Сетевой уровень сети X. Стек протоколов сети пакетной коммутации X.25

Глобальные сети характеризуются двумя типами технологий соединений:

  • сеть "точка - точка" (point-to-point);
  • сеть "облако" (cloud).

В сети с технологий "точка - точка" каждым двум узлам выделяется отдельная линия, а для объединения N узлов требуется N(N - 1)/2 линий связи. В этом случае получаем высокую пропускную способность и большие расходы на линии связи и интерфейсное оборудование.

Более экономичной технологией сетей WAN являются сети типа "облако". В этом случае для подключения одного узла требуется только одна линия.

По принципу коммутации технология "облако" разделяется на:

  • коммутацию каналов (в телефонных линиях связи);
  • коммутацию сообщений (в E-mail);
  • коммутацию пакетов (в сетях IP, X.25), кадров (в сетях Frame Relay), ячеек (в сетях ATM).

В сетях с коммутацией каналов обеспечивается прямое физическое соединение между двумя узлами только в течение сеанса связи. Достоинством сетей коммутации каналов является возможность передачи аудиоинформации и видеоинформации без задержек.

Кроме того, преимуществом этой технологии является простота ее реализации (образование непрерывного составного физического канала), а недостатком - низкий коэффициент использования каналов, высокая стоимость передачи данных, повышенное время ожидания других пользователей (в узлах коммутации образуются очереди).

В сетях с пакетной коммутацией (PSN - Packet-Switched Network) осуществляется обмен небольшими пакетами фиксированной структуры, поэтому в узлах коммутации не создаются очереди. К достоинствам сетей с коммутацией каналов относятся: эффективность использования сети, надежность, быстрое соединение.

Основным недостатком сетей с пакетной коммутацией является временные задержки пакетов в узлах сети (промежуточном коммуникационном оборудовании), что затрудняет передачу аудиоинформации и видеоинформации, которые чувствительные к задержкам. Технология коммутации кадров (ретрансляция кадров), а особенно коммутация ячеек устраняют эти недостатки сетей с коммутацией пакетов и обеспечивают качественную передачу данных, аудио - и видеоинформации.

Сети с коммутацией каналов представляют для сетей с коммутацией пакетов услуги физического уровня. Аналоговые и цифровые линии применяются в качестве магистралей сетей с коммутацией пакетов, сообщений и кадров.

К глобальным сетям с коммутацией пакетов относятся: сети IP; X.25; Frame Relay; ATM.

Коммутация пакетов в сетях PSN осуществляется двумя способами:

  1. Первый способ ориентирован на предварительное образование виртуальных каналов. Существуют два типа виртуальных каналов: коммутируемые и постоянные. Виртуальным каналом называется логическое соединение, осуществляемое по различным существующим физическим каналам, которое обеспечивает надежный двухсторонний обмен данными между двумя узлами. Коммутируемый виртуальный канал обмена данными требует установления (устанавливается динамически), поддержания и завершения сеанса связи каждый раз при обмене данными между узлами. Постоянный виртуальный канал устанавливается вручную и не требует сеанса связи, узлы могут обмениваться данными в любой момент, так как постоянное виртуальное соединение всегда активно.
  2. Второй способ основан на технологии дейтаграмм, т.е. на самостоятельном продвижении пакетов в пакетных сетях без установления логических каналов. В сетях с передачей дейтаграмм маршрутизация пакетов осуществляется на пакетной основе. Пакеты снабжены адресом назначения, и они независимо друг от друга движутся в узлы назначения. Таким образом, множество пакетов, которые принадлежат одному сообщению, могут перемещаться к узлу назначения различными маршрутами.

Маршрутизация в глобальных сетях TCP/IP осуществляется на основе IP-протокола, т.е. основана на самостоятельном продвижении пакетов. Принцип маршрутизации в глобальных сетях: X.25, Frame Relay, ATM основан на предварительном образовании виртуального канала и передаче в пункт назначения пакетов, кадров или ячеек по этому каналу, т.е. по одному маршруту.

2.2.1. Сети X.25

Сети Х.25 являются первой сетью с коммутацией пакетов и на сегодняшний день самыми распространенными сетями с коммутацией пакетов, используемыми для построения корпоративных сетей. Сетевой протокол X.25 предназначен для передачи данных между компьютерами по телефонным сетям. Сети Х.25 разработаны для линий низкого качества с высоким уровнем помех (для аналоговых телефонных линий) и обеспечивают передачу данных со скоростью до 64 Кбит/с. Х.25 хорошо работает на линиях связи низкого качества благодаря применению протоколов подтверждения установления соединений и коррекции ошибок на канальном и сетевом уровнях.

Стандарт Х.25 определяет интерфейс "пользователь - сеть" в сетях передачи данных общего пользования или “интерфейс между оконечным оборудованием данных и аппаратурой передачи данных для терминалов, работающих в пакетном режиме в сетях передачи данных общего пользования”. Другими словами Х.25 определяет двухточечный интерфейс (выделенную линию) между пакетным терминальным оборудованием DTE и оконечным оборудованием передачи данных DCE.

На рисунке представлена структурная схема сети X.25, где изображены основные элементы:

  1. DTE (data terminal equipment) – аппаратура передачи данных (кассовые аппараты, банкоматов, терминалы бронирования билетов, ПК, т.е. конечное оборудование пользователей).
  2. DCE (data circuit-terminating equipment) – оконечное оборудование канала передачи данных (телекоммуникационное оборудование, обеспечивающее доступ к сети).
  3. PSE (packet switching exchange) – коммутаторы пакетов.


Рис. 1.

Интерфейс Х.25 обеспечивает:

Интерфейс Х.25 содержит три нижних уровня модели OSI: физический, канальный и сетевой.

Особенностью этой сети является использование коммутируемых виртуальных каналов для осуществления передачи данных между компонентами сети. Установление коммутируемого виртуального канала выполняется служебными протоколами, выполняющими роль протокола сигнализации.

Физический уровень

На физическом уровне Х.25 используются аналоговые выделенные линии, которые обеспечивают двухточечное соединение. Могут использоваться аналоговые телефонные линии, а также цифровые выделенные линии. На сетевом уровне нет контроля достоверности и управления потоком. На физическом уровне Х.25 реализуется один из протоколов X.21 или X.21bis.

