве своем опытные разработчики. Но я постараюсь максимально подробно и понятно описывать все то, что мы будем разбирать, чтобы те, кто впервые решил попробовать себя в программировании микроконтроллеров, могли легко разобраться в материале. Кстати, если будут возникать какие-нибудь вопросы, или просто что-то будет работать не так, как задумывалось, пишите в комментарии, постараюсь разобраться и помочь.

Теперь перейдем к техническим вопросам) Несколько раз я уже упомянул название «Учебный курс ARM», но, по большому счету, это не совсем верно. Микроконтроллера ARM как такового не существует. Есть контроллер с ядром(!) ARM, а это, согласитесь, все-таки не одно и то же. Так вот, такие девайсы выпускает ряд фирм, среди которых особо выделяются, STMicroelectronics и NXP Semiconductors. Соответственно выпускают они контроллеры STM и LPC. Я остановил свой выбор на STM32, они мне просто больше понравились =) У STM очень подкупает, что разобравшись с любым МК из линейки STM32F10x, не возникнет никаких проблем и с любым другим. Одна линейка – один даташит. Кстати есть огромное количество как дорогих, так и не очень, отладочных плат с контроллерами STM32, что очень радует, хотя первое время будем отлаживать наши программы в симуляторе, чтобы оценить возможности контроллера, прежде чем покупать железо. Вот, на всякий случай, официальный сайт STMicroelectronics – .

Как то плавно выехали на тему компилятора, так что скажу пару слов об этом. Я, недолго думая, выбрал Keil, не в последнюю очередь из-за мощного встроенного симулятора. Можно и на UART там посмотреть, и на любой регистр, и даже логический анализатор имеется в наличии. Словом, у меня Keil оставил в основном только приятные впечатления, хотя есть и минусы, конечно, но не катастрофические. Так что можете смело качать Keil uvision4 с офф. сайта (). Правда есть одно НО – IDE платная, но доступен демо-режим с ограничением кода в 32кБ, которых нам пока с лихвой хватит. Кому этого мало есть огромное количество кряков для Keil’а 😉 Устанавливается все без проблем – пару раз тыкаем далее и все отлично ставится и работает без дополнительных танцев с бубном.

Собственно, вот и все, что я хотел тут рассказать, пора переходить от слов к делу, но это уже в следующей статье. Будем изучать программирование микроконтроллеров STM32 с нуля!