Канальный уровень

На канальном уровне сеть Х.25 обеспечивает гарантированную доставку, целостность данных и контроль потока. На канальном уровне поток данных структурируется на кадры. Контроль ошибок производится во всех узлах сети. При обнаружении ошибки выполняется повторная передача данных. Канальный уровень реализуется протоколом LAP-B, который работает только с двухточечными каналами связи, поэтому адресация не требуется.

Сетевой уровень

Сетевой уровень Х.25 реализуется протоколом PLP (Packet-Layer Protocol - протокол уровня пакета). На сетевом уровне кадры объединяются в один поток, а общий поток разбивается на пакеты. Протокол PLP управляет обменом пакетов через виртуальные цепи. Сеанс связи устанавливается между двумя устройствами DTE по запросу от одного из них. Максимальная длина поля адреса устройства DTE в пакете Х.25 составляет 16 байт. После установления коммутируемой виртуальной цепи эти устройства могут вести полнодуплексный обмен информации. Сеанс может быть завершен по инициативе любого DTE, после чего для последующего обмена снова потребуется установление соединения.

Протокол PLP определяет следующие режимы:

  1. Установление соединения используется для организации коммутируемой виртуальной цепи между DTE. Соединение устанавливается следующим образом. DTE вызывающей стороны посылает запрос своему локальному устройству DCE, которое включает в запрос адрес вызывающей стороны и неиспользованный адрес логического канала для использования его соединением. DCE определяет PSE, который может быть использован для данной передачи. Пакет, передаваемый по цепочке PSE, достигает конечного удаленного DCE, где определяется DTE узла назначения, к которому пакет и доставляется. Вызывающий DTE дает ответ своему DCE, а тот передает ответ удаленному DCE для удаленного DTE. Таким образом, создается коммутируемый виртуальный канал.
  2. Режим передачи данных, который используется при обмене данными через виртуальные цепи. В этом режиме выполняется контроль ошибок и управление потоком.
  3. Режим ожидания используется, когда коммутируемая виртуальная цепь установлена, но обмен данными не происходит.
  4. Сброс соединения используется для завершения сеанса, осуществляется разрыв конкретного виртуального соединения.

Достоинства сети Х.25:

  • высокая надежность, сеть с гарантированной доставкой информации;
  • могут быть использованы как аналоговые, так и цифровые каналы передачи данных (выделенные и коммутируемые линии связи).

Недостатки сети: значительные задержки передачи пакетов, поэтому ее невозможно использовать для передачи голоса и видеоинформации.

Сети Х.25 являются первой сетью с коммутацией пакетов и на сегодняшний день самыми распространенными сетями с коммутацией пакетов, используемыми для построения корпоративных сетей. Сетевой протокол X.25 предназначен для передачи данных между компьютерами по телефонным сетям. Сети Х.25 разработаны для линий низкого качества с высоким уровнем помех (для аналоговых телефонных линий) и обеспечивают передачу данных со скоростью до 64 Кбит/с. Х.25 хорошо работает на линиях связи низкого качества благодаря применению протоколов подтверждения установления соединений и коррекции ошибок на канальном и сетевом уровнях.

Принципы построения и компоненты сети X.25

Главной особенностью сети X.25 является использование аппарата виртуальных каналов для обеспечения информационного взаимодействия между компонентами сети. Виртуальные каналы предназначены для организации вызова и непосредственной передачи данных между абонентами сети. Информационный обмен в сети X.25 во многом похож на аналогичный процесс в сетях ISDN и состоит из трех обязательных фаз:

Установление вызова (виртуального канала)

Информационный обмен по виртуальному каналу

Разрывание вызова (виртуального канала)

Информационное взаимодействие в сети X.25 осуществляется на физическом, канальном и сетевом уровнях. На физическом уровне могут быть использованы любые универсальные или специализированные интерфейсы.На рисунке представлена структурная схема сети X.25, где изображены основные элементы:

Устройства DTE (Data Terminal Equipment)

Устройства DCE (Data Circuit-Terminating Equipment)

Устройства PSE (Packet Switching Exchange)

Устройство PAD (packet assembler/ disassembler) является специфическим устройством сети X.25. PAD предназначен для обеспечения взаимодействия неспециализированных терминалов с сетью, для преобразования потока символов, который поступает от неспециализированного терминала в пакеты X.25 и выполнения обратного преобразования.

Интерфейс Х.25 обеспечивает:

1) доступ удаленному пользователю к главному компьютеру;

2) доступ удаленному ПК к локальной сети;

3) связь удаленной сети с другой удаленной сетью.

Интерфейс Х.25

Интерфейс Х.25 содержит три нижних уровня модели OSI: физический, канальный и сетевой. Особенностью этой сети является использование коммутируемых виртуальных каналов для осуществления передачи данных между компонентами сети. Установление коммутируемого виртуального канала выполняется служебными протоколами, выполняющими роль протокола сигнализации.

Физический уровень На физическом уровне Х.25 используются аналоговые выделенные линии, которые обеспечивают двухточечное соединение. Могут использоваться аналоговые телефонные линии, а также цифровые выделенные линии. На сетевом уровне нет контроля достоверности и управления потоком. На физическом уровне Х.25 реализуется один из протоколов X.21 или X.21bis.

Канальный уровень На канальном уровне сеть Х.25 обеспечивает гарантированную доставку, целостность данных и контроль потока. На канальном уровне поток данных структурируется на кадры. Контроль ошибок производится во всех узлах сети. При обнаружении ошибки выполняется повторная передача данных. Канальный уровень реализуется протоколом LAP-B, который работает только с двухточечными каналами связи, поэтому адресация не требуется.

Протоколы канального уровня HDLC/SDLC, были разработаны для того, чтобы решать следующие задачи:

Обеспечение передачи сообщений, которые могут содержать любое количество бит и любые возможные комбинации бит - требование кодовой прозрачности.

При передаче потока бит должны выполняться процедуры, которые позволяют обнаружить ошибки на приемной стороне.

Возникновение ошибки при передаче не должно приводить к потере или дублированию компонентов сообщения, т.е. к его искажению.

Протокол канального уровня должен был обеспечивать работу как двухточечных, так и многоточечных физических цепей

Протокол должен обеспечивать подключение дуплексных и полудуплексных линий

Протокол должен обеспечивать информационный обмен при значительных вариациях времени распространения сигнала

Протоколы семейства HDLC Протоколы осуществляют передачу данных в виде кадров переменной длины. Начало и конец кадра помечается специальной последовательностью битов, которая называется флагом. Для обеспечения дисциплины управления процессом передачи данных, одна из станций, которые обеспечивают информационный обмен, может быть обозначена, как первичная, а другая (или другие) станции могут быть обозначены, как вторичные. Кадр, который посылает первичная станция, называется командой (command). Кадр, который формирует и передает вторичная станция, называется ответ (response).

Режимы организации взаимодействия на канальном уровне

Вторичная станция сегмента может работать в двух режимах: режиме нормального ответа или в режиме асинхронного ответа. Вторичния станция, которая находится в режиме нормального ответа, начинает передачу данных только в том случае, если она получила разрешающую команду от первичной станции. Вторичная станция, которая находится в режиме асинхронного ответа, может по своей инициативе начать передачу кадра или группы кадров. Станции, которые сочетают в себе функции первичных и вторичных станций и называются комбинированными.Симметричный режим взаимодействия комбинированных станций называется сбалансированным режимом.

Процедура LAPB

Процедура LAPB (Link Access Procedure Balanced) используется в сетях X.25 в качестве протокола канального уровня.

Протокол LAPB использует в качестве флага комбинацию из 8 бит, которая состоит из 6-ти единиц и двух нулей, которые обрамляют эту последовательность спереди и сзади (01111110). Процесс приема кадра завершается при получении следующего флага. В том случае, если к моменту получения завершающего флага приемник получил менее 32 бит, принятый кадр считается ошибочным и уничтожается. Для предотвращения появления флаговой комбинации в теле кадра используется специальная процедура.

Структура кадра LAPB

Рекомендация X.25 определяет два основных типа процедуры LAPB - основной тип (modulo 8, basic) и расширенный тип (modulo 128, extended). Эти режимы отличаются разрядностью счетчиков, которые используются для управления потоком кадров. Кадр протокола LAPB содержит 4 поля: ADRESS, CONROL, Data, FCS. Поле DATA в кадре LAPB может отсутствовать.

Поле ADRESS занимает в кадре один байт. В этом поле располагается бит признака C/R (Command /Response) В поле ADDRESS кадра управляющей команды размещается физический адрес принимающей станции. В поле ADRESS кадра ответа на команду размещается физический адрес передающей станции.

Поле CONTROL

Содержимое этого поля поля определяет тип кадра.

Информационные кадры (Information Frames, I-кадры). В битах поля CONTROL размещаются 3-х разрядный номер передаваемого кадра и 3-х разрядный номер кадра, который ожидается для приема для обеспечения управления потоком.

Управляющие кадры (Supervisory Frames, S-кадры). В поле CONTROL размещается 3-х разрядный номер информационного кадра, который ожидается для приема и два бита, которые определяют тип передаваемого управляющего кадра.

Наиболее часто в процессе информационного взаимодействия используются управляющие кадры типа RR. Кадры данного типа передает получатель данных для того, чтобы обозначить готовность к приему очередного кадра, в том случае, когда он сам не имеет информации для передачи. Кадры RNR используются устройствами DCE и DTE для того, чтобы сообщить абоненту о возникновении аварийной ситуации, в которой дальнейший прием информационных кадров невозможен. Кадры REJ используются устройствами DCE и DTE для того, чтобы сигнализировать абоненту о разрешении аварийной ситуации, в которой был невозможен прием информационных кадров. Кадр REJ передается после кадра RNR и подтверждает факт перехода линии в нормальный режим работы.

Ненумерованные кадры (Unnumbered Frames, U - кадры). Предназначены для организации и разрывания логического соединения, согласования параметров линии и формирования сигналов о возникновении неустранимых ошибок в процессе передачи данных I-кадрами.

Кадр FRMR передается вторичной станцией для того, чтобы указать на возникновение аварийной ситуации, которая не может быть разрешена путем повторной передачи аварийного кадра.

Сетевой уровень Сетевой уровень Х.25 реализуется протоколом PLP (Packet-Layer Protocol - протокол уровня пакета). На сетевом уровне кадры объединяются в один поток, а общий поток разбивается на пакеты. Протокол PLP управляет обменом пакетов через виртуальные цепи. Сеанс связи устанавливается между двумя устройствами DTE по запросу от одного из них. После установления коммутируемой виртуальной цепи эти устройства могут вести полнодуплексный обмен информации. Сеанс может быть завершен по инициативе любого DTE, после чего для последующего обмена снова потребуется установление соединения.

Протокол PLP определяет следующие режимы: Установление соединения используется для организации коммутируемой виртуальной цепи между DTE. Соединение устанавливается следующим образом. DTE вызывающей стороны посылает запрос своему локальному устройству DCE, которое включает в запрос адрес вызывающей стороны и неиспользованный адрес логического канала для использования его соединением. DCE определяет PSE, который может быть использован для данной передачи. Пакет, передаваемый по цепочке PSE, достигает конечного удаленного DCE, где определяется DTE узла назначения, к которому пакет и доставляется. Вызывающий DTE дает ответ своему DCE, а тот передает ответ удаленному DCE для удаленного DTE. Таким образом, создается коммутируемый виртуальный канал. Режим передачи данных, который используется при обмене данными через виртуальные цепи. В этом режиме выполняется контроль ошибок и управление потоком. Режим ожидания используется, когда коммутируемая виртуальная цепь установлена, но обмен данными не происходит. Сброс соединения используется для завершения сеанса, осуществляется разрыв конкретного виртуального соединения.

Виртуальные каналы X.25

Процесс сетевого уровня получает в свое распоряжение часть полосы пропускания физического канала в виде виртуального канала. Полная полоса пропускания канала делится в равных пропорциях между виртуальными каналами, которые активны в текущий момент. В сети X.25 существует два типа виртуальных каналов: коммутируемые (SVC) и постоянные (PVC).

Формат пакета X.25

Пакет X.25 состоит как минимум из трех байтов, которые определяют заголовок пакета. Первый байт содержит 4 бит идентификатора общего формата и 4 бита номера группы логического канала. Второй байт содержит номер логического канала, а третий - идентификатор типа пакета. Пакеты в сети бывают двух типов - управляющие пакеты и пакеты данных. Тип пакета определяется значением младшего бита идентификатора типа пакета.

Идентификатор общего формата

Поле идентификатора общего формата содержит признак, который устанавливает тип процедуры управления потоком пакетов (modulo 8 или modulo 128).

Номер логического канала

Номер логического канала задается содержимым двух полей - номер группы логического канала от 0 до 15 и номер канала в группе от 0 до 255. Таким образом, максимальное число логических каналов может достигать значения 4095. Номер логического канала определяет виртуальный порт, с которым ассоциируется конкретный пользовательский процесс.

Идентификатор типа пакета Cетевые адреса получателя и отправителя пакета размещаются в поле "данные", и предназначены для управления вызовами.

Формат сетевого адреса X.25

Сетевой адрес состоит из двух частей Data Network ID Code (DNIC) Network Terminal Number

Поле DNIC содержит 4 десятичных цифры и определяет код страны и номер провайдера. Содержимое поля Network Terminal Number содержит 10 или 11 десятичных цифр, которые определяет провайдер и предназначено для определения конкретного пользователя.

Управление потоком кадров

Для управления потоком пакетов на сетевом уровне X.25 используются такие же процедуры и механизмы, какие используются для управления потоком кадров на канальном уровне сети X.25.

Для того, чтобы обеспечить возможность подключения к сети X.25 терминалов различного типа, используются специальные алгоритмы и параметры, которые управляют процессом сборки и разборки пакетов.

Данная рекомендация определяет наименования и назначения основных параметров, с помощью которых осуществляется настройка PAD. Параметры X.3 обозначаются символами P1 - P32.Параметр P1 определяет, возможен ли выход из режима передачи в режим команд по инициативе оператора терминала.

Для управления потоком используются специальные кодовые комбинации XON и XOFF. В том случае, если терминал по каким-либо причинам временно не способен принимать символы от PAD, он передает символ XOFF (^S). PAD должен прекратить передачу данных этому терминалу до получения от него разрешающего символа XON(^Q). Значения этих символов могут быть переопределены с помощью параметров Р28 и Р29.

Эта рекомендация определяет процедуры, в соответствии с которыми, пользователь может прочитать или изменить текущие значения параметров X.3 PAD. Для изменения установленных параметров X.3 PAD пользователь должен использовать команду SET. Для того, чтобы прочитать текущие значения параметров X.3 PAD пользователь должен использовать команду PAR.

Достоинства и недостатки.

Достоинства сети Х.25:

высокая надежность, сеть с гарантированной доставкой информации;

могут быть использованы как аналоговые, так и цифровые каналы передачи данных (выделенные и коммутируемые линии связи).

Недостатки сети:

значительные задержки передачи пакетов, поэтому ее невозможно использовать для передачи голоса и видеоинформации.

Литература.

Новиков Ю.В., Кондратенко С.В. Основы локальных сетей, 2005

Сети Х.25 являются на сегодняшний день самыми популярными сетями с коммутацией пакетов в основном из-за того, что долгое время они были единственными доступными сетями такого типа, а также из-за того, что они хорошо работают на ненадежных линиях. Стандарт X.25 "Интерфейс между оконечным оборудованием данных и аппаратурой передачи данных для терминалов, работающих в пакетном режиме в сетях передачи данных общего пользования" был разработан комитетом МККТТ для предоставления терминалам доступа к многочисленным удаленным мейнфреймам через сеть коммутации пакетов. Поэтому этот стандарт наилучшим образом подходит для передачи трафика низкой интенсивности, характерного для терминалов, и в меньшей степени соответствует более высоким требованиям трафика локальных сетей.

Сеть коммутации пакетов состоит из центров коммутации пакетов (ЦКП), расположенных в различных географических точках и соединенных высокоскоростными каналами обмена (рисунок 17.7).

Рис. 17.7. Сеть коммутации пакетов X. 25

В сети предусмотрено преодоление отказов каналов связи между ЦКП путем обхода поврежденного участка сети. Сеть обычно формируется, функционирует и контролируется системой управления сетью, расположенной в одном из центров коммутации пакетов.

Этот стандарт основан на синхронной передаче данных. Асинхронные старт-стопные терминалы подключаются к сети через так называемые пакетные адаптеры данных (ПАД). Они могут быть встроенными или удаленными. Встроенный ПАД обычно расположен в стойке ЦКП. Удаленный ПАД представляет собой небольшое автономное устройство, подключенное к ЦКП через один канал связи X.25. Один ПАД обычно обеспечивает доступ для 8, 16 или 24 асинхронных терминалов.

К основным функциям ПАД относятся:

Сборка символов, полученных от асинхронных терминалов, в пакеты,

Разборка полей данных в пакетах и вывод данных на асинхронные терминалы,

Управление процедурами установления соединения и разъединения, сброса и прерывания,

Передача символов, включающих стартстопные сигналы и биты проверки на четность. по требованию асинхронного терминала,

Продвижение пакетов при наличии соответствующих условий, таких как заполнение пакета, истечение времени ожидания и др.

На физическом уровне определены протоколы X.21 и X.21bis. Протокол физического уровня X.21 определяет интерфейс между компьютером и цифровым каналом связи, а X.21bis - между компьютером и аналоговым каналом (с использованием модемов).

На канальном уровне используется подмножество протокола HDLC. обеспечивающее возможность автоматической передачи в случае возникновения ошибок в линии. Предусмотрена возможность выбора из двух процедур доступа к каналу: LAP или LAPB.

На сетевом уровне определен протокол X.25/3 обмена пакетами между оконечным оборудованием и сетью передачи данных.

Сетевой уровень реализуется с использованием 14 различных типов пакетов. Так как надежную передачу данных обеспечивает уже упомянутый протокол LAP-B, то протокол X.25/3 выполняет функции маршрутизации пакетов и управления потоком пакетов.

Прежде, чем пакет будет передан через сеть, необходимо установить соединение между исходными ООД - терминалами и компьютерами. Существует два типа соединений - коммутируемый виртуальный канал (SVC - Switched Virtual Channel) и постоянный виртуальный канал (PVC - Permament Virual Channel). SVC можно сравнить с коммутируемым каналом телефонной сети общего пользования. Для установления соединения необходимо знать сетевой номер - адрес пользователя. Рекомендация X. 121 МККТТ определяет международную систему нумерации адресов для сетей передачи данных общего пользования.

Постоянный виртуальный канал подобен выделенному каналу в том, что не требуется устанавливать соединение или разъединение. Обмен пакетами по PVC может происходить в любой момент времени. PVC формируется системой управления сетью. Отличие PVC от выделенной линии типа 64 Кб/с в том, что пользователь не имеет никаких гарантий относительно действительной пропускной способности PVC. Поэтому использование PVC обычно намного дешевле, чем аренда выделенной линии.

Маршрутизация на основе виртуальных каналов - это обычный прием, используемый в глобальных сетях. Кроме сетей X.25, такая техника применяется в сетях frame relay и АТМ. Суть такой маршрутизации показана на рисунке 17.8. При установлении соединения между конечными узлами используется специальный тип пакета - запрос на установление соединения - который содержит длинный адрес узла-адресата, а также номер виртуального соединения, присвоенного данному виртуальному соединению в узле-отправителе, например, 15. Адрес назначения используется для маршрутизации пакета на основании таблиц маршрутизации, аналогичных тем, которые использовались при описании протоколов RIP или OSPF. В приведенном примере оказалось необходимым передать пакет с порта 1 на порт 0. Одновременно с передачей пакета маршрутизатор изменяет у пакета номер виртуального соединения - он присваивает пакету первый неиспользованный номер виртуального канала для данного коммутатора. Каждый конечный узел и каждый коммутатор ведет свой список использованных и свободных номеров виртуальных соединений. В таблице коммутации входного порта маршрутизатор отмечает, что в дальнейшем пакеты, прибывшие на этот порт с номером 15, должны передаваться на порт 0, причем номер виртуального канала должен быть изменен на 10, Одновременно делается и соответствующая запись в таблице коммутации порта 0 - пакеты с номером 10 нужно передавать на порт с номером 1, меняя номер виртуального канала на 15.

Рис. 17.8. Коммутация в сетях с виртуальными соединениями.

В результате действия такой схемы пакеты данных уже не несут длинные адреса конечных узлов, а имеют в служебном поле только номер виртуального канала, на основании которого и производится маршрутизация всех пакетов, кроме пакета запроса на установление соединения. В сети прокладывается виртуальный канал, который не изменяется в течение всего времени существования соединения. Пакеты в виртуальном канале циркулируют в двух направлениях, причем конечные узлы не замечают изменений номеров виртуальных каналов при прохождении пакетов через сеть.

За уменьшение служебного заголовка приходится платить невозможностью баланса трафика внутри виртуального соединения. При отказе какого-либо канала соединение приходится также устанавливать заново.

Протокол X.25 допускает использование следующих максимальных значений длины поля данных: 16, 32, 64, 128, 256, 512 и 1024 байта. Предпочтительной является длина 128 байтов. Пакеты данных циклически нумеруются от 0 до 7 или от 0 до 127. В заголовке пакета помещаются два номера: порядковый номер передачи и порядковый номер приема. Порядковый номер передачи необходим для обеспечения последовательной транспортировки данных по виртуальному каналу, обнаружения потерь пакетов и для управления интенсивностью поступления пакетов в сеть передачи данных.

Услуги по стандарту Х.25 предоставляются многими общественными сетями передачи данных - в США Sprint/Telenet, BT/Tymnet, Infonet и другими, в России - "Исток-К". "Спринт Сеть", ИАСНЕТ, РОСПАК, ИНФОТЕЛ, Релком и другими. Сети Х.25 часто являются единственной возможностью для создания международной сети, так как почти во всех странах имеются сети данного типа. Можно построить и свою собственную сеть Х.25, купив коммутационное оборудование Х.25 и арендовав выделенные линии.

Сети frame relay - сравнительно новые сети, которые гораздо лучше подходят для передачи трафика локальных сетей по сравнению с сетями X.25. Преимущество сетей frame relay заключается в их низкой избыточности, высокой емкости при низких задержках и надежности передачи данных по существующим общественным сетям. Они специально разработаны как общественные сети для соединения частных локальных сетей. Сети frame relay стандартизованы подкомитетом СС1ТТ 1.122. Они обеспечивают скорость передачи данных до 2 Мб/с и позволяют потребителю наращивать требуемую пропускную способность частями по 56 Кб/с.

Сети frame relay обеспечивают высокую пропускную способность и низкие задержки за счет исключения избыточных операций по коррекции ошибок, так как они рассчитаны на использование надежных цифровых и волоконно-оптических линий связи. Протокол frame relay занимается обнаружением ошибок только на первых двух уровнях модели OSI. в то время как в протоколе X.25 этим занимаются три уровня. Протокол frame relay, так как он работает только на первых двух уровнях модели OSI, является независимым от верхних уровней стека протокола, из-за чего его легко встраивать в сети. Существует спецификация RFC 1490, определяющая методы инкапсуляции в трафик frame relay трафика SNA и локальных сетей.

Протокол frame relay подразумевает, что коммуникационное оборудование конечных пользователей (а, точнее, протоколы сетевого и транспортного уровней, подобные IP и TCP) будут обнаруживать и корректировать ошибки за счет повторной передачи пакетов сетевого или более высоких уровней. Это требует некоторой степени интеллектуальности от конечного оборудования, что по большей части справедливо для современных локальных сетей.

Frame relay предлагает независимую адресацию пакетов. Сети frame relay, как и сети X.25, позволяют устанавливать частные виртуальные каналы между локальными сетями без добавления задержки между узлами. После установления виртуального соединения кадры frame relay маршрутизируются (транслируются, передаются, если более точно следовать переводу глагола relay) через коммутаторы сети. Стандарт frame relay определяет как постоянные виртуальные каналы (PVC), так и коммутируемые (SVC), но в большинстве коммерческих сетей frame relay реализованы в основном сервисы постоянных коммутируемых каналов.

Поле номера виртуального соединения (DLCI) состоит из 11 битов и называется идентификатором связи данных. Это поле содержит номер виртуального канала, соответствующий определенному порту сетевого моста или маршрутизатора. Посылающее устройство помещает этот адрес в кадр (фрейм) и передает кадр в сеть для перемещения к приемному устройству.

Поле данных может иметь размер до 4056 байтов.

В сетях frame relay предусмотрена процедура заказа качества обслуживания, отсутствующая в сетях Х.25. Для каждого виртуального соединения определяются несколько параметров, Два параметра определяют среднюю скорость соединения:

CIR (Committed Information Rate) - средняя скорость, с которой сеть согласна передавать данные пользователя,

CBS (Committed Burst Size) - максимальное количество битов, которое сеть согласна передать от этого пользователя за интервал времени Т.

Если эти величины определены, то время Т определяется формулой

На рисунке 17.9 приведен пример использования сети frame relay пятью удаленными региональными отделениями корпорации. Обычно доступ к сети осуществляется каналами с большей пропускной способностью, чем CIR - пропускная способность канала должна быть равна по крайней мере величине CBS/T. Но при этом пользователь платит не за пропускную способность канала, а за заказанные величины CIR и CBS.

Для управления потоком кадров в сетях frame relay используются механизмы оповещения конечных пользователей о том, что в коммутаторах сети возникли перегрузки (переполнение необработанными кадрами). Бит FECN

Рис. 17.9. Пример использования сети frame relay

(Forward Explicit Congestion Bit) кадра извещает об этом принимающую сторону. На основании значения этого бита принимающая сторона должна с помощью протоколов более высоких уровней (TCP/IP. SPX и т.п.) известить передающую сторону о том, что та должна снизить интенсивность отправки пакетов в сеть.

Бит BECN (Backward Explicit Congestion Bit) извещает о переполнении в сети передающую сторону и является рекомендацией немедленно снизить темп передачи. Бит BECN обычно отрабатывается на уровне устройств доступа к сети frame relay - маршрутизаторов, мультиплексоров и устройств CSU/DSU.

В общем случае биты FECN и BECN могут игнорироваться. Но если конечный пользователь нарушает условия, определяемые параметрами его соединения CIR и CBS, то сеть может просто отбрасывать (не передавать) "избыточные кадры" пользователя, выходящие за рамки договоренностей. Для этого в кадре имеется бит DE (Discard Eligible) -"удаление желательно", который устанавливается при превышения конечным узлом максимальной интенсивности трафика. И если в коммутаторе сети возникает перегрузка, то он может отбрасывать кадры с установленным битом DE.

Сервис frame relay обычно предоставляют те же операторы, которые эксплуатируют сети X.25. Большая часть производителей выпускает сейчас коммутаторы, которые могут работать как по протоколам Х.25, так и по протоколам frame relay.

Принципы построения и компоненты сети X.25

Главной особенностью сети X.25 является использование аппарата виртуальных каналов для обеспечения информационного взаимодействия между компонентами сети. Виртуальные каналы предназначены для организации вызова и непосредственной передачи данных между абонентами сети. Информационный обмен в сети X.25 во многом похож на аналогичный процесс в сетях ISDN и состоит из трех обязательных фаз:

  • Установление вызова (виртуального канала)
  • Информационный обмен по виртуальному каналу
  • Разрывание вызова (виртуального канала)

Информационное взаимодействие в сети X.25 осуществляется на физическом, канальном и сетевом уровнях. На физическом уровне могут быть использованы любые универсальные или специализированные интерфейсы. Компонентами сети являются устройства трех основных категорий:

  • Устройства DTE (Data Terminal Equipment)
  • Устройства DCE (Data Circuit-Terminating Equipment)
  • Устройства PSE (Packet Switching Exchange)

Устройство PAD (packet assembler/ disassembler) является специфическим устройством сети X.25. PAD предназначен для обеспечения взаимодействия неспециализированных терминалов с сетью, для преобразования потока символов, который поступает от неспециализированного терминала в пакеты X.25 и выполнения обратного преобразования.

Взаимодействие на канальном уровне сети X.25

Протоколы канального уровня HDLC/SDLC, были разработаны для того, чтобы решать следующие задачи:

  • Обеспечение передачи сообщений, которые могут содержать любое количество бит и любые возможные комбинации бит - требование кодовой прозрачности.
  • При передаче потока бит должны выполняться процедуры, которые позволяют обнаружить ошибки на приемной стороне.
  • Возникновение ошибки при передаче не должно приводить к потере или дублированию компонентов сообщения, т.е. к его искажению.
  • Протокол канального уровня должен был обеспечивать работу как двухточечных, так и многоточечных физических цепей
  • Протокол должен обеспечивать подключение дуплексных и полудуплексных линий
  • Протокол должен обеспечивать информационный обмен при значительных вариациях времени распространения сигнала

Протоколы семейства HDLC

Протоколы осуществляют передачу данных в виде кадров переменной длины. Начало и конец кадра помечается специальной последовательностью битов, которая называется флагом . Для обеспечения дисциплины управления процессом передачи данных, одна из станций, которые обеспечивают информационный обмен, может быть обозначена, как первичная , а другая (или другие) станции могут быть обозначены, как вторичные . Кадр, который посылает первичная станция, называется командой (command). Кадр, который формирует и передает вторичная станция, называется ответ (response).

Режимы организации взаимодействия на канальном уровне

Вторичная станция сегмента может работать в двух режимах: режиме нормального ответа или в режиме асинхронного ответа . Вторичния станция, которая находится в режиме нормального ответа, начинает передачу данных только в том случае, если она получила разрешающую команду от первичной станции. Вторичная станция, которая находится в режиме асинхронного ответа, может по своей инициативе начать передачу кадра или группы кадров. Станции, которые сочетают в себе функции первичных и вторичных станций и называются комбинированными .Симметричный режим взаимодействия комбинированных станций называется сбалансированным режимом.

Процедура LAPB

Процедура LAPB (Link Access Procedure Balanced) используется в сетях X.25 в качестве протокола канального уровня.

Флаг

Протокол LAPB использует в качестве флага комбинацию из 8 бит, которая состоит из 6-ти единиц и двух нулей, которые обрамляют эту последовательность спереди и сзади (01111110). Процесс приема кадра завершается при получении следующего флага. В том случае, если к моменту получения завершающего флага приемник получил менее 32 бит, принятый кадр считается ошибочным и уничтожается. Для предотвращения появления флаговой комбинации в теле кадра используется специальная процедура.

Структура кадра LAPB

Рекомендация X.25 определяет два основных типа процедуры LAPB - основной тип (modulo 8, basic) и расширенный тип (modulo 128, extended). Эти режимы отличаются разрядностью счетчиков, которые используются для управления потоком кадров. Кадр протокола LAPB содержит 4 поля: ADRESS, CONROL, Data, FCS . Поле DATA в кадре LAPB может отсутствовать.

Поле ADRESS

Поле ADRESS занимает в кадре один байт. В этом поле располагается бит признака C/R (Command /Response) В поле ADDRESS кадра управляющей команды размещается физический адрес принимающей станции. В поле ADRESS кадра ответа на команду размещается физический адрес передающей станции.

Поле CONTROL

Содержимое этого поля поля определяет тип кадра.

  • Информационные кадры (Information Frames, I-кадры). В битах поля CONTROL размещаются 3-х разрядный номер передаваемого кадра и 3-х разрядный номер кадра, который ожидается для приема для обеспечения управления потоком.
  • Управляющие кадры (Supervisory Frames, S-кадры). В поле CONTROL размещается 3-х разрядный номер информационного кадра, который ожидается для приема и два бита, которые определяют тип передаваемого управляющего кадра.
    Обозначение Тип кадра Бит №3 Бит №4
    RR Приемник готов (Receiver Ready) 0 0
    RNR Приемник не готов (Receiver Not Ready) 1 0
    REJ Отказ/переспрос (Reject) 0 1

    Наиболее часто в процессе информационного взаимодействия используются управляющие кадры типа RR . Кадры данного типа передает получатель данных для того, чтобы обозначить готовность к приему очередного кадра, в том случае, когда он сам не имеет информации для передачи. Кадры RNR используются устройствами DCE и DTE для того, чтобы сообщить абоненту о возникновении аварийной ситуации, в которой дальнейший прием информационных кадров невозможен. Кадры REJ используются устройствами DCE и DTE для того, чтобы сигнализировать абоненту о разрешении аварийной ситуации, в которой был невозможен прием информационных кадров. Кадр REJ передается после кадра RNR и подтверждает факт перехода линии в нормальный режим работы.

  • Ненумерованные кадры (Unnumbered Frames, U - кадры). Предназначены для организации и разрывания логического соединения, согласования параметров линии и формирования сигналов о возникновении неустранимых ошибок в процессе передачи данных I-кадрами.
    Обозначение Тип Признак
    SABM(E) Set Asynchronous Balanced Mode Команда
    DISC Disconnect Команда
    DM Disconnect Mode Ответ
    UA Unnumbered Acknowledgement Ответ
    FRMR Frame Reject Ответ
  • Кадр FRMR передается вторичной станцией для того, чтобы указать на возникновение аварийной ситуации, которая не может быть разрешена путем повторной передачи аварийного кадра.

Сетевой уровень X.25

Для передачи по сети пакеты X.25 инкапсулируются в кадры LAPB. Протокол LAPB обеспечивает надежную доставку этих пакетов по каналу, который связывает один компонент сети с другим. Один физический канал в сети Х.25 может быть использован для того, чтобы передавать пакеты которые относятся к нескольким различным процессам сетевого уровня. В отличие от принципа статического временного разделения, который используется в сетях ISDN, в сети X.25 для распределения канальных ресурсов используется принцип динамического разделения.

Виртуальные каналы X.25

Процесс сетевого уровня получает в свое распоряжение часть полосы пропускания физического канала в виде виртуального канала. Полная полоса пропускания канала делится в равных пропорциях между виртуальными каналами, которые активны в текущий момент. В сети X.25 существует два типа виртуальных каналов: коммутируемые (SVC) и постоянные (PVC).

Формат пакета X.25

Пакет X.25 состоит как минимум из трех байтов, которые определяют заголовок пакета. Первый байт содержит 4 бит идентификатора общего формата и 4 бита номера группы логического канала . Второй байт содержит номер логического канала , а третий — идентификатор типа пакета . Пакеты в сети бывают двух типов — управляющие пакеты и пакеты данных . Тип пакета определяется значением младшего бита идентификатора типа пакета.

Идентификатор общего формата

Поле идентификатора общего формата содержит признак, который устанавливает тип процедуры управления потоком пакетов (modulo 8 или modulo 128).

Номер логического канала

Номер логического канала задается содержимым двух полей — номер группы логического канала от 0 до 15 и номер канала в группе от 0 до 255. Таким образом, максимальное число логических каналов может достигать значения 4095. Номер логического канала определяет виртуальный порт, с которым ассоциируется конкретный пользовательский процесс.

Идентификатор типа пакета

DCE " width="11" height="9"> DTE DTE " width="11" height="9"> DCE Код (16)
Incoming Call Call Request 0B
Call Connected Call Accepted 0F
Clear Indication Clear Request 13
Clear Confirmation Clear Confirmation 17
Interrupt Interrupt 23
Interrupt Confirmation Interrupt Confirmation 27
Receiver Ready (RR) Receiver Ready (RR) X1
Receiver Not Ready (RNR) Receiver Not Ready (RNR) X5
— Reject (REJ) X9

Cетевые адреса получателя и отправителя пакета размещаются в поле "данные", и предназначены для управления вызовами.

Формат сетевого адреса X.25

Сетевой адрес состоит из двух частей

  • Data Network ID Code (DNIC)
  • Network Terminal Number

Поле DNIC содержит 4 десятичных цифры и определяет код страны и номер провайдера. Содержимое поля Network Terminal Number содержит 10 или 11 десятичных цифр, которые определяет провайдер и предназначено для определения конкретного пользователя.

Управление потоком кадров

Для управления потоком пакетов на сетевом уровне X.25 используются такие же процедуры и механизмы, какие используются для управления потоком кадров на канальном уровне сети X.25.

Для того, чтобы обеспечить возможность подключения к сети X.25 терминалов различного типа, используются специальные алгоритмы и параметры, которые управляют процессом сборки и разборки пакетов.

Данная рекомендация определяет наименования и назначения основных параметров, с помощью которых осуществляется настройка PAD. Параметры X.3 обозначаются символами P1 — P32.Параметр P1 определяет, возможен ли выход из режима передачи в режим команд по инициативе оператора терминала.

Для управления потоком используются специальные кодовые комбинации XON и XOFF. В том случае, если терминал по каким-либо причинам временно не способен принимать символы от PAD, он передает символ XOFF (^S). PAD должен прекратить передачу данных этому терминалу до получения от него разрешающего символа XON(^Q). Значения этих символов могут быть переопределены с помощью параметров Р28 и Р29.

Эта рекомендация определяет процедуры, в соответствии с которыми, пользователь может прочитать или изменить текущие значения параметров X.3 PAD. Для изменения установленных параметров X.3 PAD пользователь должен использовать команду SET. Для того, чтобы прочитать текущие значения параметров X.3 PAD пользователь должен использовать команду PAR.

Первой разработанной сетью с коммутацией пакетов является сеть X.25, которая описана в одноименной рекомендации МСЭ-Т. Сети Х.25 разработаны для линий низкого качества с высоким уровнем помех (для аналоговых телефонных линий КТЧ) благодаря применению протоколов подтверждения установления соединений и коррекции ошибок на канальном и сетевом уровня и обеспечивают передачу данных со скоростью до 64 Кбит/с .

Стандарт Х.25 определяет двухточечный интерфейс (выделенную линию) между пакетным терминальным оборудованием DTE и оконечным оборудованием передачи данных DCE.

DTE (data terminal equipment) – аппаратура передачи данных (кассовые аппараты, банкоматы, терминалы бронирования билетов, ПК, т.е. конечное оборудование пользователей).

DCE (data circuit-terminating equipment) – оконечное оборудование канала передачи данных (телекоммуникационное оборудование, обеспечивающее доступ к сети на стороне оператора связи).

PSE (packet switching exchange) – коммутаторы пакетов.

Рисунок – Структурная схема сети X.25

Интерфейс Х.25 содержит три нижних уровня модели OSI: физический, канальный и сетевой. Особенностью этой сети является использование коммутируемых виртуальных каналов для осуществления передачи данных между компонентами сети. Установление коммутируемого виртуального канала выполняется служебными протоколами, выполняющими роль сигнализации.

Физический уровень

На физическом уровне Х.25 используются аналоговые выделенные линии КТЧ. На физическом уровне Х.25 реализуется один из протоколов X.21 или X.21bis, который формирует данные в виде потока данных .

Канальный уровень

На канальном уровне сеть Х.25 обеспечивает гарантированную доставку, целостность данных и контроль потока. На канальном уровне поток данных структурируется на кадры . Контроль ошибок производится во всех узлах сети и в случае выявления ошибки выполняется повторная передача данных. Канальный уровень реализуется протоколом LAP-B , который работает только с двухточечными каналами связи, поэтому адресация не требуется .



Сетевой уровень

Сетевой уровень Х.25 реализуется протоколом PLP (Packet-Layer Protocol - протокол уровня пакета). На сетевом уровне кадры объединяются в один поток, который разбивается на пакеты . Протокол PLP управляет обменом пакетов через виртуальные цепи. Сеанс связи устанавливается между двумя устройствами DTE по запросу от одного из них. После установления коммутируемой виртуальной цепи эти устройства могут вести полнодуплексный обмен информации.

Пример кабелей DTE и DCE в сетях с коммутацией пакетов V.35*

- DTE

DCE -

* Примечание. Протоколы семейства V.xx – это дальнейшее развитие передачи пакетных данных поверх телефонных сетей, главным образом за счет увеличения количества симметричных линий связи. Максимальная скорость в сетях V.35 – до 8 Мбит/с.


Компьютерная пакетная сеть IP

Internet Protocol (IP, досл. «межсетевой протокол») –маршрутизируемый протокол сетевого уровня стека TCP/IP. Именно IP стал тем протоколом, который объединил отдельные компьютерные сети во всемирную сеть Интернет (WAN). Неотъемлемой частью протокола является адресация сети.


Рисунок – Принцип передачи IP-пакетов

1) Без установления соединения: перед отправкой пакетов данных соединение с узлом назначения не устанавливается (т.е. не известно, присутствует ли получатель, доставлено или прочитано письмо).

2) Доставка с максимальными усилиями (ненадёжная) : доставка пакетов не гарантируется.

3) Независимость от среды: функционирует независимо от среды, в которой передаются данные.


Инкапсуляция в IP-сети (создание пакетов)

Рисунок – Процесс формирования IP– пакетов

Заголовок IP-пакета всегда должен содержатьполе адреса отправителя и узла назначения!!!

IP-адрес (от англ. Internet Protocol Address) – уникальный сетевой адрес узла в компьютерной сети, построенной по протоколу IP. В сети Интернет требуется глобальная уникальность адреса; в случае работы в локальной сети требуется уникальность адреса в пределах сети.

Существует две рабочие версии IP протокола: IPv4 и IPv6 .

В версии протокола IPv4 IP-адрес имеет длину 4 байта (октета) и представляет собой 32-битовое число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел значением от 0 до 255, разделённых точками,

например, 192.168.0.3.

В 6-й версии IP-адрес (IPv6 ) является 128-битовым. Внутри адреса в качестве разделителей используются двоеточия (напр. 2001:0db8:85a3:0000:0000:8a2e:0370:7334). Ведущие нули допускается в записи опускать. Нулевые группы, идущие подряд, могут быть опущены, вместо них ставится двойное двоеточие (fe80:0:0:0:0:0:0:1 можно записать как fe80::1). Более одного такого пропуска в адресе не допускается.


IP-адрес состоит из двух частей: номера сети и номера узла (хоста) , которые разделяются маской. Маска может быть представлена в виде 4-байтного слова (например, 255.255.255.0 ) или быть представлена компактной записью через наклонную черту – «слеш» (например, /24 ).

Примечание : значения 255.255.255.0 и /24 – есть суть разного представления одного и того же двоичного числа (4-октетов): 11111111.11111111.11111111.00000000. В первом случае двоичные числа переводятся в десятичные внутри своих октетов, во втором случае /24 – есть количество идущих подряд единиц – слева на право.

Маска представляет собой фильтр с помощью которого определяют («отсекают») сетевую часть IP-сети и часть IP-адресов оконечных узлов (хостов). Осуществляется это по логической операции «И».

Пример:

Есть IP-адрес 62.76.34.36 и маска 255.255.255.224, определить адрес сети и хостов?

Решение:
224
Сетевая часть Хостовая часть

Таким образом, сетевая часть есть 62.76.34.32/27, а хосты в диапазоне.33 – .62,